
Computer Science 3 - 2013

Programming Language Translation

Practical for Weeks 25 - 26, beginning 14 October 2013 - solutions

Sources of full solutions for these problems may be found on the course web page as the file PRAC25A.ZIP

(Java) or PRAC25AC.ZIP (C#).

Task 2 - Use of the debugging and other pragmas

The extra pragmas needed in the refined Parva compiler are easily introduced. We need some static fields:

public static boolean
debug = false,

* listCode = false,
* warnings = true;

The definitions of the pragmas are done in terms of these:

PRAGMAS
DebugOn = "$D+" . (. debug = true; .)
DebugOff = "$D-" . (. debug = false; .)

* CodeOn = "$C+" . (. listCode = true; .)
* CodeOff = "$C-" . (. listCode = false; .)
* WarnOn = "$W+" . (. warnings = true; .)
* WarnOff = "$W-" . (. warnings = false; .)

It is convenient to be able to set the options with command line parameters as well. This involves a

straightforward change to the Parva.frame file:

for (int i = 0; i < args.length; i++) {
if (args[i].toLowerCase().equals("-l")) mergeErrors = true;
else if (args[i].toLowerCase().equals("-d")) Parser.debug = true;
else if (args[i].toLowerCase().equals("-w")) Parser.warnings = false;

* else if (args[i].toLowerCase().equals("-c")) Parser.listCode = true;
else inputName = args[i];

}
if (inputName == null) {
System.err.println("No input file specified");

* System.err.println("Usage: Parva [-l] [-d] [-w] [-c] source.pav [-l] [-d] [-w] [-c]");
System.err.println("-l directs source listing to listing.txt");
System.err.println("-d turns on debug mode");
System.err.println("-w suppresses warnings");

* System.err.println("-c lists object code (.cod file)");
System.exit(1);

}

Finally, the following change to the frame file gives the option of suppressing the generation of the .COD listing.

* if (Parser.listCode) PVM.listCode(codeName, codeLength);

Task 3 - Learning many languages is sometimes confusing

To be as sympathetic as possible in the face of confusion between various operators is easily achieved - we make

the sub-parsers that identify these operators accept the incorrect ones, at the expense of generating an error

message (or, if you want to be really kind, issue a warning only, but it is better as an error, I think):

EqualOp<out int op> (. op = CodeGen.nop; .)
= "==" (. op = CodeGen.ceq; .)

| "!=" (. op = CodeGen.cne; .)
* | "=" (. SemError("== intended?"); .)
* | "<>" (. SemError("!= intended?"); .) .

AssignOp
* = "="
* | ":=" (. SemError("= intended?"); .) .

Similarly, recovering from the spurious introduction of then into an IfStatement is quite easily achieved. At this

stage it looks like this (but see later tasks).

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known); .)
= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)

* ["then" (. SemError("then is not used in Parva"); .)
] Statement<frame> (. falselabel.here(); .) .

Task 4 - Things are not always what they seem

Issuing warnings for empty statements or empty blocks at first looks quite easy. At this stage we could try:

Statement<StackFrame frame> (. boolean empty = false; .)

* = SYNC (Block<frame>

| ConstDeclarations

| VarDeclarations<frame>

| AssignmentStatement

| IfStatement<frame>

| WhileStatement<frame>

| SwitchStatement<frame>

| HaltStatement

| ReturnStatement

| ReadStatement

| WriteStatement

| "stackdump" ";" (. if (debug) CodeGen.dump(); .)

* | ";" (. if (warnings) Warning("empty statement"); .)

.

* Block<StackFrame frame>

= (. Table.openScope();

* bool empty = true; .)

* "{" { Statement<frame> (. empty = false; .)

* } (. if (empty && warnings) Warning("empty {} block");

WEAK "}" (. if (debug) Table.printTable(OutFile.StdOut);

Table.closeScope(); .) .

Spotting an empty block or the empty statement in the form of a stray semicolon, is partly helpful. Detecting

blocks that really have no effect might be handled in several ways. One suggestion is to count the executable

statements in a Block. This means that the Statement parser has to be attributed so as to return this count, and this

has a knock-on effect in various other productions as well. Since we might have all sorts of nonsense like

{ { int k; } { { int j; } int i; ; ; { } {{}} } }

counting has to proceed carefully. Details are left as a further exercise! Once you have started seeing how stupid

some code can be, you can develop a flare for writing bad code suitable for testing compilers without asking your

friends in CSC 102 to do it for you!

Task 5 - Something to do - while you wait for inspiration

Adding the basic DoWhile loop to Parva is very easy too, since all that is needed is a "backward" branch. Note

the use of the negateBoolean method, as the PVM does not have a BNZ opcode (although it would be easy

enough to add one):

* DoWhileStatement<StackFrame frame> (. Label startLoop = new Label(known); .)
* = "do"
* Statement<frame>
* WEAK "while"
* "(" Condition ")" WEAK ";" (. CodeGen.negateBoolean();
* CodeGen.branchFalse(startLoop); .)
* .

Task 6 - You had better do this one or else....

The problem, firstly, asked for the addition of an else option to the IfStatement. Adding an else option to the

Computer Science 301 - 2013 - Practical 25/26 solutions 2

IfStatement is easy once you see the trick. Note the use of the "no else part" option associated with an action,

even in the absence of any terminals or non-terminals. As mentioned earlier, this is a very useful trick to

remember.

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)
["then" (. SemError("then is not used in Parva"); .)

*] Statement<frame>
* ("else" (. CodeGen.branch(outLabel);
* falseLabel.here(); .)
* Statement<frame> (. outLabel.here(); .)
* | /* no else part */ (. falseLabel.here(); .)
*) .

Adding the elsif clauses calls for a little thought. Here is a nice solution:

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)
["then" (. SemError("then is not used in Parva"); .)
] Statement<frame>

* { (. CodeGen.branch(outLabel);
* falseLabel.here();
* falseLabel = new Label(!known); .)
* "elsif" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)
* ["then" (. SemError("then is not used in Parva"); .)
*] Statement<frame>
* }
* ("else" (. CodeGen.branch(outLabel);
* falseLabel.here(); .)
* Statement<frame>
* | /* no else part */ (. falseLabel.here(); .)
*) (. outLabel.here(); .)

.

Many - perhaps most - people in attempting this problem come up with the following sort of thing instead. This

can generate BRN instructions where none are needed. Devoid of checking, just to save space:

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)
Statement<frame> (. CodeGen.branch(outLabel);

falseLabel.here(); .)
{ "elsif" "(" Condition ")" (. falseLabel = new Label(!known);

CodeGen.branchFalse(falseLabel); .)
Statement<frame> (. CodeGen.branch(outLabel);

falseLabel.here(); .)
}
["else" Statement<frame>] (. outLabel.here(); .) .

For example, source code like

if (i == 12) k = 56;

leads to object code like

12 LDA 0
14 LDV
15 LDC 12
17 CEQ
18 BZE 27
20 LDA 5
22 LDC 56
24 STO
25 BRN 27 // unnecessary
27

Task 7 - This has gone on long enough - time for a break

The syntax of the BreakStatement is, of course, trivial. The catch is that one has to allow these statements only in

the context of loops. Trying to find a context-free grammar with this restriction is not worth the effort.

Computer Science 301 - 2013 - Practical 25/26 solutions 3

One approach that incorporates context-sensitive checking in conjunction with code generation is based on passing

labels as arguments to various subparsers. We change the parser for Statement and for Block as follows:

* Statement<StackFrame frame, Label breakLabel>
* = SYNC (Block<frame, breakLabel>

| ConstDeclarations
| VarDeclarations<frame>
| AssignmentStatement

* | IfStatement<frame, breakLabel>
| WhileStatement<frame>
| DoWhileStatement<frame>
| SwitchStatement<frame>

* | BreakStatement<breakLabel>
| HaltStatement
| ReturnStatement
| ReadStatement
| ReadLineStatement
| WriteStatement
| WriteLineStatement
| "stackdump" ";" (. if (debug) CodeGen.dump(); .)
| ";" (. if (warnings) Warning("empty statement"); .)

) .

* Block<StackFrame frame, Label breakLabel>
= (. Table.openScope();

bool empty = true; .)
* "{" { Statement<frame, breakLabel> (. empty = false; .)

} (. if (empty && warnings) Warning("empty block"); .)
WEAK "}" (. if (debug) Table.printTable(OutFile.StdOut);

Table.closeScope(); .) .

and the parsers for the statements that are concerned with looping, breaking, and making decisions become

* IfStatement<StackFrame frame, Label breakLabel>
(. Label falseLabel = new Label(!known);

Label outLabel = new Label(!known); .)
= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)

["then" (. SemError("then is not used in Parva"); .)
*] Statement<frame, breakLabel>

(. CodeGen.branch(outLabel);
falseLabel.here(); .)

{ "elsif" "(" Condition ")" (. falseLabel = new Label(!known);
CodeGen.branchFalse(falseLabel); .)

["then" (. SemError("then is not used in Parva"); .)
*] Statement<frame, breakLabel> (. CodeGen.branch(outLabel);

falseLabel.here(); .)
}
["else"

* Statement<frame, breakLabel> (. outLabel.here(); .)
.

WhileStatement<StackFrame frame> (. Label loopExit = new Label(!known);
Label loopStart = new Label(known); .)

= "while" "(" Condition ")" (. CodeGen.branchFalse(loopExit); .)
* Statement<frame, loopExit> (. CodeGen.branch(loopStart);

loopExit.here(); .) .

BreakStatement<Label breakLabel>
* = "break" (. if (breakLabel == null)
* SemError("break is not allowed here");
* else CodeGen.branch(breakLabel); .)

WEAK ";" .

DoWhileStatement<StackFrame frame> (. Label loopExit = new Label(!known);
Label loopStart = new Label(known); .)

= "do"
* Statement<frame, loopExit>

WEAK "while"
"(" Condition ")" WEAK ";" (. CodeGen.negateBoolean();

CodeGen.branchFalse(loopStart);
* loopExit.here(); .) .

There is at least one other way of solving the problem, which involves building one's own stack of labels and

maintaining it outside of the methods. But the method given here effectively does it automagically, building up

Computer Science 301 - 2013 - Practical 25/26 solutions 4

the label stack in the stack frames that are constructed as the methods are called (remember the discussion in class

about how methods are called and build stack frames ...?)

Task 8 - Make the change; enjoy life; upgrade now to Parva++ (Ta-ra!)

It might not at first have been obvious, but hopefully everyone eventually saw that this extension is handled at the

initial level by clever modifications to the Assignment production, which has to be factorized in such a way as to

avoid LL(1) conflicts. The code below achieves all this (including the tests for compatibility and for the

designation of variables rather than constants that several students omitted) by assuming the existence of a few

new machine opcodes, as suggested in the textbook.

Assignment (. int expType;
DesType des;

* boolean inc = true; .)
= Designator<out des> (. if (des.entry.kind != Kinds.Var)

SemError("invalid assignment"); .)
(AssignOp

Expression<out expType> (. if (!assignable(des.type, expType))
SemError("incompatible types in assignment");

CodeGen.assign(des.type); .)
* | ("++" | "--" (. inc = false; .)
*) (. if (!isArith(des.type))
* SemError("arithmetic type needed");
* CodeGen.incOrDec(inc, des.type); .)
*)
* | ("++" | "--" (. inc = false; .)
*) Designator<out des> (. if (des.entry.kind != Kinds.Var)
* SemError("variable designator required");
* if (!isArith(des.type))
* SemError("arithmetic type needed");
* CodeGen.incOrDec(inc, des.type); .) .

WEAK ";" .

The extra code generation routine is straightforward, but note that we need to cater for characters specially

public static void incOrDec(boolean inc, int type) {
// Generates code to increment the value found at the address currently
// stored at the top of the stack.
// If necessary, apply character range check

* if (type == Types.charType) emit(inc ? PVM.incc : PVM.decc);
* else emit(inc ? PVM.inc : PVM.dec);

}

As usual, the extra opcodes in the PVM make all this easy to achieve at run time. Some submissions might have

forgotten to include the check that the address was "in bounds". I suppose one could argue that if the source

program were correct, then the addresses could not go out of bounds, but if the interpreter were to be used in

conjunction with a rather less fussy assembler (as we had in earlier practicals) it would make sense to be cautious.

case PVM.inc: // int ++
adr = pop();
if (inBounds(adr)) mem[adr]++;
break;

case PVM.dec: // int --
adr = pop();
if (inBounds(adr)) mem[adr]--;
break;

case PVM.incc: // char ++
adr = pop();
if (inBounds(adr))
if (mem[adr] < maxChar) mem[adr]++;
else ps = badVal;

break;
case PVM.decc: // char --

adr = pop();
if (inBounds(adr))
if (mem[adr] > 0) mem[adr]--;
else ps = badVal;

break;

Task 9 - A short circuit does not always signify a quick trip around the Prospect Field track

The exercise suggested that the user might be allowed to use a $S pragma or -s command line parameter to

Computer Science 301 - 2013 - Practical 25/26 solutions 5

choose between code generation using short-circuit semantics or code generation using a Boolean operator

approach (see the textbook, pages 12 and 167). All the opcodes you need are already in the source kit.

This is easily implemented as follows, where we have also shown how the feature might be controlled by a

Boolean flag set by the pragma:

Expression<out int type> (. int type2;
Label shortcircuit = new Label(!known); .)

= AndExp<out type>
* { "||" (. if (shortCirc)

CodeGen.booleanOp(shortcircuit, CodeGen.or); .)
AndExp<out type2> (. if (!isBool(type) || !isBool(type2))

SemError("Boolean operands needed");
* if (!shortCirc) CodeGen.binaryOp(CodeGen.or);

type = Types.boolType; .)
} (. shortcircuit.here(); .) .

AndExp<out int type> (. int type2;
Label shortcircuit = new Label(!known); .)

= EqlExp<out type>
* { "&&" (. if (shortCirc)

CodeGen.booleanOp(shortcircuit, CodeGen.and); .)
EqlExp<out type2> (. if (!isBool(type) || !isBool(type2))

SemError("Boolean operands needed");
* if (!shortCirc) CodeGen.binaryOp(CodeGen.and);

type = Types.boolType; .)
} (. shortcircuit.here(); .) .

Task 10 - It should only take a MIN or two to derive MAX benefit from these tasks

The problem called for extensions to the grammar, code generator and the PVM to allow you to incorporate calls

to max() or min() functions. The most obvious use of these might be limited to two arguments, as in

min(a, b) - max(c, d)

but in general one should be able to deal with any number of arguments:

min(a, b) - max(c, d) + min(e) + max(w, x, y, z) + max(min(e, f + max(p, q)))

Once again, this is all easily achieved by additions to the options in the Primary production. One way of doing

this is to generate code for each argument (expression) and then to follow this by a call to a new code generating

function. Note the auto-promotion to integer type if any of the arguments are of the integer type.

| ("max" (. max = true; .)
| "min" (. max = false; .)

)
"("

Expression<out type> (. if (!isArith(type))
SemError("arithmetic argument expected"); .)

{ "," Expression<out type2> (. if (!isArith(type2))
SemError("arithmetic argument expected");

else if (type2 != Types.charType) type = type2;
CodeGen.maxMin(max); .)

}
")"

The code generator and the PVM are easily extended

public static void maxMin(boolean max) {
// Generates code to leave max/min(tos, sos) on top of stack

emit(max ? PVM.max : PVM.min);
}

case PVM.max: // max(tos, sos)
tos = pop();
sos = pop();
push(tos > sos? tos : sos);
break;

Computer Science 301 - 2013 - Practical 25/26 solutions 6

Note that this still will work for the pathological case where the max() or min() function has only one

argument! There are other simple changes needed to the PVM - the new opcodes must be added to the opcode

list, and must have appropriate mnemonics defined. The changes needed here - and in the plethora of similar

changes needed in some of these exercises - are straightforward and can all be seen in the source kit.

There is another approach - one could generate code to push the values of all of the arguments onto the run-time

stack, counting them at the same time, and then generate a two-word opcode to be used by the emulator. This

would suggest changes to the Primary production as follows:

| ("MAX" (. max = true; .)
| "MIN" (. max = false; .)

)
"("

Expression<out type> (. int count = 1;
if (!isArith(type))

SemError("arithmetic argument expected"); .)
{ "," Expression<out type2> (. count++;

if (!isArith(type))
SemError("arithmetic argument expected"); .)

else if (type2 != Types.charType) type = type2;
}

")" (. CodeGen.maxMin(max, count); .)

along with a code generator method as follows:

public static void maxMin(boolean max, int count) {
// Generates code to leave max(a,b,c ...) of count values on top of stack
emit(max ? PVM.max2 : PVM.min2); emit(count);

}

and emulation on the lines of the following (with a similar idea for finding the minimum):

case PVM.max2: // max(a,b,c....)
loop = next();
while (loop > 1) {
tos = pop();
sos = pop();
push(tos > sos? tos : sos);
loop--;

}
break;

Task 11 - In case you have nothing better to do (Switch to Parva - Success Guaranteed)

The problem called for the implementation of a SwitchStatement described by the productions:

SwitchStatement
= "switch" "(" Expression ")" "{"

{ CaseLabelList Statement { Statement } }
["default" ":" { Statement }]

"}" .
CaseLabelList = CaseLabel { CaseLabel } .
CaseLabel = "case" ["+" | "-"] Constant ":" .

as exemplified by

switch (i + j) {
case 2 : if (i === j) break; write("i = " , i); read(i, j);
case 4 : write("four"); i = 12;
case 6 : write("six");
case -9 :
case 9 :
case -10 :
case 10 : write("plus or minus nine or ten"); i = 12;
default : write("not 2, 4, 6, 9 or 10");

}

by generating code matching an equivalent set of IfStatements, effectively on the lines of

Computer Science 301 - 2013 - Practical 25/26 solutions 7

temp = i + j;
if (temp == 2) { if (i === j) goto out; write("i = " , i); read(i, j); goto out; }
elsif (temp == 4) { write("four"); i = 12; goto out; }
elsif (temp == 6) { write("six"); goto out; }
elsif (temp in (-9, 9, -10, 10)) { write("plus or minus nine or ten"); i = 12; goto out; }
else write("not 2, 4, 6, 9 or 10");

out: ...

The temp value needed can be stored on the stack - if we execute a DUP opcode before each successive

comparison or test for list membership is effected, we can ensure that the value of the selector is preserved, in

readiness for the next comparison.

Although this idea does not lead to a highly efficient implementation of the SwitchStatement, it is relatively easy

to implement - the complexity arising from the need, as usual, to impose semantic checks that all labels are

unique, that the type of the selector is compatible with the type of each label, and from a desire to keep the

number of branching operations as low as possible. The code follows:

SwitchStatement<StackFrame frame> (. int expType, expCount, labelCount;
boolean branchNeeded = false;
Label nextSwitch = new Label(!known);
Label switchExit = new Label(!known);
ArrayList<Integer> labelList = new ArrayList<Integer>(); .)

= "switch" "("
Expression<out expType> (. if (isRef(expType) || expType == Types.noType)

SemError("invalid selector type"); .)
")"
"{"

{ (. if (branchNeeded) CodeGen.branch(switchExit);
branchNeeded = true;
nextSwitch.here();
nextSwitch = new Label(!known);
CodeGen.duplicate(); .)

CaseLabelList<out labelCount, expType, labelList>
(. CodeGen.membership(labelCount, expType);

CodeGen.branchFalse(nextSwitch); .)
Statement<frame, switchExit>
{ Statement<frame, switchExit> }

}
("default" ":" (. if (branchNeeded) CodeGen.branch(switchExit);

nextSwitch.here(); .)
{ Statement<frame, switchExit> }

| (. nextSwitch.here(); .)
)

"}" (. switchExit.here();
CodeGen.pop(1); .) .

CaseLabelList<. out int labelCount, int expType, ArrayList<Integer> labelList .>
= CaseLabel<expType, labelList> (. labelCount = 1; .)

{ CaseLabel<expType, labelList> (. labelCount++; .)
} .

CaseLabel<. int expType, ArrayList<Integer> labelList .>
(. ConstRec con;

int factor = 1;
boolean signed = false; .)

= "case"
[("+" | "-" (. factor = -1; .)
) (. signed = true; .)

] Constant<out con> ":" (. if (!compatible(con.type, expType)
|| signed && con.type != Types.intType)

SemError("invalid label type");
int lab = factor * con.value;
if (labelList.contains(lab))
SemError("duplicated case label");

else labelList.add(lab);
CodeGen.loadConstant(lab); .) .

Notes

• Note the use of the <.> bracketing around the parameter lists for the CaseLabelList and CaseLabel

productions. There are needed because of the syntax required for dealing with generic classes in Java and C#.

• Each SwitchStatement implements a simple list for recording the values of its labels - which must be unique

within a single SwitchStatement. We cannot use a global or static field in the parser, so this structure has to be

Computer Science 301 - 2013 - Practical 25/26 solutions 8

passed down the chain of calls to other routines.

• The use of the branchNeeded variable is to ensure that the minimum number of branch operations is

introduced. It is possible to find other actions that do not use this variable, but (as in the case of the non-

optimal IfStatement discussed earlier) these may have the effect of creating unnecessary branches from one

operation straight to the next.

• The system correctly handles a SwitchStatement with case labels but no default option, with no case labels and

only a default option, or even with none of them at all!

• There is a school of thought that suggests that, in the absence of an explicit default option, failure to match a

case label should simply "do nothing" is dangerous practice, and that one should always be required to supply

one - even if the associated statement list is missing. However, it would be very easy to modify the grammar

above to achieve this.

• Note that the statement sequences within a SwitchStatement might incorporate one or more explicit

BreakStatements. These, of course, are distinct from any BreakStatements that might be used to exit loops

within the statement sequences, but the mechanism suggested here handles this correctly. It also effectively

forbids stray ContinueStatements from appearing. You might like to consider whether the ContinueStatement

could be used as a means of providing the "fall through" semantics of some other versions of the

SwitchStatement.

• The form of code generated by this system may be understood by reference to the following example

switch (selector) {
case 20: case 30: case 40: statement 1;
case 50: statement 2;
default: statement 3;

}

which gives rise to code like

selector
DUP
LDC 20
LDC 30
LDC 40
MEMB 3
BZE next
statement 1
BRN exit

next DUP
LDC 50
CEQ
BZE default
statement 2
BRN exit

default statement 3
exit DSP -1

...

This calls for other simple opcodes for the PVM. DUP can be generated by calling:

public static void duplicate() {
// Generates code to push another copy of top of stack
emit(PVM.dup);

}

and its interpretation is as follows:

case PVM.dup: // duplicate top of stack
cpu.sp--;
if (inBounds(cpu.sp)) mem[cpu.sp] = mem[cpu.sp + 1];
break;

PVM.memb can be generated (when there are two or more labels) by calling

Computer Science 301 - 2013 - Practical 25/26 solutions 9

public static void membership(int count, int type) {
// Generates code to check membership of a list of count expressions

if (count == 1) comparison(CodeGen.ceq, type);
else { emit(PVM.memb); emit(count); }

}

with a two-word opcode interpreted as follows:

case PVM.memb: // membership test
boolean isMember = false;
loop = next();
int test = mem[cpu.sp + loop];
for (int m = 0; m < loop; m++) if (pop() == test) isMember = true;
mem[cpu.sp] = isMember ? 1 : 0;
break;

Task 12 - Generating tighter PVM code

The changes to the code generating routines to produce the special one-word opcodes like LDA_0 and LDC_3 and

the others like them are very simple, on the lines of the following:

public static void loadConstant(int number) {
// Generates code to push number onto evaluation stack
switch (number) {
case -1: emit(PVM.ldc_m1); break;
case 0: emit(PVM.ldc_0); break;
case 1: emit(PVM.ldc_1); break;
case 2: emit(PVM.ldc_2); break;
case 3: emit(PVM.ldc_3); break;
case 4: emit(PVM.ldc_4); break;
case 5: emit(PVM.ldc_5); break;
default: emit(PVM.ldc); emit(number); break;

}
}

public static void loadAddress(Entry var) {
// Generates code to push address of variable var onto evaluation stack
switch (var.offset) {
case 0: emit(PVM.lda_0); break;
case 1: emit(PVM.lda_1); break;
case 2: emit(PVM.lda_2); break;
case 3: emit(PVM.lda_3); break;
case 4: emit(PVM.lda_4); break;
case 5: emit(PVM.lda_5); break;
default: emit(PVM.lda); emit(var.offset); break;

}
}

Of course, with the Parva grammar as it was defined for this practical one would never be in a position to

generate the ldc_m1 opcode, since the grammar made no provision for negative constants. It would not have

been hard to extend it to do so, and you might like to puzzle out how and where this could be done.

As stated in the prac sheet, generating code to make use of LDL and STL is something that must be done with

great care. Various of the productions -Assignment, OneVar, Designator and Primary need alteration. The trick

is to modify the Designator production so that it does not generate the LDA opcode immediately. But we need to

distinguish between designators that correspond to "simple" variables that are to be manipulated with the LDL and

STL opcodes, and array elements which will still require use of LDV and STO opcodes. So the DesType class is

extended:

class DesType {
// Objects of this type are associated with l-value and r-value designators

public Entry entry; // the identifier properties
public int type; // designator type (not always the entry type)

* public boolean isSimple; // true unless it is an indexed designator

public DesType(Entry entry) {
this.entry = entry;
this.type = entry.type;

* this.isSimple = true;
}

} // end DesType

Computer Science 301 - 2013 - Practical 25/26 solutions 10

The Designator production is now attributed as follows - note in particular where the code generation occurs:

Designator<out DesType des> (. string name;
int indexType; .)

= Ident<out name> (. Entry entry = Table.find(name);
if (!entry.declared)

SemError("undeclared identifier");
des = new DesType(entry); .)

["[" (. if (isRef(des.type)) des.type--;
else SemError("unexpected subscript");
if (entry.kind != Kinds.Var)
SemError("unexpected subscript");

* des.isSimple = false;
* CodeGen.loadValue(entry); .)

Expression<out indexType> (. if (!isArith(indexType)) SemError("invalid subscript type");
* CodeGen.index(); .)

"]"
] .

Within the Primary production, when a Designator is parsed one must either complete the array access by

generating the LDV opcode, or generate the LDL opcode.

Primary<out int type> (. type = Types.noType;
int size;
DesType des;
ConstRec con; .)

= Designator<out des> (. type = des.type;
switch (des.entry.kind) {

case Kinds.Var:
* if (des.isSimple) CodeGen.loadValue(des.entry);
* else CodeGen.dereference();

break;
case Kinds.Con:
CodeGen.loadConstant(des.entry.value);
break;

default:
SemError("wrong kind of identifier");
break;

} .)
| Constant<out con> ... // as before .

When variables are declared we can always make use of the STL code if they are initialized:

OneVar<StackFrame frame, int type> (. int expType; .)
= (. Entry var = new Entry(); .)

Ident<out var.name> (. var.kind = Kinds.Var;
var.type = type;
var.offset = frame.size;
frame.size++; .)

[AssignOp Expression<out expType> (. if (!asssignable(var.type, expType))
SemError("incompatible types in assignment");

* CodeGen.storeValue(var); .)
] (. Table.insert(var); .) .

The production for ReadElement will have to generate the LDA opcode if the element to be read is a simple

variable:

ReadElement (. string str;
DesType des; .)

= StringConst<out str> (. CodeGen.writeString(str); .)
| Designator<out des> (. if (des.entry.kind != Kinds.Var)

SemError("wrong kind of identifier");
* if (des.isSimple) CodeGen.loadAddress(des.entry);

switch (des.type) {
... // as before

Similarly, the production for Assignment may have to generate the LDA opcode if the ++ or -- operation is applied

to simple variables, and to choose between generating the STL or STO opcodes for regular assignment statements.

Task 13 - Peek and Poke

In the extension to Parva to allow the compiler to download code into the PAM computer it was suggested that

you add the ability to read directly from any addressible location in memory (peek) or to write directly to any

Computer Science 301 - 2013 - Practical 25/26 solutions 11

addressible location in memory (poke).

Adding these extensions to Parva should have been no real challenge for students who had got this far. The

production for PokeStatement is as follows:

PokeStatement (. int type, address;
ConstRec con; .)

= "poke" "(" Expression<out type> (. if (!isArith(type))
SemError("integer address needed"); .)

WEAK "," Expression<out type> (. if (!isArith(type))
SemError("integer expression needed");

CodeGen.assign(type); .)
")" WEAK ";" .

and the extra possibility within Factor is as follows:

| "peek"
"(" Expression<out type> (. if (!isArith(type))

SemError("Arithmetic argument needed");
CodeGen.dereference();
type = Types.intType; .)

Unchecked, these are fairly "dangerous" facilities (why?). It is left as an further exercise to improve security.

Computer Science 301 - 2013 - Practical 25/26 solutions 12

