
The Converter Grammar

Here is the syntax-only version of the grammar on which my solution is based. I draw your attention to a few

points:

A criteria file can mention any of the years any number of times, in any order. The examples in the kit were,

perhaps a bit misleading, because they might have implied that AnyYear was mandatory. Of course one could

have written a grammar with that in mind, but I didn't want that.

The Expression hierarchy is essentially the same as the one in your Parva compiler kit, but the

complications/features to support a character type have been removed (no casting, for example).

So the whole grammar is in fact pretty simple, part of it reminiscent of your Parva Compiler and part of it

reminiscent of the "meet the family" prac question.

In case you missed it, IGNORECASE means that the few key words like FirstYear could be written in any

combination of upper and lower case. IGNORECASE does not reduce identifiers and strings to a consistent

uppercase, however, you have to do that in the parser if you want the case-insensitive feature. I suSPect the

DeAN of huMANities WOulD appreciate that.

COMPILER Converter $CN
/* Converter for generating a C# method for transforming a list of criteria for marking

up student exam results from a simple specification into equivalent C# code.
Context free grammar only. Exam Kit provides an attributed version of this
P.D. Terry, Rhodes University, 2013 */

IGNORECASE

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit = "0123456789" .

TOKENS
integer = digit { digit } | digit { digit } CONTEXT (".") .
double = digit { digit } "." digit { digit } .
identifier = letter { letter | digit | "_" (letter | digit) } .

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Converter = Faculty

{ "FirstYear" ":" CriteriaList
| "SecondYear" ":" CriteriaList
| "ThirdYear" ":" CriteriaList
| "FourthYear" ":" CriteriaList
| "AnyYear" ":" CriteriaList

} .

Faculty = Identifier .

CriteriaList = { Action ":" Condition { ";" Condition } "." } .
Action = Identifier .

Condition = Expression .
Expression = AndExp { OrOp AndExp } .
AndExp = EqlExp { AndOp EqlExp } .
EqlExp = RelExp { EqlOp RelExp } .
RelExp = AddExp [RelOp AddExp] .
AddExp = MulExp { AddOp MulExp } .
MulExp = Factor { MulOp Factor } .
Factor = Primary | ("+" | "-" | NotOp) Factor .
Primary = Designator | Double | Integer | "(" Expression ")" .
Designator = Identifier .

Identifier = identifier .
Integer = integer .
Double = double .

AddOp = "+" | "-" .
MulOp = "*" | "/" .
EqlOp = "=" | "/=" .
RelOp = "<" | "<=" | ">" | ">=" .
NotOp = "not" .
AndOp = "and" .
OrOp = "or" .

END Converter.

