
Computer Science 3 - 2013

Programming Language Translation

Practical for Week 24, beginning 7 October 2013 - Solutions

Once again, there were some very good solutions handed in, but a few groups seemed rather at a loss here and

there. Full sources for the solutions can be found in the file PRAC24A.ZIP or PRAC24AC.ZIP for those who

wish to experiment further.

Tasks 2 and 3 - Checking on Tokens

This is harder to get right than it at first appears. One has to be able to recognise and distinguish (assume spaces

precede and follow the patterns below):

30 (integer 30)

0 (integer 0)

030 (integer 0 followed by integer 30)

30. (integer 30 followed by period)

0. (integer 0 followed by period)

9. (integer 9 followed by period)

.0 (period followed by integer 0)

.9 (period followed by integer 9)

0.3 (double 0.3)

3.0 (double 3.0)

3.3 (double 3.3)

Something like this seems to be required:

import library.*;
import java.util.*;

COMPILER TokenTests $CN
/* Test scanner construction and token definitions - C# version

The generated program will read a file of words, numbers, strings etc
and report on what characters have been scanned to give a token,
and what that token is (as a magic number). Useful for experimenting
when faced with the problem of defining awkward tokens!

P.D. Terry, Rhodes University, 2013 */

/* Some code to be added to the parser class */

static void display(Token token) {
// Simply reflect the fields of token to the standard outpul
IO.write("Line " + token.line + " Column");
IO.write(token.col, 4);
IO.write(": Kind");
IO.write(token.kind, 3);
IO.writeLine(" Val |" + token.val.trim() + "|");

} // display

CHARACTERS /* You may like to introduce others */

sp = CHR(32) .
backslash = CHR(92) .
control = CHR(0) .. CHR(31) .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit09 = "0123456789" .
digit19 = "123456789" .
stringCh = ANY - '"' - control - backslash .
charCh = ANY - "'" - control - backslash .
printable = ANY - control .

TOKENS /* You may like to introduce others */

ident = letter { {"_"} (letter | digit09) } .

integer = digit19 { digit09 }
| digit19 { digit09 } CONTEXT(".")
| "0"
| "0" CONTEXT(".") .

double = (digit19 { digit09 } "." | "0.") digit09 { digit09 }
["E" ["+" | "-"] digit09 { digit09 }] .

string = '"' { stringCh | backslash printable } '"' .

char = "'" (charCh | backslash printable) "'" .

IGNORE control

PRODUCTIONS

TokenTests
= { (ANY

| "."
| ".."
| "ANY"

) (. display(token); .)
} EOF (. display(token); .)

.

END TokenTests.

There may be a lurking bug in Coco/R that needs to be probed further. The alternative below does not work,

although I see no reason why not!

integer = (digit19 { digit09 } | "0")
| (digit19 { digit09 } | "0") CONTEXT(".")

Only two groups got all the way. Most fell down on one or more of those examples, possibly without noticing,

and probably because they had not thought of exhaustive test data.

Task 4 - The Parva Cross reference generator.

Once again, this is capable of a very simple elegant solution (hint: most Pat Terry problems admit to a simple

elegant solution; the trick is to find it, so learn from watching the Expert in Action, and pick up the tricks for

future reference).

All the references to identifiers in the Parva grammar are channelled through the Ident non-terminal, so all we

have to do is add the actions here to add the identifier to the table, suitably tagged according to how it has been

encountered,

This should suggest attributing the Ident production with a value parameter. The details follow of the other

productions that refer to it. Note the careful way in which we attribute the ForStatement production, which

has the option of incorporating a highly local control identifier.

COMPILER Parva $CN
/* Parva level 1 grammar - Coco/R for Java (EBNF)

P.D. Terry, Rhodes University, 2013
Extended for prac 24
Cross reference generator */

static final boolean
declared = true,
used = false;

PRODUCTIONS
Parva (. Table.clearTable(); .)
= "void" Ident<declared>
"(" ")" Block (. Table.printTable(); .) .

Assignment
= Designator

("=" Expression | "++" | "--")
| "++" Designator
| "--" Designator .

Designator
= Ident<used> ["[" Expression "]"] .

Computer Science 301 - 2013 - Practical 24 2

ForStatement (. boolean how = used; .)
= "for" "("

[[BasicType (. how = declared; .)
] Ident<how>
"=" Expression

] WEAK ";"
[Condition] WEAK ";"
[Assignment]

")" Statement .

Ident<boolean declared>
= identifier (. Table.addRef(token.val, declared, token.line); .) .

Of course, we need to have a table handler. In this case we can just write very simple code like the following.

Running the search loop from the bottom makes for a very simple addRef method. Note that this handler allows

us to enter an identifier that has been used before being declared. While this may be "wrong", it prevents crashes

of the cross-referencer itself.

// Handle cross reference table for Parva
// P.D. Terry, Rhodes University, 2013

package Parva;

import java.util.*;
import library.*;

class Entry { // Cross reference table entries
public String name; // The identifier itself
public ArrayList<Integer> refs; // Line numbers where it appears
public Entry(String name) {
this.name = name;
this.refs = new ArrayList<Integer>();

}
} // Entry

class Table {
static ArrayList<Entry> list = new ArrayList<Entry>();

public static void clearTable() {
// Clears cross-reference table
list.clear();

}

public static void addRef(String name, boolean declared, int lineRef) {
// Enters name if not already there, and then adds another line reference (negative
// if at a declaration point in the original source program)

int i = 0;
while (i < list.size() && !name.equals(list.get(i).name)) i++;
if (i >= list.size()) list.add(new Entry(name));
list.get(i).refs.add(declared ? -lineRef : lineRef);

}

public static void printTable() {
// Prints out all references in the table
for (int i = 0; i < list.size(); i++) {
Entry e = list.get(i);
IO.write(e.name, -16); // left justify in 16 spaces
for (int j = 0; j < e.refs.size(); j++)
IO.write(e.refs.get(j), 4); // left justify in 4 spaces

IO.writeLine();
}

}

} // Table

The printTable method above suffers from a possible disadvantage in that multiple occurrences of an

identifier on one line, as in

i = i + (i - list[i] * i);

create unwanted duplicate entries. These can be eliminated in various ways; the simplest might be to do so at the

output stage, rather than when they are added by the addRef() method. Please yourself; here is a suggestion.

Computer Science 301 - 2013 - Practical 24 3

public static void printTable() {
// Prints out all references in the table (eliminate duplicate line numbers)

for (int i = 0; i < list.size(); i++) {
Entry e = list.get(i);
IO.write(e.name, -16); // left justify in 16 spaces
int last = 0; // impossible line number
for (int j = 0; j < e.refs.size(); j++) {
int line = e.refs.get(j);
if (line != last) {
IO.write(line, 4); // left justify in 4 spaces
last = line; // remember we have printed this line number

}
}
IO.writeLine();

}
}

Several solutions revealed that people either had not thought that far or were confused about the point of the

declared argument to the addRef method. In particular, they might not have realized that an identifier may

legally be declared several times, in different scopes, as in the following example:

void main () {
int i = 1;
while (i < 10) {
int k = 1; // first declaration
while (k < i) {
write(k); k = k - 1;

}
i = i + 1;

}
bool k = false; // second declaration
write(k);

}

Tasks 5 - 7 - The Extended Calculator

Tasks 5 - 7 provided more of a challenge. There were some excellent submissions, but some showed that not

nearly enough effort had been expended on the exercise. Pity!

It is possible to solve this problem by embedding the table handling into the start of the ATG file, and the solution

kit has versions showing this. However, it may be worth introducing a proper (even if simple) table handler.

It makes for enhanced readability to assign names to a set of magic numbers useful for mapping the types. Besides

the obvious intType and boolType, it is convenient to introduce a fictitious noType that can be used to

denote the resulting type when an expression is badly formed.

The Entry class defines the nodes needed in the symbol table, which need to record the name, type, and value

for each variable.

We introduce a wrapper class ValNode to allow the various "nodes" in an expression to pass back both the value

and type of an operand. Though similar, this class is not the same as the Entry class, because it does not

require a name field. Note how the default constructor assigns a value of 1 - this will prevent problems if you try

to divide by an undefined variable. Clearly one could arrange define these classes in other ways as well.

package Calc3;

import java.util.*;
import library.*;

class Entry {
static final int // enumerations

noType = 0, intType = 1, boolType = 2;

public String name;
public ValNode value; // other fields could be added

public Entry(String name, ValNode value) { // constructor
this.name = name;
this.value = value;

}
} // Entry

Computer Science 301 - 2013 - Practical 24 4

class ValNode {
public int type = Entry.noType;
public int value = 1;

public ValNode() { // constructor
this.type = Entry.noType;
this.value = 1;

}

public ValNode(int type, int value) { // constructor
this.type = type;
this.value = value;

}
} // ValNode

public class Table {

static ArrayList<Entry> symTable = new ArrayList<Entry>();

public static Entry find(String name) {
// Returns entry with search key name in list, or null if not found

int i = symTable.size() - 1; // index of last entry
while (i >= 0) {
if (name.equals(symTable.get(i).name)) return symTable.get(i);
i--; // will reach -1 if no match

}
return null;

} // find

public static void add(Entry e) {
symTable.add(e);

} // add

} // Table

Here is a complete grammar itself, heavily commented to make various points that may have been missed (these

comments are not in the solution sources). Note that all error handling uses the SemError interface - do not

simply write to the standard output stream directly.

import library.*;

COMPILER Calc3 $NC
// Integer/Boolean calculator
// P.D. Terry, Rhodes University, 2013

static int toInt(boolean b) {
// return 0 or 1 according as b is false or true

return b ? 1 : 0;
}

static boolean toBool(int i) {
// return false or true according as i is 0 or 1

return i == 0 ? false : true;
}

/* It makes for enhanced readability to assign names to the magic numbers useful for mapping the
operators. Rather use this idea than work with many tedious string comparisons! */

static final int // enumerations
opnop = 1, opadd = 2, opsub = 3, opor = 4,
opmul = 5, opdvd = 6, opmod = 7, opand = 8,
opeql = 9, opneq = 10, oplss = 11, opgeq = 12,
opgtr = 13, opleq = 14;

CHARACTERS
digit = "0123456789" .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

TOKENS
number = digit { digit } .
identifier = letter { letter | digit } .

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Calc3
= { Print

| Assignment
} "quit" .

Computer Science 301 - 2013 - Practical 24 5

Print
= "print"
OneExpr { WEAK "," OneExpr }
SYNC ";" (. IO.writeLine(); .) .

/* OneExpr is introduced as a simple way of cutting down on actions that might otherwise clutter up
the Print production. It becomes responsible for evaluating a single expression that is to be
printed rather than stored. Note that some care is taken to ensure that Boolean values are
printed in a user friendly form. */

OneExpr (. ValNode expValue; .)
= Expression<out expValue> (. switch(expValue.type) {

case Entry.intType:
IO.write(expValue.value); break;

case Entry.boolType:
IO.write(toBool(expValue.value)); break;

default:
IO.write(" bad value"); break;

} .) .

/* Note that in the Assignment production we do not meddle with the list of variables until the
expression has been evaluated. In particular we do not want to enter the incomplete entry into
the table after parsing the Variable to find its name. In this way we avoid treating an initial
definition of, say ABC = ABC + 1, as being correct when it is not (as the ABC on the right side
has no defined value yet). Some people missed this. */

Assignment (. ValNode value;
String name; .)

= Variable<out name>
"=" Expression<out value> (. Entry e = Table.find(name);

if (e == null) // first definition
Table.add(new Entry(name, value));

else // updating a value
e.value = value; .)

SYNC ";" .

/* Note the form of the type checking - several people omitted it or had erroneous variations on the
lines of if (value.type != Entry.boolType && val2.type != Entry.boolType) ... Note how the
toInt and toBool methods are used to provide "type casting" of a sort between integer and Boolean
values. Notice how the return type is set to the "best guess" (even in the case of an error) -
this can have beneficial effects later on. Alternatively one could make more use of the noType idea */

Expression<out ValNode value> (. ValNode val2; .)
= AndExp<out value>
{ "||"
AndExp<out val2> (. if (value.type != Entry.boolType || val2.type != Entry.boolType)

SemError("boolean operands required");
value.type = Entry.boolType;
value.value = toInt(toBool(value.value) || toBool(val2.value)); .)

} .

/* The rest of the "binary" operations follow in much the same way */

AndExp<out ValNode value> (. ValNode val2; .)
= EqlExp<out value>
{ "&&"
EqlExp<out val2> (. if (value.type != Entry.boolType || val2.type != Entry.boolType)

SemError("boolean operands required");
value.type = Entry.boolType;
value.value = toInt(toBool(value.value) && toBool(val2.value)); .)

} .

/* But the EqlExp production needs further comment. Note that the presence of an EqlOp between two
integer operands yields a type "change" to Boolean - some people seem not to have taken advantage
of this. Note also that the == and != operators have meaning only between two operands of
exactly the same type. */

EqlExp<out ValNode value> (. ValNode val2;
int op; .)

= RelExp<out value>
{ EqlOp<out op>
RelExp<out val2> (. if (value.type != val2.type)

SemError("incomparable operands ");
value.type = Entry.boolType;
switch(op) {
case opeql:
value.value = toInt(value.value == val2.value); break;

case opneq:
value.value = toInt(value.value != val2.value); break;

default:
break;

Computer Science 301 - 2013 - Practical 24 6

} .)
} .

/* The RelExp production needs further comment. Note that the presence of an RelOp between two
integer operands yields a type "change" to Boolean - some people did not appreciate this. The
< <= > and >= operators have meaning only between two operands of the integer type. Note that the
production only allows for one or two AddExp terms - we use [] and not { }. Do you see why? */

RelExp<out ValNode value> (. ValNode val2;
int op; .)

= AddExp<out value>
[RelOp<out op>
AddExp<out val2> (. if (value.type != Entry.intType || val2.type != Entry.intType)

SemError("integer operands required");
value.type = Entry.boolType;
switch(op) {
case oplss:
value.value = toInt(value.value < val2.value); break;

case opleq:
value.value = toInt(value.value <= val2.value); break;

case opgtr:
value.value = toInt(value.value > val2.value); break;

case opgeq:
value.value = toInt(value.value >= val2.value); break;

default:
break;

} .)
] .

/* The AddExp parser is easy and needs no further comment */

AddExp<out ValNode value> (. ValNode val2;
int op; .)

= MultExp<out value>
{ AddOp<out op>
MultExp<out val2> (. if (value.type != Entry.intType || val2.type != Entry.intType)

SemError("integer operands required");
value.type = Entry.intType;
switch(op) {
case opadd:
value.value = value.value + val2.value; break;

case opsub:
value.value = value.value - val2.value; break;

default:
break;

} .)
} .

/* The MultExp parser needs to check for division by zero for both the / and the % operator - most
people checked only the obvious one involving / */

MultExp<out ValNode value> (. ValNode val2;
int op; .)

= UnaryExp<out value>
{ MulOp<out op>
UnaryExp<out val2> (. if (value.type != Entry.intType || val2.type != Entry.intType)

SemError("integer operands required");
value.type = Entry.intType;
switch(op) {
case opmul:
value.value = value.value * val2.value; break;

case opdvd:
if (val2.value == 0) SemError("division by zero");
else value.value = value.value / val2.value; break;

case opmod:
if (val2.value == 0) SemError("division by zero");
else value.value = value.value % val2.value; break;

default:
break;

} .)
} .

/* The unary operators need careful type checking. Note that a unary + does not require any arithmetic */

UnaryExp<out ValNode value> (. value = new ValNode(); .)
= Factor<out value>
| "+" UnaryExp<out value> (. if (value.type != Entry.intType)

SemError("integer operand required");
value.type = Entry.intType; .)

| "-" UnaryExp<out value> (. if (value.type != Entry.intType)
SemError("integer operand required");

Computer Science 301 - 2013 - Practical 24 7

value.type = Entry.intType;
value.value = -value.value; .)

| "!" UnaryExp<out value> (. if (value.type != Entry.boolType)
SemError("boolean operand required");

value.type = Entry.intType;
value.value = toInt(!toBool(value.value)); .) .

/* The Factor parser is the one ultimately responsible for starting to pass value and type information "up the
tree". Note that we regard an undeclared identifier at this stage to be an error - but we will still have
assigned a value and type to the return argument to make sure that something "sensible" propagates up from here
(using the default ValNode constructor). Several people added to the table if an undeclared identifier was
encountered, but this may not be a wise thing to do. */

Factor<out ValNode value> (. String name;
int n;
value = new ValNode(); .)

= Variable<out name> (. Entry e = Table.find(name);
if (e == null) {

SemError("undeclared variable");
// maybe symTable.add(new Entry(name, value));

}
else
value = new ValNode(e.value.type, e.value.value); .)

/* *********** why can we NOT simply assign value = e.value; ? ******* */

| Number<out n> (. value = new ValNode(Entry.intType, n); .)
| "true" (. value = new ValNode(Entry.boolType, 1); .)
| "false" (. value = new ValNode(Entry.boolType, 0); .)
| "(" Expression<out value> ")" .

/* The production for Variable does nothing more than extract the name for us. Note the exception
handling in Number - some submissions omitted this. */

Variable<out String name>
= identifier (. name = token.val; .) .

Number<out int n>
= number (. try {

n = Integer.parseInt(token.val);
} catch (NumberFormatException e) {
n = 0; SemError("number too large");

} .) .

/* It is convenient for readability to define the operators by their own non-terminals and for them simply to
return an appropriate value from an enumeration. Note the use of a default opnop to mop up errors that might
otherwise creep in from undefined values */

MulOp<out int op> (. op = opnop; .)
= "*" (. op = opmul; .)
| "%" (. op = opmod; .)
| "/" (. op = opdvd; .) .

AddOp<out int op> (. op = opnop; .)
= "+" (. op = opadd; .)
| "-" (. op = opsub; .) .

RelOp<out int op> (. op = opnop; .)
= "<" (. op = oplss; .)
| "<=" (. op = opleq; .)
| ">" (. op = opgtr; .)
| ">=" (. op = opgeq; .) .

EqlOp<out int op> (. op = opnop; .)
= "==" (. op = opeql; .)
| "!=" (. op = opneq; .) .

END Calc3.

Computer Science 301 - 2013 - Practical 24 8

