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Chapter 1

Introduction

Objectives

• To introduce the basic concepts of computer architecture, and the RISC and CISC approaches
to computing

• To survey the history and development of computer architecture

• To discuss background and supplementary reading materials

1.1 Course Overview

This course aims to give an introduction to some advanced aspects of computer architecture. One of the
main areas that we will be considering is RISC (Reduced Instruction Set Computing) processors. This
is a newer style of architecture that has only become popular in the last fifteen years or so. As we will
see, the term RISC is not easily defined and there are a number of different approaches to microprocessor
design that call themselves RISC. One of these is the approach adopted by Sun in the design of their
SPARC1 processor architecture. As we have ready access to SPARC processors (they are used in all
our Sun workstations) we will be concentrating on the SPARC in the lectures and the practicals for this
course. The first part of the course gives an introduction to the architecture and assembly language of
the SPARC processors. You will see that the approach is very different to that taken by conventional
processors like the Intel 80x862/Pentium family, which you may have seen previously. The latter part of
the course then takes a more general look at the motivations behind recent advances in processor design.
These have been driven by market factors such as price and performance. Accordingly we will examine
modern trends in microprocessor design from a quantitative perspective.

It is, perhaps, also worth mentioning what this course does not cover. Some computer architecture
courses at other universities concentrate (almost exclusively) on computer architecture at the level of
designing parallel machines. We will be restricting ourselves mainly to the discussion of processor design
and single processor systems. Other important aspects of overall computer system design, which we will

1SPARC is a registered trademark of SPARC International.
280x86 is used in this course to refer to the entire Intel family of processors since the 8086, including the Pentium and

later models, except where explicitly noted.
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not be discussing in this course, are I/O and bus interconnects. Lastly, we will not be considering more
radical alternatives for future architectures, such as neural networks and systems based on fuzzy logic.

1.1.1 Prerequisites

This course assumes that you are familiar with the basic concepts of computer architecture in general,
especially with handling various number bases (mainly binary, octal, decimal and hexadecimal) and
binary arithmetic. Basic assembly language programming skills are assumed, as is a knowledge of some
microprocessor architecture (we generally assume that this is the basic Intel 80x86 architecture, but
exposure to any similar processor will do). You may find it useful to go over this material again in
preparation for this course.

The rest of this chapter lays a foundation for the rest of the course by giving some of the history of
computer architecture, some terminology and discussing some useful references.

1.2 The History of Computer Architecture

1.2.1 Early Days

It is generally accepted that the first computer was a machine called ENIAC (Electronic Numerical
Integrator and Calculator) built by J. Presper Eckert and John Mauchly at the University of Pennsylvania
during the Second World War. ENIAC was constructed from 18 000 vacuum tubes and was 30m long
and over 2.4m high. Each of the registers was 60cm long! Programming this monster was a tedious
business that required plugging in cables and setting switches. Late in the war effort John von Neumann
joined the team working on the problem of making programming the ENIAC easier. He wrote a memo
describing the way in which a computer program could be stored in the computer’s memory, rather than
hard wired by switches and cables. There is some controversy as to whether the idea was von Neumann’s
alone or whether Eckert and Mauchly deserve the credit for the break through. Be that as it may, the
idea of the stored-program computer has come to be known as the “von Neumann computer” or “von
Neumann architecture”. The first stored-program computer was then built at Cambridge by Maurice
Wilkes who had attended a series of lectures given at the University of Pennsylvania. This went into
operation in 1949, and was known as EDSAC (Electronic Delay Storage Automatic Calculator). The
EDSAC had an accumulator-based architecture (a term we will define precisely later in the course), and
this remained the most popular style of architecture until the 1970’s.

At about the same time as Eckert and Mauchly were developing the ENIAC, Howard Aiken was working
on an electro-mechanical computer called the Mark-I at Harvard University. This was followed by a
machine using electric relays (the Mark-II) and then a pair of vacuum tube designs (the Mark-III and
Mark-IV), which were built after the first stored-program machines. The interesting feature of Aiken’s
designs was that they had separate memories for data and instructions, and the term Harvard architecture
was coined to describe this approach. Current architectures tend to provide separate caches for data and
code, and this is now referred to as a “Harvard architecture”, although it is a somewhat different idea.

In a third separate development, a project at MIT was working on real-time radar signal processing in
1947. The major contribution made by this project was the invention of magnetic core memory. This
kind of memory stored bits as magnetic fields in small electro-magnets and was in widespread use as the
primary memory device for almost 30 years.

The next major step in the evolution of the computer was the commercial development of the early
designs. After a short-lived time in a company of their own Eckert and Mauchly, who had left the
University of Pennsylvania over a dispute over the patent rights for their advances, joined a company

2



Generation Dates Technology Principal New
Product

1 1950 – 1959 Vacuum tubes Commercial electronic
computers

2 1960 – 1968 Transistors Cheaper computers
3 1969 – 1977 Integrated circuits Minicomputers
4 1978 – ?? LSI, VLSI and Personal computers

ULSI and workstations

Table 1.1: Generations of Computer Technology

called Remington-Rand. There they developed the UNIVAC I, which was released to the public in June
1951 at a price of $250 000. This was the first successful commercial computer, with a total of 48
systems sold! IBM, which had previously been involved in the business of selling punched card and office
automation equipment, started work on its first computer in 1950. Their first commercial product, the
IBM 701, was released in 1952 and they sold a staggering total of 19 of these machines. Since then the
market has exploded and electronic computers have infiltrated almost every area of life. The development
of the generations of machines can be seen in Table 1.1.

1.2.2 Architectural Approaches

As far as the approaches to computer architecture are concerned, most of the early machines were
accumulator-based processors, as has already been mentioned. The first computer based on a general
register architecture was the Pegasus, built by Ferranti Ltd. in 1956. This machine had eight general-
purpose registers (although one of them, R0, was fixed as zero). The first machine with a stack-based
architecture was the B5000 developed by Burroughs and marketed in 1963. This was something of a
radical machine in its day as the architecture was designed to support the new high-level languages of
the day such as ALGOL, and the operating system was written in a high-level language. In addition,
the B5000 was the first American computer to use virtual memory. Of course, all of these are now
commonplace features of computer architectures and operating systems. The stack-based approach to
architecture design never really caught on because of reservations about its performance and it has
essentially disappeared today.

1.2.3 Definition of Computer Architecture

In 1964 IBM invented the term “computer architecture” when it released the description of the IBM 360
(see sidebar). The term was used to describe the instruction set as the programmer sees it. Embodied in
the idea of a computer architecture was the (then radical) notion that machines of the same architecture
should be able to run the same software. Prior to the 360 series, IBM had had five different architectures,
so the idea that they should standardise on a single architecture was quite novel. Their definition of
architecture was:

the structure of a computer that a machine language programmer must understand to write
a correct (timing independent) program for that machine.

Considering the definition above, the emphasis on machine language meant that compatibility would hold
at the assembly language level, and the notion of time independence allowed different implementations.
This ties in well with my preferred definition of computer architecture as the combination of:

• the machine’s instruction set, and

3
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The man behind the computer architecture work at IBM was Frederick P. Brooks, Jr., who received
the ACM and IEEE Computer Society Eckert-Mauchly Award for “contributions to computer and
digital systems architecture” in 2004. He is, perhaps, better known for his influential book, The
Mythical Man-Month: Essays in Software Engineering, but was one of the most influential fig-
ures in the development of computer architecture. The following quote is from the ACM website,
announcing the award:

ACM and the IEEE Computer Society (IEEE-CS) will jointly present the coveted Eckert-
Mauchly Award to Frederick P. Brooks, Jr., for the definition of computer architecture
and contributions to the concept of computer families and principles of instruction set
design. Brooks was manager for development of the IBM System/360 family of comput-
ers. He coined the term “computer architecture,” and led the team that first achieved
strict compatibility in a computer family. Brooks will receive the 2004 Eckert-Mauchly
Award, known as the most prestigious award in the computer architecture community,
and its $5,000 prize, at the International Symposium on Computer Architecture in Mu-
nich, Germany on June 22, 2004.

Brooks joined IBM in 1956, and in 1960 became head of system architecture. He managed
engineering, market requirements, software, and architecture for the proposed IBM/360
family of computers. The concept — a group of seven computers ranging from small to
large that could process the same instructions in exactly the same way — was revolu-
tionary. It meant that all supporting software could be standardized, enabling IBM to
dominate the computer market for over 20 years. Brooks’ team also employed a ran-
dom access disk that let the System/360s run programs far larger than the size of their
physical memory.

• the parts of the processor that are visible to the programmer (i.e. the registers, status flags, etc.).

Note: Strictly these definitions apply to instruction set architecture, as the term computer architecture
has come to have a broader interpretation, including several aspects of the overall design of computer
systems.

1.2.4 The Middle Ages

Returning to our chronological history, the first supercomputer was also produced in 1964, by the Control
Data Corporation. This was the CDC 6600, and was the first machine to make large-scale use of the
technique of pipelining, something that has become very widely used in recent times. The CDC 6600 was
also the first general-purpose load-store machine, another common feature of today’s RISC processors
(we will define these technical terms later in the course). The designers of the CDC 6600 realised the
need to simplify the architecture in order to provide efficient pipeline facilities. This interaction between
simplicity and efficient implementation was largely neglected through the rest of the 1960’s and the 1970’s
but has been one of the driving forces behind the design of the RISC processors since the early 1980’s.

During the late 1960’s and early 1970’s there was a growing realisation that the cost of software was
becoming greater than the cost of the hardware. Good quality compilers and large amounts of memory
were not common in those days, so most program development still took place using assembly language.
Many researchers were starting to advocate architectures that would be more oriented towards the support
of software and high-level languages. The VAX architecture was designed in response to this kind of
pressure. The predecessor of the VAX was the PDP-11, which, while it had been extremely popular, had
been criticised for a lack of orthogonality3. The VAX architecture was designed to be highly orthogonal

3Orthogonality is a property of a computer language where any feature of the language can be used with any other
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and provide support for high-level language features. The philosophy was that, ideally, a single high-level
language statement should map into a single VAX machine instruction.

Various research groups were experimenting at taking this idea even further by eliminating the “semantic
gap” between hardware and software. The focus at this time was mainly on providing direct hardware
support for the features of high-level languages. One of the most radical attempts at this was the
SYMBOL project to build a high-level language machine that would dramatically reduce programming
time. The SYMBOL machine interpreted programs (written in its own new high-level language) directly,
and the compiler and operating system were built into the hardware. This system had several problems,
the most important of which were a high degree of inflexibility and complexity, and poor performance.
Faced with problems like these the attempts to close the semantic gap never really came to any commercial
fruition. At the same time increasing memory sizes and the introduction of virtual memory overcame the
problems associated with high-level language programs. Simpler architectures offered greater performance
and more flexibility at lower cost and lower complexity.

This period (from the 1960’s through to the early 1980’s) was the height of the CISC (Complex Instruction
Set Computing — the opposite philosophy to that of RISC) era, in which architectures were loaded with
cumbersome, often inefficient features, supposedly to provide support for high-level languages. However,
analysis of programs showed that very few compilers were making use of these advanced instructions, and
that many of the available instructions were never used at all. At the same time, the chips implementing
these architectures were growing increasing complex and hence hard to design and to debug.

1.2.5 The Rise of RISC

In the early 1980’s there was a swing away from providing architectural support for high-level hardware
support for languages. Several groups started to analyse the problems of providing support for features of
high-level languages and proposed simpler architectures to solve these problems. The idea of RISC was
first proposed in 1980 by Patterson and Ditzel. These new proposals were not immediately accepted by
all researchers however, and much debate ensued. Other research proposed a closer coupling of compilers
and architectures, as opposed to architectural support for high-level language features. This shifted the
emphasis for efficient implementation from the hardware to the compiler. During the 1980’s much work
was done on compiler optimisation and particularly on efficient register allocation.

In the mid-1980’s processors and machines based on RISC principles started to be marketed. One of
the first of these was the SPARC processor range, which was first sold in Sun equipment in 1987. Since
1987 the SPARC processor range has grown and evolved. One of the major developments was the release
of the SuperSPARC processor range in 1991. More recently, in 1995, a 64-bit extension of the original
SPARC architecture was released as the UltraSPARC range. We will consider these extensions to the
basic SPARC architecture later in the course.

And this is the point in history where we start our story! During the rest of the course we will be
referring back to some of the machines and systems referred to in this historical background, and we will
see the innovations that were brought about by some of these milestones in the development of computer
architecture.

1.3 Background Reading

There is a wide range of books available on the subject of computer architecture. The ones referred to
in the bibliography are mainly those that formed the basis of this course. The most important of these
is the third edition of the book by Hennessy and Patterson[13], which will form the basis for the central
section of the course. The first edition of this book[11] set a new standard for textbooks on computer

feature without limitation. A good example of orthogonality in assembly language is when any addressing mode may be
used freely with any instruction.
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architecture and has been widely acclaimed as a modern classic (one of the comments in the foreword
by Gordon Bell of Stardent Computers is a request for other publishers to withdraw all previous books
on the subject!). The main reason for this phenomenon is the way in which they base their analysis
of computer architecture on a quantitative basis. Many of the previous books argued about the merits
of various architectural features on a qualitative (often subjective) basis. Hennessy and Patterson are
both academics who were involved in the very early stages of the modern RISC research effort and are
undoubted experts in this area (Patterson was involved in the development of the SPARC, and Hennessy
in the development of the MIPS architecture, used in Silicon Graphics workstations). They work through
various architectural features in their book, and examine their effects on cost and performance. Their
book is also quite similar in some respects to a much older classic in the area of computer architecture,
namely Microcomputer Architecture and Programming by Wakerley[24]. Wakerley set the standard for
architecture texts through most of the 1980’s and his book is still remarkably up-to-date (except in its
lack of coverage of RISC features) much as Hennessy and Patterson appear to have set the standard for
architecture texts in the 1990’s and beyond.

The book by Tabak[22] is an updated version of an early classic text on RISC processors, which was
widely quoted. He has a good overview of the early work on RISC systems and then follows this up
with details of several commercial implementations of the RISC philosophy. Heath[9] has very detailed
coverage of the various classes of Motorola architecture (he is employed by Motorola) and looks at the
motivations behind the different approaches. The book by Paul[17] is a very useful introductory-level
book on computer architecture, based on the SPARC processor. He looks at the subject of computer
architecture using assembly language and C programming to illustrate the concepts. This textbook was
used as the basis of much of the discussion in the first section of this course.

As computer architecture is a rapidly developing subject much of the latest information is to be found
in various journals and magazines and on company websites. The articles in Byte magazine and IEEE
Computer generally manage to find a very good balance between technical detail and general principles,
and should be accessible to students taking this course. The Sun website has several interesting articles
and whitepapers discussing the SPARC architecture. Other processor manufacturers generally have
similar resources available.

The next few chapters explore the architecture and assembly language of the SPARC processor fam-
ily. This gives us a foundation for the rest of the course, which is a study of the features of modern
architectures, and an evaluation of such features from a price/performance viewpoint.

Skills

• You should know how RISC arose, and, in broad terms, how it differs from CISC

• You should be familiar with the history and development of computer architectures

• You should be able to define “computer architecture”

• You should be familiar with the main references used for this course
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Chapter 2

An Introduction to the SPARC
Architecture, Assembling and
Debugging

Objectives

• To introduce the main features of the SPARC architecture

• To introduce the development tools that are used for the practical work in this course

• To consider a first example of a SPARC assembly language program

In this chapter we will be looking at an overview of the internal structure of the SPARC processor.
The SPARC architecture was designed by Sun Microsystems. In a bid to gain wide acceptance for their
architecture and to establish it as a de facto standard they have licensed the rights to the architecture to
almost anyone who wants it. The future direction of the architecture is in the hands of SPARC Interna-
tional, a non-profit company including Sun and other interested parties (see http://www.sparc.com/).
The result of this is that there are several different chip manufacturers (at least five) who make SPARC
processors. These come in a wide range of different implementations ranging from the common CMOS
to fast ECL devices.

The name SPARC stands for Scalable Processor Architecture. The idea of scalability arises from two
sources. The first is that the architecture may be implemented in any of a variety of different ways
giving rise to SPARC machines ranging from embedded microcontrollers (SPARC processors have even
been used in digital cameras!) to supercomputers. The second way in which the SPARC architecture
is scalable is that the number of registers may differ from version to version. Scaling the processor up
would then involve adding further registers.

The SPARC architecture has been developed and extended over the years. The original design was
extended to form the SuperSPARC architecture (also known as SPARC V8). More recently a 64-bit
version of the architecture was developed (known as UltraSPARC, or SPARC V9). These notes generally
refer to the original, 32-bit architecture, except where explicitly noted. The later versions have extra
features, more instructions, etc.
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i0 g0
i1 g1
i2 g2
i3 g3
i4 g4
i5 g5
i6 g6
i7 g7

l0
l1 Y (multiply step)
l2 PSR
l3 NZVC S -cwp-
l4 (cwp = current window pointer)

l5 Trap Base Register (TBR)
l6
l7 Window Invalid Mask (WIM)
o0
o1 PC
o2
o3 nPC
o4
o5
o6
o7

Figure 2.1: SPARC Programming Model

The latter sections of this chapter then give a brief introduction to the assembly process and to the
debugger that we will be using.

2.1 The SPARC Programming Model

The programming model (i.e. the “visible parts” of the processor) of the SPARC architecture is shown in
Figure 2.1. At any time there are 32 working registers available to the programmer. These can be divided
into two categories: eight global registers and 24 window registers. The window registers can be further
broken down into three groups, each of eight registers: the out registers, the local registers and the in
registers. In addition there is a dedicated multiply step register (the Y register) used for multiplication
operations. If a floating-point unit is present, the programmer also has access to 32 floating point registers
and a floating point status register. Other specialised coprocessors may also be installed, and these may
have their own registers.

Of the 32 available registers some have fixed or common uses. The first of these is the global register
g0. This has a fixed value of zero, as this is a commonly used constant. This register may be used
as a source register for operations that require a zero-valued operand, or as the destination register for
operations in which the result may be discarded (for example, if the purpose of the instruction was to set
the flags, not to compute a result). Several of the window registers also have dedicated purposes. The
first of these is i7, which is used to store the return address for function calls. Register i6 is used as a
stack-frame pointer when making use of the stack during function calls. Finally, register o6 is used as
the stack pointer. We will see how the function calling and parameter passing mechanisms work later on
in the course. For now, simply avoid the use of these “special” registers.
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In addition to the general purpose registers there is also a processor state register (PSR) which contains
the usual arithmetic flags (representing Negative, Zero, oVerflow and Carry, and collectively called the
Integer Condition Codes — ICC), status flags, the interrupt level, processor version numbers, etc. One
of these bits (the Supervisor mode bit) controls the mode of operation of the SPARC processor. If this
bit is set then the processor is executing in supervisor mode and has access to several instructions
that are not normally available. The programs that we will write all run in the other mode of operation,
namely user mode.

Returning to the registers, associated with the 24 window registers is a Window Invalid Mask (WIM)
register. To handle software interrupts (called traps in the SPARC architecture) there is a Trap Base
Register (TBR). Finally, there is a pair of program counters: PC and nPC. The former holds the address
of the instruction currently being executed, while the latter holds the address of the next instruction due
to be executed (this is usually PC+4). Most of these registers are not available in user mode (except for
querying the values of the condition codes), and so we will not be dwelling on them in any detail.

2.2 The SPARC Instruction Set

The SPARC instructions fall into five categories:

1. load/store,

2. arithmetic and logical operations,

3. control transfer,

4. read/write control registers (only available in supervisor mode) and

5. floating-point (or other coprocessor) instructions.

We will not be considering the last two categories in any detail.

2.2.1 Load and Store Operations

The SPARC processor has what is known as a load/store architecture. This term refers to the fact that
the load and store operations are the only ways in which memory may be accessed. In particular, it
is impossible for arithmetic and logical operations to reference operands in memory. Memory addresses
are calculated using either the contents of two registers (added together), or a register value plus a
constant. The destination of a load (or the source for a store) may be any of the integer unit registers, a
floating-point coprocessor register, or some other coprocessor register.

2.2.2 Arithmetic, Logical and Shift Operations

These instructions perform various arithmetic and logical operations. The important thing about the
format of these is that they are triadic, or three address instructions. This means that each instruction
specifies two source values for the operands and a destination register for the result. The two source
values may either both be values in registers, or one of them may be a small constant value. For example,
the following instruction adds two values (in registers o0 and o1) together and stores the result in l0.

add %o0, %o1, %l0

In addition to the normal arithmetic operations the SPARC architecture also provides so-called tagged
arithmetic operations. These make use of the two least significant bits of the values being operated on as
tag bits. This feature is useful for the support of functional and logic languages (such as Haskell, LISP
and Prolog), but is of no real interest to us in this course.
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2.2.3 Control Transfer Instructions

These allow transfer of control around programs (for loops, decisions, etc.). Instructions included in this
category are jumps, calls, branches and traps. These may be conditional on the settings of the ICC.
Again, there is an interesting architectural feature here whereby the instruction immediately following
the transfer operation (in the so-called delay slot) is executed before the transfer takes place. This may
sound a bit bizarre, but it is an important feature in gaining optimum performance from the processor.
We will return to this subject in considerable detail later.

2.3 The SPARC Assembler

The assembler on the Suns (called as) is a particularly primitive piece of software, since its main purpose
is to serve as the backend for compilers, and is not really intended for use as a programming tool in itself.
There is a general-purpose macro processor called m4 available under UNIX and we will be using this as
a tool to enhance the rather basic facilities of as. You are referred to the man pages for these commands
for further details.

One interesting result of the fact that the assembler is used as the backend for the C compiler is that
the compiler can be directed to stop after generating the assembly language equivalent of a C program.
The way in which this is done is to specify a -S command line switch to the C compiler. If we take the
following traditional hello world program written in C (hello.c):

/* Hello world program in C.
George Wells - 2 July 1992

*/

#include <stdio.h>

void main ()
{

printf("Hello world!\n");
} /* main */

and compile it with the command:

gcc -S hello.c

the compiler will create the following assembly language file (hello.s — by convention the .s suffix is
used to denote assembly language files under UNIX):

.file "hello.c"
gcc2_compiled.:
.section ".rodata"

.align 8
.LLC0:

.asciz "Hello world!\n"
.section ".text"

.align 4

.global main

.type main,@function

.proc 020
main:
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!#PROLOGUE# 0
save %sp, -104, %sp
!#PROLOGUE# 1
sethi %hi(.LLC0), %o1
or %o1, %lo(.LLC0), %o0
call printf, 0
nop

.LL6:
ret
restore

.LLfe1:
.size main,.LLfe1-main
.ident "GCC: (GNU) 2.95.3 20010315 (release) (NetBSD nb2)"

As is usually the case, SPARC assembly language is line-based. Lines may begin with an optional label.
Labels are identifiers followed by a colon. The assembly language code above generated by the C compiler
has several labels defined (such as main and .LL6). The next field on a line is the instruction. This may
be a machine instruction, such as add, or a pseudo-op. The pseudo-ops generally start with a period,
such as the .section and .asciz operations generated by the C compiler in the example above. Such
pseudo-ops do not result in machine code being generated, but serve as instructions to the assembler
directing it to define constants, set aside memory locations, demarcate sections of the program, etc.
The third field is the specification of the operands for the instruction. Finally, lines may be commented
by using an exclamation mark to begin a comment, which then extends to the end of the line. More
extensive comments, which may carry on over several lines, can be enclosed using the Java/C convention:
/* ... */.

In order to run the assembler we could call on as directly. However, the result of this would be an object
file that would still require linking before it could be run. A far easier method is to get the C compiler
to do the job for us. If we invoke the C compiler on a file containing an assembly language program
then the compiler will invoke the assembler, linker, etc. to give us an executable file. The format of the
command to use is as follows (note that we will be using the Gnu compiler gcc for this course):

% gcc -g prog.s -o prog

This will assemble and load the assembly language program in the file prog.s and leave the executable
program in the file prog. The effect of the -g switch is to link in debugging information with our program.
This will be useful when we come to use the debugger. The last point to note, if we are going to use this
approach, is that our programs need to have a label called main defined, to denote the entry/starting
point of our program. This we can do with the following section of assembly language program:

.global main
main:

The effect of the .global pseudo-op is to make a label (main in this case) visible to the linker.

2.4 An Example

Let’s leap in the deep end now and consider an example of a SPARC assembly language program. The
program we will be looking at is to convert a temperature in Celcius to Fahrenheit. The formula for this
conversion is:

F =
9
5
× C + 32
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We will use the local registers l0 and l1 to store the values of C and F respectively. We will also refer
to the offset (32) as offs. Such constants can be declared in the SPARC assembly language using the
notation: identifier = value (this is, of course, an assembler pseudo-op). For example,

offs = 32 ! Offset

To evaluate the conversion function we will also need several SPARC machine instructions. As already
mentioned, most of the SPARC instructions take three operands (two source operands and a destination
operand). More specifically, the format of many of the SPARC instructions is as follows:

op regs1, reg or imm, regd

where op is the instruction, regs1 is a source register containing the first operand, reg or imm is either
a source register containing the second operand or an immediate value (which cannot be more than 13
bits long), and regd is the destination register.

In addition to the SPARC machine instructions most SPARC assemblers allow what are known as syn-
thetic instructions. These are common operations that are not supported directly by the processor but
which can be easily synthesised (or “made up”) from one or two of the defined SPARC instructions. An
example of such a synthetic operation, which we will require for our program, is the mov instruction used
to copy a value from one register to another or to move an immediate value into a register. There are
several ways in which the assembler could synthesise this instruction. A common one is to use the or
instruction together with the zero register (g0). So, an instruction like:

mov 24, %l0

would be synthesised from:

or %g0, 24, %l0

Another problem that we have to deal with is how to multiply and divide the terms of the conversion
function above. The bad news is that the original SPARC architecture did not provide multiplication
and division operations. We will return to this subject in due time; for now we note that we can call
on two standard subroutines (.mul and .div) to perform these operations. To pass the parameters to
these functions we put the operands in the first two “out” registers (o0 and o1). The result is returned
in register o0. Using function calls introduces one other feature of the SPARC architecture: the idea of
a delay slot, which we mentioned on page 10. Remember that the processor will execute the instruction
following the function call before the call itself is made. The effect of this is that we need to be very
careful what instructions are placed in the delay slot.

Finally, we need to consider how to terminate our program. The simplest way to do this for now is to
perform a trap. This is similar to the concept of a software interrupt on other processors (e.g. the 80x86
series). The operating system makes use of trap number 0. In order to specify what operating system
function we want to make use of we need to specify an operating system function number. The Unix
function number for the exit system call is 1. This value must be loaded into the g1 register. So, in
order to terminate our program we can use the sequence:

mov 1, %g1 ! Operating system function 1
ta 0 ! Trap number 0: operating system call

And that gives us enough information to write our temperature conversion program. The program, which
is available on the Suns in the directory /home/cs4/Arch as the file tmpcnv.s, is as follows:
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/* This program converts a temperature in
Celcius to Fahrenheit.
George Wells - 30 May 2003

*/
offs = 32

/* Variables c and f are stored in %l0 and %l1 */

.global main
main:

mov 24, %l0 ! Initialize c = 24

mov 9, %o0 ! 9 into %o0 for multiplication
mov %l0, %o1 ! c into %o1 for multiplication
call .mul ! Result in %o0
nop ! Delay slot

mov 5, %o1 ! 5 into %o1 for division
call .div ! Result in %o0
nop ! Delay slot

add %o0, offs, %l1 ! f = result + offs

mov 1, %g1 ! Trap dispatch
ta 0 ! Trap to system

Notice how we have used a nop to fill each of the delay slots in this program. This is, in fact, rather
wasteful and does not make use of the delay slot in the intended way. Rather than wasting the delay
slots with nop’s, we can put useful instructions into these positions. Since the delay slot instruction is
executed before the call takes place we can move the instruction immediately preceding the call into the
delay slot. This is not always the case, and often great care has to be taken in the choice of an instruction
to fill the delay slot (sometimes a nop is the only valid possibility). If we rewrite our program to take
this into account we get the following:

/* This program converts a temperature in
Celcius to Fahrenheit.
George Wells - 30 May 2003

*/
offs = 32

/* Variables c and f are stored in %l0 and %l1 */

.global main
main:

mov 24, %l0 ! Initialize c = 24

mov 9, %o0 ! 9 into %o0 for multiplication
call .mul ! Result in %o0
mov %l0, %o1 ! c into %o1 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division
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add %o0, offs, %l1 ! f = result + offs

mov 1, %g1 ! Trap dispatch
ta 0 ! Trap to system

This makes the program harder to follow for a human reader, but has an obvious effect on the efficiency
of the program: the latter version of the program uses only nine instructions (excluding those executed
in the .mul and .div routines) compared to the eleven instructions used in the first version. For longer,
more complex programs, the benefits of using the delay slots will be even greater.

2.5 The Macro Processor

As mentioned earlier, we will be using a stand-alone macro processor called m4 for this course. Essentially
it is a UNIX filter program that copies its input to its output, checking all alphanumeric tokens to see
if they are macro definitions or expansions. Macros may be defined using the define macro. This takes
two arguments, the macro name and the text of the definition of the macro. Later in the processing of
the input, if the macro name appears in the text it is replaced by the definition. Macros may make use
of up to nine arguments, using a $n notation similar to that used in UNIX shell scripts. For example, a
macro to define an assembler constant and an example of its use are as follows:

define(const, $1 = $2)
...
const(a2, 7)

When passed through m4 the result would be:

...
a2 = 7

The arguments to a macro are themselves checked to see if they are macros and will be expanded before
being substituted for the formal arguments. In addition, macro definitions may be quoted to prevent
them from being expanded when the macro is defined but only when it is expanded. This is rather
unusual as it uses the open and close single quotes (e.g. ‘hello’—note that the open quote character on
most computer keyboards often looks like an accent: `).

To run the macro processor we would typically do something along the following lines:

$ m4 prog.m > prog.s
$ gcc -g prog.s -o prog

Note the convention we use that assembler files containing macro definitions and expansions are given a
.m suffix. We will see more of the uses of m4 as we proceed through the course.

2.6 The Debugger

We will be using the Gnu debugger (gdb) for this course. This programming tool allows us to run our
programs, to disassemble them and to examine the contents of the registers and memory being used by
our program. In order to use gdb we must specify the -g switch to gcc when we assemble our programs.
Once the program is assembled we can load it into the debugger as follows:
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$ gdb tmpcnv

We then get an initial message from gdb and a prompt at which we can enter further commands. Note that
the command help will provide a list of available commands. To run a program we use the r command.
For an example as simple as ours this does not really provide us with much useful information.

$ gdb tmpcnv
GNU gdb 5.0nb1
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "sparc--netbsdelf"...
(no debugging symbols found)...
(gdb) r
Starting program: /home/csgw/tmpcnv
(no debugging symbols found)...(no debugging symbols found)...
Program exited with code 053.
(gdb)

Of a little more interest is setting a breakpoint in our program and examining it in more detail. We can
set a breakpoint with the b command. The syntax of this command is as follows:

b *address

The address can be specified by using a label defined in our program. In our case we can set a breakpoint
at the first instruction, run the program, and then disassemble it, as shown below. At a breakpoint we
can examine the state of the processor and then continue with the c command.

(gdb) b *main
Breakpoint 1 at 0x10a80
(gdb) r
Starting program: /home/csgw/tmpcnv
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x10a80 in main ()
(gdb) disassemble
Dump of assembler code for function main:
0x10a80 <main>: mov 0x18, %l0
0x10a84 <main+4>: mov 9, %o0
0x10a88 <main+8>: mov %l0, %o1
0x10a8c <main+12>: call 0x20c40 <.mul>
0x10a90 <main+16>: nop
0x10a94 <main+20>: mov 5, %o1 ! 0x5
0x10a98 <main+24>: call 0x20c4c <.div>
0x10a9c <main+28>: nop
0x10aa0 <main+32>: add %o0, 0x20, %l1
0x10aa4 <main+36>: mov 1, %g1
0x10aa8 <main+40>: ta 0
End of assembler dump.
(gdb)
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Note that this is still the first version of the program with nop instructions in the delay slots. Note too
how we could specify the address of the start of our program using the symbol main.

To see whether our program runs correctly we can set another breakpoint at the end of the program,
which we can see from the listing above is the address main + 40. When we reach the end of the program
we can then examine the contents of the l1 register, which contains the result. In order to do this we
use the p command to print the value of this register. The main thing to notice about this is that the
debugger uses the notation $register name rather than the %register name convention used by the
assembler.

(gdb) b *main+40
Breakpoint 2 at 0x10aa8
(gdb) c
Continuing.

Breakpoint 2, 0x10aa8 in main ()
(gdb) p $l1
$1 = 75
(gdb)

And, indeed, 75 is the expected result! (The $1 is part of the history mechanism built into gdb — we
can reuse this value (75) in later expressions in gdb by referring to it as $1).

Let us look at a last few things before we leave the subject of the debugger: firstly, single stepping
through the program. This makes use of the ni (next instruction) command. Closely related is the si
(single instruction) command, which is very similar, but traces through function calls while ni traces
over function calls. When stepping through the program in these ways it may be useful to study some
of the registers, etc. on every step. The display command allows us to do exactly this, as we will see in
the next example. Finally, to exit gdb we use the q instruction to quit.

In the next example, we rerun the temperature conversion program from within gdb, and then single step
through it, while displaying the next instruction to be executed each time.

(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/csgw/tmpcnv
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x10a80 in main ()
(gdb) display/i $pc
1: x/i $pc 0x10a80 <main>: mov 0x18, %l0
(gdb) ni
0x10a84 in main ()
1: x/i $pc 0x10a84 <main+4>: mov 9, %o0
(gdb)
0x10a88 in main ()
1: x/i $pc 0x10a88 <main+8>: mov %l0, %o1
(gdb)
0x10a8c in main ()
1: x/i $pc 0x10a8c <main+12>: call 0x20c40 <.mul>
(gdb)
0x10a90 in main ()
1: x/i $pc 0x10a90 <main+16>: nop
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(gdb)
0x10a94 in main ()
1: x/i $pc 0x10a94 <main+20>: mov 5, %o1 ! 0x5
(gdb)
0x10a98 in main ()
1: x/i $pc 0x10a98 <main+24>: call 0x20c4c <.div>
(gdb)
0x10a9c in main ()
1: x/i $pc 0x10a9c <main+28>: nop
(gdb)
0x10aa0 in main ()
1: x/i $pc 0x10aa0 <main+32>: add %o0, 0x20, %l1
(gdb)
0x10aa4 in main ()
1: x/i $pc 0x10aa4 <main+36>: mov 1, %g1
(gdb) q
The program is running. Exit anyway? (y or n) y
$

Notice how we can simply repeat the last command in gdb by pressing <ENTER>. This is particularly
useful when single stepping, as here. The /i suffix on the display command specifies that the contents
of the given address/register (here $pc, the program counter) should be displayed in instruction format.
One can specify several other formats as well (use help x for a list of the formats).

Exercise 2.1 You can find the example program discussed above in the directory
/home/cs4/Arch on the Computer Science Sun systems. The name of the file is tmpcnv.s.
Make sure that you can assemble, run and debug this program to familiarise yourself with the
development tools.

We now have enough background material to be able to write, assemble and debug simple SPARC
assembly language programs. The next few chapters build on this by extending our repertoire of SPARC
instructions.

Skills

• You should be familiar with the SPARC programming model

• You should be able to use the development tools to create, assemble, execute and debug simple
SPARC assembly language programs
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Chapter 3

Control Transfer Instructions

Objectives

• To study the branching instructions provided by the SPARC architecture

• To introduce the concept of pipelining

• To consider annulled branches

We have already met two control transfer instructions in passing, namely the call and trap instructions.
In this chapter we want to consider the flow of control instructions for branching and looping. We also
take a closer look at pipelining and the idea of delay slots.

3.1 Branching

If we are to write programs that are much more interesting than the example of the last chapter, then
we will need to be able to set up loops and to test conditions. The SPARC architecture makes provision
for conditional branches using the integer condition code (ICC) bits in the processor state register. The
syntax of the branch instructions is as follows:

bicc label

where icc is a mnemonic describing which of the condition flags should be tested. The branch instructions
(the unconditional ones and those dealing with signed and unsigned arithmetic results) are shown in
Table 3.1.

This, of course, raises the question of how we set the ICC flags. This is only done when explicitly specified
by an arithmetic or logical instruction. These instructions have the letters cc tagged on the end. For
example, in the program in the last chapter we made use of the add instruction to perform an addition.
In order to have the flags set we would have had to use the addcc instruction, which works in exactly
the same way, but has the additional effect of setting the flags.
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Mnemonic Type Description
ba Unconditional Branch always
bn Unconditional Branch never
bl Conditional — signed Branch if less than zero
ble Conditional — signed Branch if less or equal to zero
be Conditional — signed/unsigned Branch if equal to zero
bne Conditional — signed/unsigned Branch if not equal to zero
bge Conditional — signed Branch if greater or equal to zero
bg Conditional — unsigned Branch if greater than zero
blu Conditional — unsigned Branch if less
bleu Conditional — unsigned Branch if less or equal
bgeu Conditional — unsigned Branch if greater or equal
bgu Conditional — unsigned Branch if greater

Table 3.1: Branch Instructions

3.2 Pipelining and Delayed Control Transfer

The SPARC architecture makes use of the technique of pipelining. This is a common method for ex-
tracting the maximum performance from a processor. Instead of executing a single instruction at a time
the processor works on several instructions at once. The key to this is the fact that the execution of an
instruction can be split into several separate phases. Typically these include instruction fetching, instruc-
tion decoding, operand fetching, instruction execution and result storage. In a non-pipelined machine
we might have the following situation, where the numbers on the left-hand side refer to machine clock
cycles:

0 Fetch instruction 1
1 Decode instruction 1
2 Fetch the operands for instruction 1
3 Execute instruction 1
4 Store the result of instruction 1
5 Fetch instruction 2
6 Decode instruction 2
7 Fetch the operands for instruction 2
8 Execute instruction 2
9 Store the result of instruction 2

Here the processor has executed two instructions in ten clock cycles. In a pipelined architecture, such as
the SPARC, the instruction-fetching module within the processor continuously fetches instructions, and
feeds the next instruction straight into the next module for decoding, and so on. In such a system we get
the following effect as the execution of the instructions overlaps:
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0 Fetch 1 . . .
1 Decode 1 Fetch 2 . . .
2 Operands 1 Decode 2 Fetch 3 . . .
3 Execute 1 Operands 2 Decode 3 Fetch 4 . . .
4 Store result 1 Execute 2 Operands 3 Decode 4 Fetch 5
5 Fetch 6 Store result 2 Execute 3 Operands 4 Decode 5
6 Decode 6 Fetch 7 Store result 3 Execute 4 Operands 5
7 Operands 6 Decode 7 Fetch 8 Store result 4 Execute 5
8 Execute 6 Operands 7 Decode 8 Fetch 9 Store result 5
9 Store result 6 Execute 7 Operands 8 Decode 9 Fetch 10

In this example, during clock cycle number 5 we are fetching instruction 6, decoding instruction 5, getting
the operands for instruction 4, actually executing instruction 3, and storing the results of instruction 2.

In this way, in the same number of clock cycles as before (i.e. ten cycles), we have completed the execution
of six instructions (rather than two) and are part of the way through the execution of another four
instructions. In effect, it is as if the processor can execute one complete instruction every clock cycle.
This is, of course, an ideal situation. In reality there are practical problems that arise. Consider the case
where instruction 2 requires the result from instruction 1 as an operand. For example:

add %i0, %i1, %o0 ! Instruction 1: result in %o0
sub %o0, 1, %o1 ! Instruction 2: uses %o0

As can be seen in the diagram above, the result from instruction 1 only becomes available after cycle 4,
while the operand fetch for instruction 2 occurs during cycle 3. This gives rise to a so-called pipeline stall
and the overlapped execution of the other instructions may be held up until instruction 1 is completed,
as indicated in the following diagram (we will return to this topic later in the course, and explore better
solutions to this problem).

0 Fetch 1 . . . . . .
1 Decode 1 Fetch 2 . . .
2 Operands 1 Decode 2 . . .
3 Execute 1 STALL . . .
4 Store result 1 STALL . . .
5 Fetch 6 Operands 2 . . .
6 Decode 6 Execute 2 . . .

The pipeline is also the reason for the dual program counters in the SPARC architecture. While the
processor is executing the instruction pointed to by PC it is also fetching the instruction pointed to by
nPC. The efficient running of the pipeline is also the reason for the delay slot mechanism on the control
transfer instructions. As can be seen from the above discussion, at the point of executing a branch
instruction, the next instruction has already been fetched and decoded. Rather than wasting this effort
this instruction is executed anyway. On a transfer of control the fetch unit also has to redirect the source
of the following instructions to the destination of the branch or function call (this is done by loading the
nPC with the branch address). Continuing with the execution of the delay slot instruction gives the fetch
unit time to fetch the first instruction at the destination address. The fetch-execute cycle of the SPARC
processor is illustrated in Figure 3.1 (this is simplified slightly, as we will see shortly).

3.2.1 Annulled Branches

To further complicate the matter, the SPARC instruction set allows one to annul the effect of the delay
slot on certain branching instructions. This allows one to handle the case where an instruction from
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Figure 3.1: Simplified SPARC Fetch-Execute Cycle

within a loop is moved to the delay slot but should not be executed on the last iteration of the loop. If
a conditional branch is annulled then the instruction in the delay slot is executed only if the branch is
taken. If the branch is not taken (execution falls through to the code following the branch instruction)
then the execution of the instruction in the delay slot is annulled (ignored). Note, however, that a clock
cycle is “wasted”, as the pipeline does no useful work for a cycle when an instruction is annulled in this
way (in effect, it is as if the delay slot instruction has become a nop). In order to specify that a branch is
to be annulled we simply follow the mnemonic for the branch with an a (for example, ble,a loop). We
will consider an example of the use of this feature shortly.

In addition, unconditional branches can also be annulled. In this case the effect of annulling the instruction
has the opposite effect: the instruction in the delay slot is never executed. This effectively provides a
single instruction branch operation in which the delay slot has no effect. The main use of this is to allow
one to replace an instruction with a branch to an emulation routine without changing the semantics of the
program. The full fetch-execute cycle of the SPARC processor incorporating the possibility of annulled
branches is shown in Figure 3.2.

3.3 An Example — Looping

We will extend the example program from the previous chapter so that it calculates the Fahrenheit
equivalents of temperatures from 10◦C to 20◦C. In C or Java we could express the algorithm as follows:

for (c = 10; c < 21; c++)
f = 9/5 * c + 32;

Or, more explicitly, as:

c = 10;
do
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Figure 3.2: SPARC Fetch-Execute Cycle

{ f = 9/5 * c + 32;
c++;

}
while (c < 21);

If we model our assembly language program on the latter algorithm we will need to use a conditional
branch instruction at the end of the loop. Otherwise the program is much as it was before.

/* This program converts temperatures between 10 and 20 in
Celcius to Fahrenheit.
George Wells - 30 May 2003

*/
offs = 32

/* Variables c and f are stored in %l0 and %l1 */

.global main
main:

mov 10, %l0 ! Initialize c = 10

loop:
mov 9, %o0 ! 9 into %o0 for multiplication
call .mul ! Result in %o0
mov %l0, %o1 ! c into %o1 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division
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add %o0, offs, %l1 ! f = result + offs

add %l0, 1, %l0 ! c++

cmp %l0, 21 ! c < 21 ?
bl loop
nop ! Delay slot

mov 1, %g1 ! Trap dispatch
ta 0 ! Trap to system

The cmp instruction used in this program is another example of a synthetic instruction. The assembler
translates this into subcc %l0, 11, %g0 (note the use of g0 as the destination register here). Similarly,
we could have used the synthetic inc instruction instead of the explicit addition add %l0, 1, %l0. In the
gdb disassembly of the program below we will see that gdb has interpreted the addition as the synthetic
instruction.

To check the execution of this program we can use the following set of steps in gdb:

$ gdb a.out
...
(gdb) b *main
Breakpoint 1 at 0x10a80
(gdb) display $l0
(gdb) display $l1
(gdb) r
Starting program: /home/csgw/Cs4/Arch/Misc/Ch2/a.out
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x10a80 in main ()
2: $l1 = 268576604
1: $l0 = 268675072
(gdb) disass main main+100
Dump of assembler code from 0x10a80 to 0x10ab4:
0x10a80 <main>: mov 0xa, %l0
0x10a84 <loop>: mov 9, %o0
0x10a88 <loop+4>: call 0x20c48 <.mul>
0x10a8c <loop+8>: mov %l0, %o1
0x10a90 <loop+12>: call 0x20c54 <.div>
0x10a94 <loop+16>: mov 5, %o1
0x10a98 <loop+20>: add %o0, 0x20, %l1
0x10a9c <loop+24>: inc %l0
0x10aa0 <loop+28>: cmp %l0, 0x15
0x10aa4 <loop+32>: bl 0x10a84 <loop>
0x10aa8 <loop+36>: nop
0x10aac <loop+40>: mov 1, %g1 ! 0x1
0x10ab0 <loop+44>: ta 0
End of assembler dump.
(gdb) b *main+28
Breakpoint 2 at 0x10a9c
(gdb) c
Continuing.

Breakpoint 2, 0x10a9c in loop ()
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2: $l1 = 50
1: $l0 = 10
(gdb) c
Continuing.

Breakpoint 2, 0x10a9c in loop ()
2: $l1 = 51
1: $l0 = 11
(gdb) c
Continuing.

Breakpoint 2, 0x10a9c in loop ()
2: $l1 = 53
1: $l0 = 12
(gdb)
Continuing.

Breakpoint 2, 0x10a9c in loop ()
2: $l1 = 55
1: $l0 = 13
(gdb)
Continuing.

Breakpoint 2, 0x10a9c in loop ()
2: $l1 = 57
1: $l0 = 14
(gdb)

Exercise 3.1 Satisfy yourself that this program is working correctly.

'

&

$

%

Useful Hint
If a file called .gdbinit is found in a user’s home directory then gdb will automati-
cally execute any commands found in this file when it starts up. For example, it is
useful to have something like the following:

break *main
display/i $pc
r

In the example program we have filled the delay slot following the bl instruction with a nop. Let us
examine this more carefully and see if we can use the delay slot more profitably. If we consider the
instruction immediately preceding the bl instruction (i.e. the cmp instruction) we see that we cannot
move this into the delay slot since the flags must be set before the bl instruction can be executed. The
situation does not look good. If we go back further to the previous instruction we are still not able to
move it into the delay slot since this instruction (incrementing the value of c) must be executed before
the comparison that must come before the conditional branch. However, if we go back further still we
find that the preceding instruction (add %o0, offs, %l1, storing the result in f) does not do anything
that would affect either the incrementing or comparison of the value of c. So this instruction is a perfect
candidate for the delay slot. With this last optimisation in place the final version of the program is as
follows (where just the main loop is shown):
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loop:
mov 9, %o0 ! 9 into %o0 for multiplication
call .mul ! Result in %o0
mov %l0, %o1 ! c into %o1 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division

add %l0, 1, %l0 ! c++

cmp %l0, 21 ! c < 21 ?
bl loop
add %o0, offs, %l1 ! f = result + offs

This sort of rearrangement of the program is not particularly easy for us as human programmers. It
also complicates the debugging and maintenance of the program as it distorts the natural order of the
algorithm. Fortunately these optimisations are relatively easy for a good compiler to perform, and can
produce very efficient programs.

3.4 Further Examples — Annulled Branches

3.4.1 A While Loop

Consider the following segment of a C program.

while (x < 10)
x = x + y;

Converting this to assembly language, we might come up with something like the following:

! Assumes x is in %l0 and y is in %l1

b test ! Test if loop should execute
nop ! Delay slot

loop: add %l0, %l1, %l0 ! x = x + y
test: cmp %l0, 10 ! x < 10

bl loop ! If so branch back to loop start
nop ! Delay slot

Here the first delay slot is only executed once (when the loop is entered) and so is of little consequence.
The second delay slot is more important since it will be executed on every iteration of the loop. The only
instruction that is a candidate for this delay slot is the add instruction. At first, moving this into the
delay slot may appear incorrect, as it appears to move the addition to after the comparison, but in fact
(due to the way in which the loop is structured and the delay slot is used) it will work much as expected.
The problem arises when x becomes greater than or equal to 10 (or if x is greater than or equal to 10 at
the start of the execution of this program segment). In this case the addition will be executed one time
too many. The delay slot can be annulled to overcome this, as shown below.

! Assumes x is in %l0 and y is in %l1
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b test ! Test if loop should execute
nop ! Delay slot

loop:
test: cmp %l0, 10 ! x < 10

ble,a loop ! If so branch back to loop start
add %l0, %l1, %l0 ! x = x + y; delay slot

Note how tight this code is. Again, this sort of optimisation is not particularly easy for a human
programmer to construct or to follow, but good optimising compilers can easily perform these sorts of
rearrangements.

3.4.2 An If-Then-Else Statement

The classic if-then-else statement also gives much scope for the use of annulled branches and delay slots.
Consider the following segment of a C program:

if (a + b >= c)
{ a += b;

c++;
}

else
{ a -= b;

c--;
}

Converting this directly into assembly language we might come up with something like the following:

! Assume a => %l0, b => %l1, c => %l2
! and %o0 is used as a temporary store

add %l0, %l1, %o0 ! tmp = a + b
cmp %o0, %l2 ! Compare tmp with c
bl else ! if tmp < c then goto else clause
nop ! Delay slot

! Then clause
add %l0, %l1, %l0 ! a += b
add %l2, 1, %l2 ! c++
b next ! Jump over else clause
nop ! Delay slot

else: sub %l0, %l1, %l0 ! a -= b
sub %l2, 1, %l2 ! c--

next:

Considering the delay slots in this example, we can eliminate the first nop instruction by replacing the
bl with an annulled branch (bl,a) and moving the first instruction from the “else” clause into the delay
slot. If the branch is taken then the first part of the “else” clause is executed in the delay slot. If the
branch is not taken (i.e. the “then” clause is to be executed) then the delay slot instruction is annulled
and has no effect anyway. Again, this distorts the original, static structure of the program rather badly
but can gain a lot in efficiency. The second nop can be dealt with quite simply by moving one of the
instructions from before the unconditional branch into the delay slot. The final form of the program
extract is then:
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add %l0, %l1, %o0 ! tmp = a + b
cmp %o0, %l2 ! Compare tmp with c
bl,a else ! if tmp < c then goto else clause
sub %l0, %l1, %l0 ! a -= b; Delay slot; Else code

! Then clause
add %l0, %l1, %l0 ! a += b
b next ! Jump over else clause
add %l2, 1, %l2 ! c++; Delay slot

else: sub %l2, 1, %l2 ! c--
next:

Exercise 3.2 Write a program to find the maximum value of the function

x3 − 14x2 + 56x− 64

in the range −2 ≤ x ≤ 8, in steps of one. Use gdb to find the result.

Exercise 3.3 Write a program to calculate the square root y of a number x using the Newton-
Raphson method. This method uses the following algorithm:

y = x / 2

repeat
{ old = y
dx = x - y * y
y = y + dx / 2y

} until y == old

Test your program using gdb to ensure that it works correctly.

Skills

• You should understand the basic concepts of pipelining and pipeline stalls

• You should be able to use the SPARC branching instructions, including annulled branches

• You should be able to fill delay slots for greater efficiency
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Chapter 4

Logical and Arithmetic Operations

Objectives

• To study the basic arithmetic and logical operations provided by the SPARC architecture

• To consider the provision of multiplication and division operations, including the use of stan-
dard subroutines

As is the case with most modern processors, the SPARC architecture has a large set of logical and
arithmetic operators. In this chapter we will be studying these in more depth.

4.1 Logical Operations

The logical operations supported by the SPARC processor fall into two categories: bitwise logical opera-
tions and shift operations. We will consider each of these separately.

4.1.1 Bitwise Logical Operations

Table 4.1 details the logical operations provided by the SPARC architecture. There are instructions for
the usual bitwise logical operations of and, or and exclusive or. In addition it has some rather less
usual operations (the last three in Table 4.1). These operations all have the three-address format common
to most of the SPARC instructions.

The other useful boolean operations of nand and nor must be constructed from an and or or operation
followed by a not operation. The not operation is not directly supported, but is synthesised from the
xnor operation, using the zero register: xnor %rs, %g0, %rd. Both not %rs, %rd and not %rs/d are
recognised by the assembler for this purpose.

In addition to the basic forms of these instructions, there are variations on them that set the condition
flags. As we have seen before, these use the same mnemonic but with cc as a suffix (for example, andcc).
If we simply want to set the flags according to a value stored in a register we can use the zero register and
an or operation to do this. The instruction orcc %rs, %g0, %g0 will effectively set the flags according
to the value in the source register (remember that anything written to register g0 is discarded, so this
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Function Description
and
or
xor
xnor a xnor b = not (a xor b)
andn a andn b = a and not(b)
orn a orn b = a or not(b)

Table 4.1: Logical Instructions

instruction will not change any of the values in the registers, only the condition codes). As this is a useful
instruction it is also available as a synthesised instruction called tst. We could use this instruction as
shown in the following program segment:

/* Assembler code for
if (a > 0)

b++;
Assumes a is in %l0 and b in %l1 */

tst %l0 ! Set flags according to a
ble next ! Skip if a <= 0
nop
inc %l1 ! b++

next:...

4.1.2 Shift Operations

The SPARC architecture has three different shift operations. These fall into two classes: arithmetic shift
operations and logical shift operations. The difference between the two classes concerns the handling of
the sign bit. When performing an arithmetic shift to the right (sra) the sign bit is duplicated on each
shift. For a logical right shift (srl) zeroes are fed in to the most significant bit. There is no difference
when considering left shifts, as zeroes can be fed into the least significant bit position in both cases,
and only a single opcode (sll) is provided. As we know from binary number theory, shifting to the left
corresponds to multiplication by powers of two and shifting to the right corresponds to division by powers
of two.

Since the largest shift that makes any sense is 31 bit positions the number of bits to be shifted is taken
from the low five bits of either an immediate value or the second source register. The use of the shift
operations is illustrated in the following code segment:

! Assumes a => %l0, b => %l1, c => %l2
sll %l0, %l1, %l2 ! c = a << b
sra %l0, 2, %l1 ! b = a >> 2, i.e. b = a / 4

Exercise 4.1 The SPARC does not have any direct equivalents to the rotate instructions
provided by the Intel 80x86 processors. Show how such an operation could be provided by
writing a short segment of code to perform a right rotate by n bits, where n is stored in a
register.
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Operation Description
add Add
addcc Add and set flags
addx Add with carry
addxcc Add with carry and set flags
sub Subtract
subcc Subtract and set flags
subx Subtract with carry
subxcc Subtract with carry and set flags

Table 4.2: Arithmetic Instructions

4.2 Arithmetic Operations

The SPARC architecture has a small set of arithmetic operations. Essentially there are only addition and
subtraction operations defined. We have seen both of these in use already and have mentioned that there
are variations that set the integer condition codes. One variation that we have not yet seen is to include
the carry flag in the addition or subtraction. The full set of normal arithmetic operations supported by
the SPARC is shown in Table 4.2. These have the usual three-address format.

4.2.1 Multiplication

The first generation of SPARC processors did not have multiplication and division instructions in the
instruction set (we have seen already how we can perform these operations by calling on the standard
subroutines .mul and .div). However, multiplication was supported indirectly by means of the multiply
step instruction (mulscc). This instruction allows us to perform long multiplication simply by following
a number of steps.

Long Multiplication

Before looking at the use of the mulscc instruction, we need to consider how binary long multiplication
is performed “by hand”. Let us consider the example of multiplying 5 (101) by 3 (11), using four bits
(the result will then need eight bits). We start off with a partial product of 0. The algorithm works as
follows.

do four times
if the least significant bit of the multiplier is 1 then

add the multiplicand into the high part of the partial product
endif
shift the multiplier and the partial product one bit to the right

enddo

This last step can conveniently be taken care of by storing the multiplier in the low part of the partial
product and shifting them all together. As this is done four times (in our example — in general it is done
as many times as there are bits in a word) the multiplier will be completely shifted out by the time we
are finished. Let’s look at our example.

Multiplicand: 0011
Multiplier: 0101
Initialise partial product (low part from multiplier): 0000 0101
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Step 1: low bit of partial product is one so add multiplicand into high part
partial product becomes 0011 0101
shift right; partial product becomes 0001 1010

Step 2: low bit of partial product is not one
partial product remains 0001 1010
shift right; partial product becomes 0000 1101

Step 3: low bit of partial product is one so add multiplicand into high part
partial product becomes 0011 1101
shift right; partial product becomes 0001 1110

Step 4: low bit of partial product is not one
partial product remains 0001 1110
shift right; partial product becomes 0000 1111

At this point we are finished. The result (0000 1111) is the binary representation of 15, which is extremely
comforting! Essentially we have traced out the following multiplication (written in a more conventional
style):

0011×
0101
0011
1100
1111

The only other point we need to worry about concerns the case when the multiplier is negative. We can
proceed almost exactly as above. The shift operations must be signed, arithmetic shifts (as opposed to
logical shifts). Also, in order to correct the final result, we need to subtract the multiplicand from the
high part of the last partial product. With these enhancements the complete algorithm is as follows.

do four times
if the least significant bit of the multiplier is 1 then

add the multiplicand into the high part of the partial product
endif
shift the multiplier and the partial product one bit to the right

enddo
if the multiplier is negative then

subtract the multiplier from the high part of the partial product
endif

Exercise 4.2 Try multiplying −3 by 5 and −3 by −5, using a four bit word, and confirm the
action of this algorithm. From what does the need to correct the final result in the case of a
negative multiplier arise?

The SPARC Multiplication Step Instruction

With the knowledge of how binary multiplication can be performed behind us we can turn to the SPARC
mulscc instruction. This performs the repetitive step in the above algorithm, using the special Y register
as the low part of the partial product. The format of the instruction is: mulscc %rs1, %rs2, %rd, where
%rs2 (the multiplicand) can be either a register or a small signed constant. The first source register (%rs1)
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and the destination register (%rd) should be the same register, and should be the high word of the partial
product. The sequence of steps required to perform a multiplication on a SPARC processor is then as
follows:

1. The multiplier is loaded into the %Y register (the low word of the partial product) and the register
to be used for the high word of the partial product is cleared to zero.

2. The multiplier is tested to set the N (negative) and V (overflow) bits.

3. Thirty-two mulscc operations are performed. Each of these steps shifts N ^ V into the most signif-
icant bit of %rs1, shifting all the other bits to the right and saving the least significant bit b. The
least significant bit of the Y register is tested, and if it is one the second source register (or sign
extended constant) is added to the destination register. Lastly, the saved bit b is shifted into the
left end of the Y register and all the other bits are shifted one place to the right.

4. One last mulscc is performed with the multiplicand set to zero to perform the last right shift giving
the final result (high word in the destination register and low word in the Y register).

5. If the multiplier was negative it must be subtracted from the high word of the result.

So, to multiply 3 (in %l0) by 5 (in %l1), using %o1 for the high part of the partial product we could use
the following segment of assembler code.

mov 3, %l0
mov 5, %l1

mov %l1, %y
andcc %g0, %g0, %o1 ! Clear high word of partial

! product and clear flags
mulscc %01, %l0, %o1 ! 32 mulscc instructions no. 1
mulscc %01, %l0, %o1 ! no. 2
...
mulscc %01, %l0, %o1 ! no. 31
mulscc %01, %l0, %o1 ! no. 32
mulscc %o1, %g0, %o1 ! Final shift
mov %y, %o0 ! Get low order part from Y reg.

Note that the mulscc instruction modifies the flags, as implied by the cc suffix.

Exercise 4.3 Code this up into an assembly language program and trace through to see how
it works. Try a few more values for multiplier and multiplicand. Extend the program to allow
for signed multipliers and check that this works as expected too.

As we have seen already there is a standard subroutine provided to perform multiplication (.mul). This
performs signed multiplication. If the values that are being multiplied are unsigned the .umul routine
should be used instead. Both of these take the multiplicand in %o0 and the multiplier in %o1. The low
word of the result is returned in %o0 and the high order part in %o1.

4.2.2 Division

Since division is far less common than multiplication the SPARC architecture does not provide an equiva-
lent of the mulscc instruction for division. However there are four standard subroutines that may be used
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for various division operations. These fall into two classes: signed operations and unsigned operations.
Considering the signed operations first, .div returns the quotient while .rem returns the remainder.
Similarly, .udiv and .urem are provided for unsigned division. All of these take the dividend in the %o0
register and the divisor in the %o1 register. The result is returned in %o0 in all cases.

Exercise 4.4 Look up a binary division algorithm (such as that in Wakerley[24, p. 101 ff.])
and implement it in SPARC assembly language.

Skills

• You should know the basic arithmetic and logical operations

• You should understand the reason for the provision of the mulscc operation and have a basic
understanding of its use

• You should be able to use the standard multiplication and division routines
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Chapter 5

Data Types and Addressing

Objectives

• To introduce the basic SPARC data types

• To study the organisation of data in registers and in memory

• To consider the addressing modes provided by the SPARC architecture

• To introduce the concept of register windowing

• To study the use of global data

In this chapter we will start off by taking a look at the various data types that are supported by the SPARC
architecture and also at the addressing modes available. The SPARC processor has fewer addressing
modes than CISC processors like the Intel 80x86 family. This background leads us naturally onto the
subject of where, and how, to store variables in our programs, and introduces the concepts of register
windows.

5.1 SPARC Data Types

The SPARC processors support eleven data types. These are byte, unsigned byte, halfword, unsigned
halfword, word, unsigned word, doubleword, tagged data and single-, double- and extended-precision
floating point. The characteristics of these types are shown in Table 5.1.

For simplicity, we will refer to data types less than 32 bits wide as short types (i.e. the byte types and
halfword types) and will refer to data types greater than 32 bits wide as long types.

5.1.1 Data Organisation in Registers

The registers on the first SPARC processors were all 32 bits wide and so could hold most of these data
types without any trouble. These have been replaced by 64-bit models in recent years. The following
section discusses the original 32-bit processor model. The signed values are stored sign extended for short
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Type Size Corresponding Range
(bits) C Data Type

Unsigned Byte 8 unsigned char 0. . . 256
Byte 8 char -128. . . 127
Unsigned Halfword 16 unsigned short 0. . . 65 535
Halfword 16 short -32 768. . . 32 767
Unsigned Word 32 unsigned int/long 0. . . 4 294 967 295
Word 32 int/long -2 147 483 648. . .

2 147 483 647
Doubleword 64 N/A -9 223 372 036 854 775 808. . .

9 223 372 036 854 775 807
Tagged Data 30+2 N/A 0. . . 1 073 741 823
Single Precision 32 float s = 1, e = 8, f = 23
Floating Point
Double Precision 64 double s = 1, e = 11, f = 52
Floating Point
Extended Precision 128 N/A s = 1, e = 15, j = 1, f = 63
Floating Point

For floating point values:

s is the number of sign bits,

e is the number of bits for the exponent,

f is the number of bits for the fractional part, and

j is the number of bits for the integer part (single and double precision floating point values are
stored in a normalised format that makes this unnecessary).

Table 5.1: SPARC Data Types

data types (i.e. the sign bit is duplicated through the unused bits of the register). The unsigned short
data values have zeroes stored for the unused bits. When storing a value in memory, the unused upper
bits of a short data type are discarded.

The long data types (doubleword and double precision floating point values) require two registers for
storage. The most significant word is stored in the lower numbered register and the least significant
word in the higher numbered register. In these cases the destination register for an operation must be an
even numbered register. If it is not then the processor forces an even numbered register by subtracting
one from the specified register number. For example, attempting to load a doubleword value into either
register i6 or i7 will result in the value being stored in registers i6 and i7. Extended precision floating-
point values require four registers. Again, an even numbered register must be used as the destination for
an extended precision value. Note that storing a long data value into register g0 will result in the most
significant word being lost — the least significant word will be stored in g1.

Floating Point Values

Floating point values may be stored either in the registers of the integer unit or in the registers of the
floating-point coprocessor. There are thirty-two of these called f0 through f31, each 32 bits wide. We
will not be considering the floating-point coprocessor in any detail in this course.

For single precision floating-point values bit 31 (the most significant) has the sign bit, bits 23 through 30
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contain the exponent and the remainder of the word contains the fraction. For double precision floating-
point types the most significant word (stored in the lower numbered register) contains the sign bit (bit
31), the eleven bit exponent (bits 20 through 30) and the high-order 20 bits of the fraction. The least
significant word contains the low-order bits of the fraction.

Tagged Data Types

The tagged data types have been touched on briefly already. They are stored using the most significant
30 bits for the value and the least significant 2 bits for a tag. The tag bits are used to indicate the
type of the data from an application program’s perspective. Tagged data values are of great use when
implementing functional and logical languages such as Haskell, LISP, Smalltalk, Prolog and RUFL1. The
instructions that deal with tagged data (taddcc and tsubcc) will set the overflow flag if the tag of either
operand is nonzero (or if normal overflow occurs). For this reason tagged operations are usually followed
by a conditional branch to a routine that will check the format of the operands. To make this even easier
there are special forms of the tagged operations (taddcctv and tsubcctv) that automatically perform
a trap (similar to a software interrupt) if the overflow bit is set during the execution of the operation.
Other than this, tagged data values are treated as normal unsigned values when manipulated by the
processor.

5.1.2 Data Organisation in Memory

The Big-Endian Convention

The SPARC architecture uses the big-endian convention, rather than the little-endian convention used by
the Intel 80x86 family of processors. The SPARC addressing scheme thus stores the higher-order bytes
of multi-byte values at the lower memory addresses. For example, a word value (i.e. four bytes) stored in
memory will have the most significant byte stored at address N and the least significant byte stored at
address N + 3. The address of any data value is thus the address of its most significant byte. In general,
this distinction is not important, unless one tries to retrieve multi-byte values in smaller size units (e.g.
retrieving a four-byte word value as four individual bytes).

Address Alignment

In addition, all data values must be aligned on address boundaries that are an exact multiple of the data
size (this provides greater efficiency for memory accesses). The aligment restrictions mean that halfword
values must be located at even addresses (i.e. divisible by two). Similarly, word values must be stored
on word boundaries (the address exactly divisible by four, or the low two bits of the address set to zero),
and doubleword values must be stored on doubleword boundaries (the address exactly divisible by eight,
or the low three bits of the address set to zero).

Note that the same alignment restrictions apply to instructions being fetched from memory. The impli-
cation of this is that all instructions must appear at addresses that are exact multiples of four (i.e. the
least signficant two bits of instruction addresses will always be zero).

Any attempt to access a data value or instruction using an address that is not properly aligned will result
in a hardware trap being generated. By default, this will be caught by the operating system and the
offending program will be terminated with an error message, as shown in the following example.

$ myprog
Bus error (core dumped)

1Rhodes University Functional Language
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5.2 Addressing Modes

The SPARC architecture uses 32-bit addresses for memory accesses. This address size gives an address
space of 4 294 967 295 bytes (i.e. 4GB, enough for most applications!). There are only four addressing
modes supported by the SPARC processors: two-register, register plus immediate, 30-bit program counter
relative and 22-bit program counter relative. The small number of addressing modes is mainly because of
the simplified load/store architecture of the SPARC. Memory addressing is performed only for load and
store instructions and for control transfers. We will consider each of the four addressing modes in turn.

5.2.1 Data Addressing

Two Register Addressing

This addressing mode uses the values contained in two registers in order to generate an address. The
two values are added together to create the address, which is then used to load or store a value from/to
memory. These addresses are a full 32 bits wide.

Register Plus Immediate Addressing

This addressing mode makes use of a 32-bit value from a register together with a sign-extended 13-bit
immediate value. These two components are added together to give the effective address. As a special
case of this addressing mode, the zero register g0 can be used, giving a 13-bit immediate addressing
mode that can be used to access the upper and lower 4kB of memory (effectively this is like an absolute
addressing mode for these regions of memory). This is the simplest addressing mode since no registers
need to be specially set up beforehand.

5.2.2 Control Transfer Addressing

Thirty Bit Program Counter Relative Addressing

This addressing mode is used only by the call instruction. A 30-bit displacement (taken from the
instruction) is padded to 32 bits by appending two zero bits and the result is added to the program
counter (in fact, due to the way in which the fetch-execute cycle works, the value that is used is PC+ 4).
This results in no loss of functionality, since the SPARC instructions are all 32 bits wide, and therefore
must be fetched from word aligned addresses in which the lower two bits will always be zero. This
addressing mode thus allows transfer of control to any instruction in the entire address space of the
processor. The calculated address (known as the effective address) becomes the new value of the nPC
register.

Twenty-two Bit Program Counter Relative Addressing

This form of addressing is used by the branch instructions. It is similar to the 30-bit program counter
relative addressing mode, but the value to be added to the program counter is taken from a 22-bit value
stored in the instruction. This value is first padded out by appending two zero bits and then sign extended
to a 32-bit value before being added to the program counter (actually, PC+ 4 as for the previous address
mode). This allows an addressing range of 8MB (on word boundaries). The effective address becomes
the new value of the nPC register.
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5.3 Stack Frames, Register Windows and Local Variable Stor-
age

When a program is loaded into memory by the operating system the code is located at low addresses
and a stack is located at the top end of the memory space. The address of the last occupied stack
memory element is stored in the stack pointer, register o6 or sp (its preferred name). If we wanted to
set aside some stack space for local variables we could simply decrement the stack pointer by the number
of bytes that we require. For example, to reserve 64 bytes of memory we could execute the instruction
sub %sp, 64, %sp. One point to note is that the stack should always be kept doubleword aligned, and
for this reason the lowest three bits of the stack pointer should always be zero (i.e. the stack pointer
should always be exactly divisible by eight). So, if we required 94 bytes of memory for local storage, then
we would need to decrement the stack pointer by 96 in order to keep the stack aligned. There is a useful
shortcut that can be used to ensure that this is always true. The trick is to add a negative number to
the stack pointer rather than subtracting a positive value, and then to mask off the lowest three bits of
this value. So, instead of sub %sp, 94, %sp, we would write add %sp, -94 & 0xfffffff8, %sp. The
hexadecimal constant 0xfffffff8 is the two’s complement representation of -8 and so we can write this a
little more concisely, if a little less clearly, as add %sp, -94 & -8, %sp.

Exercise 5.1 Try a few examples and convince yourself that this shortcut works. Why does
it work?

The stack pointer frequently changes during the execution of a program and is less than satisfactory as
the basis for addressing variables. To solve this problem we use a frame pointer, register i6, also called
fp. The frame pointer is used to hold a copy of the stack pointer before its value is changed to provide
more storage. To see how the frame pointer is set up we need to turn to the subject of register windows,
an important architectural feature of the SPARC processors.

5.3.1 Register Windows

Earlier when we introduced the subject of the registers available to the programmer we said that there
were thirty-two registers available at any time, eight global registers and twenty-four window registers.
These twenty-four window registers are taken from a large pool of registers (typically 128, which is
the number we will assume in the following discussion). The window registers are arranged into eight
overlapping groups called windows, as illustrated in Figure 5.1. The eight “out” registers of one window
are the “in” registers of the next window and so on. Only the local registers are truly private to any one
window. The current working window is indicated by a 5-bit field in the program status register (visible
only in supervisor mode) called the current window pointer (CWP). This allows for a maximum of thirty-
two windows (a total of 512 potential registers) on SPARC processors. The window registers are treated
as a circular stack with the highest numbered window adjoining the lowest. Decrementing the CWP
moves to the next window in the set, and incrementing the CWP moves back to the previous window.
The CWP may be manipulated by means of the save and restore instructions, which decrement and
increment the CWP respectively. These instructions bring us back to the subject of the frame pointer,
so let’s take a look at them in more detail.

Manipulating the Register Window

The save instruction not only decrements the CWP, thus moving to the next window, but it also performs
an addition at the same time. This addition takes its source registers from the “old” window, but places
the result in a destination register in the “new” window. This feature can be used to create a stack
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Figure 5.1: Register Window Layout
[19, p. 2-3]

frame very simply, as shown below. In this example, we assume that we want to set aside space for five
word-long (i.e. four byte) variables.

save %sp, -64 - (5 * 4) & -8, %sp

The need for the extra 64 bytes of storage we will consider shortly. This instruction is most easily
understood by considering the special registers sp and fp as normal “in” and “out” registers. The first
reference to sp is a reference to register o6 of the “old” window. The destination register sp is then the
register o6 of the “new” window, while the “old” sp is still visible as the register i6, which, conveniently,
is the frame pointer register. So, the stack looks as shown in Figure 5.2 (the five local variables have
been labelled v1 through v5 for clarity). In order to access the variables stored on the stack we can use
negative offsets from the frame pointer. In passing, note that the expression -64 - (5 * 4) & -8 is
evaluated by the assembler when it is assembling the text of the program.

The reverse of the save operation is performed by the restore instruction. This increments the CWP,
effectively moving back to the previous window. Like the save instruction, the restore instruction also
does an addition at the same time. This is not of much use, but can sometimes be utilised as a useful
side-effect, saving an explicit add instruction. The source registers for the restore operation are taken
from the current window and the destination register is taken to be in the previous window (i.e. the
window being made current by the restore operation).

39



Figure 5.2: Example of a Minimal Stack Frame

Register Window Overflow and Underflow

Returning to the subject of the extra 64 bytes set aside in the above example, these are used to store
the contents of the registers when there is a window overflow. This occurs when a program attempts to
make use of more than the available number of windows. The way in which this is handled is that a
window can be marked as invalid (by setting a bit in the Window Invalid Mask register or WIM register,
available only in supervisor mode). If an attempt is made to perform a save to an invalid window a trap
is generated automatically. At the same time as the trap the CWP is decremented anyway, allowing the
trap handler (usually part of the operating system) to make use of the invalid window. The trap handler
is then responsible for freeing up a window by saving the local registers and out registers for the next
window, which is then marked as invalid, the current window is remarked as valid and control is returned
to the program. In this way an executing program effectively sees an infinite number of windows. The
saved registers are stored in the extra 64 bytes allocated on the stack frame. If your programs do not set
aside this space and a window overflow trap is generated then chaos is guaranteed to result!

Similarly, a window underflow trap is generated if a restore instruction attempts to increment the CWP
to point to a window marked as invalid. In this case, the trap handler would restore the contents of a
window that had previously been saved into the stack frame.

This mechanism is particularly well suited to parameter passing between subroutines, a subject to which
we will return in the next chapter.

5.3.2 Variables

Now that we have seen how to set aside space for variables in a stack frame we can consider how to access
them. As has already been mentioned the SPARC architecture makes use of a load/store approach. The
only way in which variables stored in memory may be accessed is through load and store instructions.
These instructions are shown in Table 5.2. Note that there is no need to have special forms of the store
instructions for signed and unsigned short data types as these are simply truncated in either case.
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Name Data Type Description
ldsb Signed Byte Load 8 bit value, sign extended
ldub Unsigned Byte Load 8 bit value
ldsh Signed Halfword Load 16 bit value, sign extended
lduh Unsigned Halfword Load 16 bit value
ld Word Load 32 bit value
ldd Doubleword Load 64 bit value into 2 registers
stb Byte Store low 8 bits of register
sth Halfword Store low 16 bits of register
st Word Store 32 bit register
std Doubleword Store 2 registers as 64 bits

Table 5.2: Load and Store Instructions

The load instructions have two operands2. The first of these is the address specification, enclosed in
square brackets [] to indicate that it is an address not a data value. The second operand is the name
of the register in which the loaded value is to be stored. The store instructions also take two operands,
which are the same as those for the load instructions, but with their order reversed.

As an example, the following program segment moves a data value from one memory location to another.

save %sp, -64 -(2 * 4) & -8, %sp ! Space for 2 vars, a and b
...
ld [%fp - 4], %l0 ! l0 <- a
st %l0, [%fp - 8] ! b <- l0

Here, both the ld and the st instructions are using the register-plus-immediate addressing mode discussed
on page 37.

When accessing variables in this way we need to keep a close track of the locations we are allocating to
specific variables. We can simplify this by making use of the facilities of the macro processor m4. If we
define the macros local vars and var as shown below, we can automate a lot of the work.

define(local_vars, ‘define(last_sym, 0)’)
define(var, ‘$1 = last_sym $2 & $2 define(‘last_sym’, $1)’)

The local vars macro simply initialises a macro token called last sym to have the value zero. The
macro var can best be understood perhaps by considering an example. If we write var(a, 4) to allocate
space for a word (four byte) variable called a, this would be expanded out first to read:

a = last_sym - 4 & -4 define(‘last_sym’, a)

This contains several macro names itself and so will be expanded again to give the final result:

a = 0 - 4 & -4

and the token last sym will have the new value a. Note that none of this has yet allocated any memory
to be used for the variable. When we come to declare the next variable (say a halfword value called b)
we would give a definition like var(b, 2). This would then be expanded out to:

2Actually there are three operands, as the load/store instructions are still triadic (three-address) instructions, but the
syntax is a little different, giving the appearance of only two operands.
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b = a - 2 & -2

with last sym now having a value of b. Notice how ensuring the correct alignment is quite straightforward
since the size of the data value also gives the alignment value. The expressions like 0 - 4 & -4 and
a - 2 & -2 are left for the assembler to evaluate.

Two more useful macros, shown below, allow us to simplify the start and end of our assembly language
programs. Note how we can use the value of last sym in working out how much space is required for
variables in the stack frame. It is at this point (using the begin macro) that memory is allocated on the
stack for the variables declared above.

define(begin, ‘.global main
main: save %sp, -64 + last_sym & -8, %sp’)

define(end, ‘ mov 1, %g1
t 0’)

These macros allow us to write far more readable programs, as in the following variation of the previous
example.

local_vars
var(x, 4)
var(y, 4)

begin
ld [%fp + x], %l0 ! l0 <- x
st %l0, [%fp + y] ! y <- l0

end

After being processed by m4 this example will appear as follows:

x = 0 - 4 & -4
y = x - 4 & -4

.global main
main: save %sp, -92 + y & -8, %sp

ld [%fp + x], %l0 ! l0 <- x
st %l0, [%fp + y] ! y <- l0
mov 1, %g1
t 0

To make matters even simpler still we can put these macros into a file and include this file in any programs
that make use of the macros. This can be done by using the m4 include macro as shown in the following
complete (but useless) program.

include(macro_defs.m)

local_vars
var(x, 4)
var(y, 4)

begin
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ld [%fp + x], %l0 ! l0 <- x
st %l0, [%fp + y] ! y <- l0

end

The file macro defs.m, containing these and other useful macros, can be found on the Sun systems in
the directory /home/cs4/Arch.

5.4 Global Variables

In addition to local variables, which we can handle using the stack as shown above, the assembler allows
us to define global variables using pseudo-ops.

5.4.1 Data Declaration

There are several data definition pseudo-ops available to us for use with the different data types. The
simplest of these is .word which allows us to allocate space for a 32 bit variable, and initialise its value.
Similarly, the .byte and .half directives allow us to allocate space for bytes and halfwords respectively.
Since the data values must be correctly aligned in memory, another important pseudo-op in this context is
.align which enforces the alignment. If we want to set aside a given amount of space without initialising
it we can use the .skip directive to allocate space for a specified number of bytes.

These points are all illustrated by the following program extract.

.data ! Start data segment
x: .word 12 ! int x = 12;
y: .byte ’a’ ! char y = ’a’;

.align 2 ! Get alignment correct for halfword
z: .half 0xffff ! short z = 0xffff;

.align 4 ! Get alignment correct for words
list: .skip 4 * 100 ! int list[100];

.text ! Start of program segment

. . .

Note that the data and program segments referred to here are not related to the Intel 80x86 concept
of a segment. The UNIX operating system splits all programs into sections, called segments. The first
of these is the text segment into which all program code is placed. This is usually made read-only so
that it can be shared among all processes executing the same code. The data segment that we have seen
used above is where data is placed. The data segment is loaded by the operating system as a read/write
segment, and is generally not shared between processes.

If we are going to make use of separate assembly and linking different modules together then we need to
use the .global pseudo-op to “export” any variable names we want visible to other parts of the system.
This is just as it is in C, of course. Similarly, if we want gdb to recognise the identifier names then we
must also declare them as global. This is shown in the following program extract.

.data ! Start data segment

.global x ! Export x
x: .word 12 ! int x = 12;
y: .byte ’a’ ! char y = ’a’;

.align 2 ! Get alignment correct for halfword
z: .half 0xffff ! short z = 0xffff;
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.align 4 ! Get alignment correct for words

.global list ! Export list
list: .skip 4 * 100 ! int list[100];

.text

In this example, the identifiers x and list will be visible to other object files that are linked with this one
and will also be visible to the debugger. The other variables, y and z, will be visible within the module
within which they appear, but will not be accessible from other modules, nor will their names be known
by gdb.

Lastly, we turn to the subject of character strings. These can be defined by listing the ASCII codes as
follows:

str: .byte 150, 145, 154, 154, 157

Alternatively, and more conveniently, we can use the characters themselves by enclosing them in quotes
(either single or double quotes).

str: .byte "h", "e", "l", "l", "o"

However, this is still rather tedious, and so the assembler provides two other data definition pseudo-ops
for use with character strings. These are .ascii and .asciz. They both take a character string as an
argument and set aside enough space for the string initialised to the ASCII values of the characters in
the string. The difference between the two pseudo-ops is that the .asciz pseudo-op automatically adds
a terminating NUL byte to the end of the string. This is, of course, the convention used by C/C++, and
common under the UNIX operating system. So, the string above could be declared as follows:

str: .ascii "hello"

Since strings are usually read-only data, they are often stored in the program’s text segment. If this is
done, care must be taken to ensure that they are stored where they will not be “executed” as if they
were code. In addition, it may be necessary to follow any string definitions with a .align 4 directive to
ensure that the alignment is correct for any subsequent instructions that are to be executed.

5.4.2 Data Usage

If we want to load the value of one of these variables into a register so that we can work with it we have
a few steps to go through. We have seen how the only addressing modes available for use with data are
the two-register mode and register plus 13 bit immediate mode. If we are going to access data stored at
arbitrary locations (chosen by the assembler) we need to be able to get the address of the data value into
a register so that we can make use of it in a load instruction. We might try the following:

mov x, %l0 ! l0 = &x;
ld [%l0], %l1 ! l1 = x; /* Or, l1 = *l0; */

However, there is a problem with this. We have seen how the mov instruction is, in fact, a synthetic
instruction, which is shorthand for or %g0, immediate value, %rd, and we have noted that the im-
mediate values in SPARC instructions are restricted to 13 bits (sign extended). This restricts the mov
instruction so that it can only be used as above if the address of x happens to fall into the top 4kB or the
bottom 4kB of the memory space, which is highly unlikely. This looks like quite a serious problem. The
solution comes from an instruction that we haven’t seen yet: the sethi (set high) instruction. This is
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used to set the top 22 bits of a register to an immediate value, while clearing the least significant ten bits.
This can be followed by an or instruction to set the low ten bits to the desired value. As an example,
consider the problem of loading the 32-bit value 0x30cf0034 into register o0. This could be done as
follows:

sethi 0x30cf0034 >> 10, %o0
or %o0, 0x30cf0034 & 0x3ff, %o0

This is a little messy and so the assembler provides some shortcuts for us. The first of these is the
provision of two special operators (%hi and %lo) that take care of the shifting and masking operations
necessary to isolate the top 22 bits and the bottom 10 bits of these large constants. Using these, our
example becomes:

sethi %hi(0x30cf0034), %o0
or %o0, %lo(0x30cf0034), %o0

However, the assembler allows us to go one better still and has a synthetic instruction called set that
expands out to do all of this for us. It is used as shown in the following variation on our example, which
would expand out into the same form of code as that shown above.

set 0x30cf0034, %o0

Getting back to our original problem of accessing a variable in memory, we can then use the following
code:

sethi %hi(x), %l0 ! l0 = hi(&x);
ld [%l0 + %lo(x)], %l1 ! l1 = x;

/* Or, l1 = *(l0 + lo(&x)) */

Once the value of a variable is loaded into a register we can manipulate it, and then replace the value
with the result of the calculations.

To end this chapter off we will have a look at an example that ties much of this material together. The
following example program (available as /home/cs4/Arch/ch5 tmpcnv.m) takes a value for c declared as
a global variable, and computes the Fahrenheit equivalent.

/* This program converts temperatures from
Celcius to Fahrenheit using variables.
George Wells - 2 June 2003

*/
offs = 32

include(macro_defs.m)
.data
.global c

c: .word 24 ! int c = 24;

.global f
f: .skip 4 ! int f;
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.text

.global main
main: set c, %l0 ! l0 = &c

ld [%l0], %l1 ! l1 = c /* l1 = *l0 */

mov 9, %o0 ! 9 into %o0 for multiplication
call .mul ! Result in %o0
mov %l1, %o1 ! c into %o1 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division

add %o0, offs, %l1 ! l1 = result + offs

set f, %l0 ! l0 = &f
st %l1, [%l0] ! f = l1

end

Exercise 5.2 Use gdb to trace through the execution of this program. Study the registers
being used and the variables, and satisfy yourself as to how it all works.

Skills

• You should know the common data types provided by the SPARC architecture

• You should be familiar with the following concepts: load/store architecture, memory align-
ment, little-endian and big-endian storage conventions

• You should know the addressing modes used by SPARC processors

• You should understand how the SPARC register windowing mechanism works

• You should be able to write SPARC assembly language programs that make use of local and
global data

46



Chapter 6

Subroutines and Parameter Passing

Objectives

• To consider the SPARC mechanisms for calling subroutines and returning from them

• To consider the SPARC mechanisms for passing parameters to subroutines and returning
results from them

• To introduce the complete structure of a SPARC stack frame

• To study separate compilation and assembly of program modules

In the previous chapter we saw how to set up a stack frame in the main function of our programs, and
saw how the register windowing system worked. In this chapter we will build on this and will learn how
to write programs that are composed of multiple subroutines and how we can pass parameters to them.
We will also learn how to write SPARC assembly language routines that can be linked with C programs
and vice versa.

6.1 Calling and Returning

We have already used the call instruction quite often to invoke the standard subroutines .mul and
.div. This instruction can be used to call any subroutine the name of which is known at assembly time.
The effect of the instruction is to transfer control to the specified label, storing the current value of the
program counter (i.e. the address of the call instruction) in the register o7. Typically, the first operation
in the subroutine will be a save instruction that will shift the register window to make the return address
appear in register i7. As we have seen, the call instruction is always followed by a delay slot (unlike
the branch instructions this cannot be annulled).

The second mechanism for calling a subroutine is particularly useful when the address of the subroutine
must be computed at run time. This method uses the jmpl (JuMP and Link) instruction. This instruction
takes two source arguments (either two registers or a register and a 13-bit immediate value) and a
destination argument (a register). The address of the subroutine is calculated from the sum of the two
source operands and is placed in the program counter. The address of the jmpl instruction itself (i.e. the
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return address) is stored in the destination register. Thus, to call a subroutine whose address has been
calculated and stored in the l0 register we would write:

jmpl %l0, %o7 ! Call (*l0)();

This stores the return address in the conventional place (register o7). In this case, since no second source
value is specified, the assembler uses g0. In addition, the assembler recognises the instruction call %l0
as a synthetic instruction for the code above.

We now need to consider the return from a subroutine. This also makes use of the jmpl instruction. In
this case we need to return to the address specified by the i7 register (assuming that we did a window
save at the start of the subroutine) plus eight bytes to allow for the calling instruction and the delay slot.
We can use the synthetic instruction ret to do this, or can use jmpl explicitly. Both forms are shown
below:

jmpl %i7 + 8, %g0
! Or

ret

Note how the value of the program counter (the address of the return instruction in this case) is discarded
by storing it in the g0 register, since it is of no interest. A skeleton format for a subroutine call and
return is then as follows:

call subr ! Call subroutine
nop ! Delay slot - could be used

. . .

subr: save %sp, ..., %sp ! Create stack frame & shift window
. . .
ret ! Return from subr
restore ! Delay slot - restore windows

6.2 Parameter Passing

With the level of control that we have at the assembly language level, there are several ways of passing
parameters. For example, languages like FORTRAN make use of parameters that are stored in the code
immediately following the call instruction. This is very efficient, but does not permit recursion, and
is impossible if the code is in a read-only area of memory. The approach encouraged by the SPARC
architecture is to use registers.

6.2.1 Simple Cases

Since one window’s “out” registers are the next window’s “in” registers, this makes for a very natural
and extremely efficient parameter passing mechanism. However, since two of these registers are already
used (o6 as the stack pointer and o7 for the return address) we can pass only six words of data in this
way. For many applications this is perfectly adequate. If the need arises to pass further parameters they
can be placed on the stack before calling the subroutine. In fact, convention dictates that space should
be allocated on the stack for the six register parameters as well, and also for a pointer to a structure (see
page 52). This gives a minimum of 92 bytes that should always be allocated in a stack frame. Any space
required for local variables (as described in the previous chapter) should be added to this. Consider the
following example:
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Figure 6.1: Example of a Stack Frame

subr ()
{ int x, y;

char ch;
...

}

The variables here require 9 bytes of storage. If we translated this example into assembly language we
would get something like:

subr: save %sp, -(64 + 4 + 24 + 9) & -8, %sp

The contents of the stack for this example are illustrated in Figure 6.1. Note that this works in a rather
unusual way in that the space reserved in a given stack frame is for the parameters that will be passed to
any child subroutine. Similarly, the parameters for the current subroutine are located in the stack frame
of the parent subroutine. These are then accessed using positive offsets from the frame pointer (%fp),
which gives access to the parent’s stack frame. The local variables are accessed using negative offsets
from the frame pointer.

We could define an m4 macro to help us with the definition of subroutines as follows:

define(begin_fn, ‘.global $1
$1: save %sp, -92 ifdef(‘last_sym’, ‘+last_sym’) & 8, %sp’)

Note the use of the built-in ifdef macro, which allows us to make a decision based on whether there
are any local variables or not. Let us consider an example. The following program (ch6 tmpcnv.m) will
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take our (now rather overworked!) example of converting temperatures, but will do this by calling a
subroutine. The parameter to the subroutine will be the Celcius value c to be converted. We will place
the result in a global variable f.

/* This program converts temperatures from
Celcius to Fahrenheit using a subroutine.
George Wells - 2 June 2003

*/
offs = 32

include(macro_defs.m)
.data
.global f

f: .skip 4 ! int f;

.text

.global main
main: call convert ! convert(24)

mov 24, %o0 ! Delay slot - setup parameter
end

begin_fn(convert) ! Parameter c in %i0
mov 9, %o0 ! 9 into %o0 for multiplication
call .mul ! Result in %o0
mov %i0, %o1 ! c into %o1 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division

add %o0, offs, %l1 ! l1 = result + offs

set f, %l0 ! l0 = &f
st %l1, [%l0] ! f = l1

end_fn

Exercise 6.1 Trace through this program with gdb and satisfy yourself as to how it works.

6.2.2 Large Numbers of Parameters

As already mentioned, if we need to pass more than six arguments these will be placed on the stack.
Consider the example:

int fn (int p1, int p2, int p3, int p4,
int p5, int p6, int p7, int p8)

{ return p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;
} /* fn */

And the call:

fn(1, 2, 3, 4, 4, 5, 6, 7, 8);
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In order to make this call we would first have to set aside space on the stack for the last two parameters
(the C convention is that the parameters are pushed from right to left), save these parameters on the
stack, load the rest of the parameters in registers o0 through o5 and then make the call. On returning
from the function we would need to deallocate the space allocated on the stack for the extra parameters.
The calling code would then look something like the following:

/* Demonstrate passing more than six parameters.
George Wells 14 July 1992 */

include(macro_defs.m)

begin
add %sp, -2 * 4 & -8, %sp ! Space for two parameters
mov 8, %l0
st %l0, [%sp + 96] ! Last parameter
mov 7, %l0
st %l0, [%sp + 92] ! Penultimate parameter

mov 6, %o5
mov 5, %o4
mov 4, %o3
mov 3, %o2
mov 2, %o1
call fn ! fn(1, 2, 3, 4, 5, 6, 7, 8);
mov 1, %o0 ! First parameter - delay slot

sub %sp, -2 * 4 & -8, %sp ! Release stack space
end ! Main program.

Exercise 6.2 The full program above can be found on the Sun systems as the file
/home/cs4/Arch/params.m. Study it, paying special attention to how the parameters on
the stack are handled.

6.2.3 Pointers as Parameters

Passing pointers as parameters is fairly straightforward. As is normally the case, the calling code can
calculate the address of the data (pointer to the data) and pass this to the subroutine. The subroutine
can then use load and store instructions to manipulate this data directly. As an example, consider the
problem of swapping two data values. In C we would write a function like the following:

void swap (int *x, int *y)
{ int t;

t = *x;
*x = *y;
*y = t;

} /* swap */

Translating this into a SPARC assembly language program we would get something along the following
lines:

/* Demonstrate passing pointers as parameters.
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George Wells 14 July 1992 */

include(macro_defs.m)

local_vars
var(x, 4)
var(y, 4)

begin
mov 5, %l0
st %l0, [%fp + x] ! x = 5;

mov 7, %l0
st %l0, [%fp + y] ! y= 7;

add %fp, x, %o0
call swap ! swap(&x, &y);
add %fp, y, %o1 ! Delay slot

ld [%fp + x], %l0 ! Move swapped values into registers
ld [%fp + y], %l1

end ! Main program.

/* Function swap */
begin_fn(swap)

ld [%i0], %l0 ! t1 = *x;
ld [%i1], %l1 ! t2 = *y;
st %l1, [%i0] ! *x = t2;
st %l0, [%i1] ! *y = t1;

end_fn

Note the need to use two temporary variables in the assembly language version (called t1 and t2 above).
This is due to the load/store architecture of the SPARC processor, of course — we cannot move y directly
to x.

6.3 Return Values

Turning to the subject of subroutines that return values (functions), you may have guessed by now that
the convention used is to place the value in register o0 (with respect to the calling code — if the function
has used a save instruction then it is register i0 that is used in the function). We have seen this used
already with the standard functions .mul and .div. For larger data structures (such as a C struct) the
calling code must set aside a block of memory for the return value and must pass the address of this
block of memory to the function at %sp + 64 (or %fp + 64 in the called subroutine). This is the area of
the stack frame that we mentioned was reserved for a pointer to a structure in Section 6.2.1.

Returning to the example from the last section, a better function to convert temperatures would be as
follows:

/* This program converts temperatures from
Celcius to Fahrenheit using a subroutine.
George Wells - 2 June 2003

*/
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offs = 32

include(macro_defs.m)

.text

.global main
main: call convert ! convert(24)

mov 24, %o0 ! Delay slot - setup parameter
! result in o0

end

begin_fn(convert) ! Parameter c in %i0
mov 9, %o0 ! 9 into %o0 for multiplication
call .mul ! Result in %o0
mov %i0, %o1 ! c into %o1 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division

add %o0, offs, %i0 ! return value = result + offs
end_fn

6.4 Leaf Subroutines

A leaf subroutine is one that does not call any other subroutines (this name comes from considering
the subroutine calls made by the program as forming a tree — the leaf subroutines are the ones that
appear as the leaves of this tree). In the case of a leaf subroutine a simplified calling structure may be
used. Essentially we can do away with the need to shift register windows and set up a stack frame. The
subroutine then works with the calling subroutine’s registers and stack frame. In order for this to work
the convention that is followed is that a leaf subroutine uses only the “out” registers (which it would have
had access to anyway, since these would form the “in” registers if a window shift were performed) and
the global registers g0 (which cannot be changed anyway) and g1. This is perfectly adequate for many
cases, and, in fact, the .mul subroutine that we have used previously is a leaf routine.

A leaf routine is called in exactly the same way as a normal routine, placing the return address in register
o7. As a result of the fact that a register save is not performed the return address is %o7 + 8 and not
%i7 + 8, as usual. The assembler recognises the synthetic instruction retl (return from leaf routine) as
a notation for:

jmpl %o7, 8, %g0

which has the necessary effect.

As an example, consider the swap routine above, which should probably have been written as a leaf
function (as should several of the other examples we have considered). Rewriting in this way would give
the following subroutine (note that the calling code in the main program remains exactly the same):

/* Demonstrate passing pointers as parameters to a leaf
function.
George Wells 14 July 1992 */

include(macro_defs.m)
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local_vars
var(x, 4)
var(y, 4)

begin
mov 5, %l0
st %l0, [%fp + x] ! x = 5;

mov 7, %l0
st %l0, [%fp + y] ! y= 7;

add %fp, x, %o0
call swap ! swap(&x, &y);
add %fp, y, %o1 ! Delay slot

ld [%fp + x], %l0 ! Move swapped values back into
ld [%fp + y], %l1 ! registers

end ! Main program.

/* Leaf function swap */
.global swap

swap: ld [%o0], %o2 ! t1 = *x;
ld [%o1], %o3 ! t2 = *y;
st %o3, [%o0] ! *x = t2;
retl
st %o2, [%o1] ! *y = t1; Delay slot

Exercise 6.3 Write a function to compute factorials recursively. Write a main function to
call this and test your function.

Exercise 6.4 Write a function max to find the maximum of eight values passed to it as para-
meters. Write a main function to call this and test your function.

Exercise 6.5 Extend the function max from the previous exercise so that it finds the maximum
of between two and eight values. You will need to pass an extra parameter to specify the
number of parameters that are available. Modify your main function to call and test the new
max function.

6.5 Separate Assembly/Compilation

In this section we will study the problems of linking C and assembly language routines together. We
will also see how the command line parameters can be handled in assembly language, and how to link
together separately assembled sections of an assembly language program.
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6.5.1 Linking C and Assembly Language

The various conventions we have seen used for setting up stack frames, passing parameters, etc. are all
those used by C, and so there is relatively little extra that we need to do in order to link any of our
subroutines with a C program. Let’s consider the following example (shown completely in C here):

/* Program to demonstrate the handling of C command line
parameters in C.
George Wells - 15 July 1992.
Original program by R. Paul.

*/

void summer(int *acc, char *ptr)
{ register int n;

n = atoi(ptr);
*acc = *acc + n;

} /* summer */

main(int argc, char *argv [])
{ int sum = 0;

while (--argc)
summer(&sum, *++argv);

printf("sum is %d\n", sum);
} /* main */

If we take the function summer and rewrite this in assembly language suitable for calling from a C program
we would get the file shown below. Also to note here is how easily we can call atoi, a standard C library
function. This is a side effect of the fact that we are using the C compiler to assemble our programs for
us. It arranges for the standard C libraries to be linked with any programs it creates.

/* Function to add one data value (a string) to a running
total.
George Wells - 15 July 1992.
Original program by R. Paul.

*/
include(macro_defs.m)

! Define symbolic constants for parameters.
define(acc, i0) ! int *acc; pointer to sum in %i0
define(ptr, i1) ! char *ptr; pointer to string in %i1

begin_fn(summer) ! void summer(int *acc, char *ptr)
call atoi ! get atoi(ptr)
mov %ptr, %o0 ! parameter to atoi delay slot

ld [%acc], %o1
add %o0, %o1, %o0 ! acc += atoi(ptr);
st %o0, [%acc]

end_fn ! summer
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You can see how similar this is to any of the assembly language subroutines we have written before. Our
macros to set up stack frames, etc. can be used just as they are. Notice the use that is made of the m4
preprocessor definitions for acc and ptr to make the program a little more readable. A C program to
call this subroutine would be as shown below. The only action that needs to be taken here is to give a
function prototype for the assembly language subroutine.

/* Program to demonstrate linking a C program with an assembly
language subroutine.
George Wells - 15 July 1992.
Original program by R. Paul.

*/

void summer(int *acc, char *ptr);

main(int argc, char *argv [])
{ int sum = 0;

while (--argc)
summer(&sum, *++argv);

printf("sum is %d\n", sum);
} /* main */

In order to link this with a C program we could create a makefile1 like the following:

sum1: sum1.o summer.o
gcc -g sum1.o summer.o -o sum1

sum1.o: sum1.c
gcc -g -c sum1.c

summer.o: summer.s
gcc -g -c summer.s -o summer.o

summer.s: summer.m
rm -f summer.s
m4 summer.m > summer.s

We can use exactly the same principles to link our assembly language programs with standard C routines
such as the standard I/O routines, etc. For example, the following code segment allows us to call printf.

fmt: .asciz "The answer is %d\n"
. . .
set fmt, %o0 ! fmt - format string as 1st parameter
call printf ! printf("The answer is %d\n", ans)
mov %l3, %o1 ! ans as 2nd parameter - delay slot

6.5.2 Separate Assembly

If we continue with the example of the last subsection, the last part that would need to be converted to
assembly language is the main program. In order to do this, we need to consider how the command line

1See the UNIX man pages for the make command for more details.
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arguments are handled. This is quite straightforward as they are simply passed to our main function as
normal parameters. Again, we can define preprocessor tokens to make the program more readable. Note
how the call to printf is made, using a read-only constant string in the text segment for the format.

/* Assembly language program to demonstrate separate assembly.
George Wells 15 July 1992.
Original program by R. Paul.

*/
include(macro_defs.m)

! Some symbolic constants to make things more readable.
define(argc, i0)
define(argv, i1)

local_vars
var(sum, 4)

fmt: .asciz "sum is %d\n" ! Read only string for printf

.align 4
begin

clr %o0 ! sum = 0;
st %o0, [%fp + sum]

b test ! while test
nop ! Delay slot

loop: add %fp, sum, %o0 ! &sum
call summer
ld [%argv], %o1 ! pointer to first number string

test: subcc %argc, 1, %argc ! argc--;
bg,a loop
add %argv, 4, %argv ! argv++; Delay slot

set fmt, %o0
call printf ! printf(fmt, sum);
ld [%fp + sum], %o1 ! Delay slot

end_fn

This can quite easily be linked with the same object file as that used by the C program in the previous
subsection. A makefile that would do this is as follows:

sum2: sum2.o summer.o
gcc g sum2.o summer.o o sum2

sum2.o: sum2.s
gcc g c sum2.s o sum2.o

summer.o: summer.s
gcc g c summer.s o summer.o
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sum2.s: sum2.m
rm f sum2.s
m4 sum2.m > sum2.s

summer.s: summer.m
rm f summer.s
m4 summer.m > summer.s

Exercise 6.6 Study the C program exp.c (in /home/cs4/Arch), which uses a recursive de-
scent technique to parse and evaluate numeric expressions. Rewrite the functions expression,
term and factor using SPARC assembly language.

6.5.3 External Data

External variables can be accessed in a very similar way to that used above for subroutines. Taking the
case of data in an assembly language module first (“exporting” data), the data item would be declared
in the .data segment segment in the usual way. A .global directive would be required to make the
identifier (i.e. the label of the data location) visible to the linker.

The other case would be an assembly language module accessing external data (possibly in a C program).
In this case the name of the identifier could be used in the “importing” assembly language module. Again,
a .global directive is required.

The following (rather contrived) example illustrates these points. It uses an assembly language function
to convert a Celcius temperature value, where the value of c is stored in a global C variable and the
return value (f) is stored in a global assembly language variable. First, the C program (globprog.c in
/home/cs4/Arch) is written as shown below. The main point to note here is the need to declare f as an
external variable.

/* Program to demonstrate linking C and assembly language
modules sharing common data.
George Wells -- 2 June 2003 */

extern int f; /* Defined in assembler module */

int c;

void main ()
{ c = 24;

fun();
printf("Result = %d\n", f);

} /* main */

The corresponding assembly language module (globdata.m) is as follows:

/* Function to perform temperature conversion
Uses shared global data.
George Wells - 2 June 2003

*/
include(macro_defs.m)
.global c ! extern c;
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.data

.global f
f: .skip 4 ! int f;

offs = 32

.text

.align 4
begin_fn(fun)

set c, %l0 ! l0 = &c
ld [%l0], %o1 ! o1 = c /* l1 = *l0 */

call .mul ! Result in %o0
mov 9, %o0 ! 9 into %o0 for multiplication

call .div ! Result in %o0
mov 5, %o1 ! 5 into %o1 for division

add %o0, offs, %l1 ! l1 = result + offs

set f, %l0 ! l0 = &f
st %l1, [%l0] ! f = result

end_fn

Notice how this has to declare c using a .global directive in order for the linking to work.

Skills

• You should be able to write and use SPARC assembly language subroutines, including passing
parameters and returning results

• You should know the basic structure of a SPARC stack frame

• You should be able to write programs comprised of separate modules written in C and/or
SPARC assembly language
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Chapter 7

Instruction Encoding

Objectives

• To consider the encoding of SPARC assembly language instructions

• To understand the reasons for some of the features and limitations of SPARC assembly lan-
guage

In the previous chapters we have seen some aspects of the SPARC architecture that may have appeared
rather strange, constants that appear to have rather arbitrary constraints, etc. In this chapter we will
take a look at the way in which the SPARC instructions are encoded — this will help explain many of
these restrictions.

7.1 Instruction Fetching and Decoding

One of the simplifying factors about the SPARC’s RISC architecture is that all instructions are 32 bits
wide. There are no exceptions to this rule. Compared with many CISC processors this greatly simplifies
instruction fetching and decoding. The first two bits of an instruction (the opcode field) place it into one
of three instruction classes. These classes are referred to as Format 1 instructions, Format 2 instructions
and Format 3 instructions. Each of these formats has a different structure to be decoded, as shown in
Figure 7.1.

The Format 1 instruction (there is only one) is the call instruction. Format 2 is used for the branch
instructions and the sethi instruction, and Format 3 for the arithmetic and logical, and load and store
instructions. The following sections of this chapter cover each of the formats in more detail.

7.2 Format 1 Instruction

As already mentioned, Format 1 has only a single instruction, call. This instruction can transfer control
to any point in the 4GB address-space of the SPARC, using a 32-bit address. Since the instructions
themselves are only 32 bits wide this seems to present a problem. The solution is that the entire call
instruction except for the two bits required to specify the format is occupied by 30 bits of address
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Bits
3 2 1

1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Format 1: Call
01 displacement 30
Format 2: Branch and sethi
00 a cond op2 displacement 22
00 rd op2 immediate 22
Format 3: Arithmetic, Logical, Load, Store, etc.
op rd op3 rs1 0 asi rs2
op rd op3 rs1 1 immediate 13

Figure 7.1: Instruction Formats

information. This number of bits is still adequate to specify the call address since the low two bits of an
instruction address are always zero (due to the fact that the instructions must always be aligned). So,
in order to generate a call address the low 30 bits of the call instruction are taken and shifted left two
positions to create a full 32-bit address. To this address is added the contents of the program counter
(program counter relative addressing), which becomes the target address of the call. The format of the
call instruction is repeated below.

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
01 displacement 30

Consider the example instruction:

Address Instruction
0x2290: 0x40001234

Extracting the 32-bit address from this gives 0x000048d0. Adding this to the current value of the program
counter would give 0x00006b60, as the address to be called.

7.3 Format 2 Instructions

This class of instruction includes the branch instructions and the sethi instruction used for loading long
constants into registers. The two-bit opcode field is 00 for these instructions. We will consider the two
types of instructions separately.

7.3.1 The Branch Instructions

The format of a branch instruction is as follows:

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
00 a cond op2 displacement 22

The first two bits (00) identify the instruction as a Format 2 instruction. The next bit (a in the diagram)
is the annul bit, used to specify whether or not a branch should be annulled. The 3-bit op2 field selects the
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cond Mnemonics Codes cond Mnemonics Codes
0000 bn 1000 ba
0001 be, bz Z 1001 bne, bnz ¬Z
0010 ble Z | (N ∧ V ) 1010 bg ¬(Z | (N ∧ V ))
0011 bl N ∧ V 1011 bge ¬(N ∧ V )
0100 bleu C | Z 1100 bgu ¬(C | Z)
0101 blu, bcs C 1101 bgeu, bcc ¬C
0110 bneg N 1110 bpos ¬N
0111 bvs V 1111 bvc ¬V

The condition codes shown in the table refer to the four condition code flags maintained by the

SPARC processor (Negative, Zero, Carry and oVerflow). The logical operators used are: not ¬, or |
and and ∧.

Table 7.1: Condition Codes

sethi instruction (100), integer unit branches (010), floating-point unit branches (110) or coprocessor
branches (111). Other values for this field will cause an “illegal instruction” trap to occur. The four cond
bits are used to specify the condition for the branch to be taken. The conditions are encoded as shown in
Table 7.1. Notice how the rather peculiar bn (i.e. “branch never”) instruction arises very naturally from
the regular encoding.

The remainder of the instruction (displacement 22 above) is used to construct the target address for
the branch. The 22-bit value in this field is left-shifted by two bits to give the correct alignment, sign-
extended to 32 bits and added to the program counter. This gives a branching range of 16MB (from
−8MB to +8MB). Jumps longer than this are extremely rare and so 22 bits are quite adequate for storing
the branch displacement.

As an example consider the instruction sequence:

/* Code to evaluate:
while (x > 0)

{ x--; y++;
}

*/
b test ! branch to test
tst %o1 ! Delay slot (set cond codes for test)

loop: subcc %o1, 1, %01 ! x--
test: bg,a loop ! (x > 0)

add %o0, 1, %o0 ! Delay slot: y++

Assembling this might give:

Address Instruction
0x22a8: 0x10800003 ! b test
0x22ac: 0x80900009 ! tst %o1
0x22b0: 0x92a26001 ! loop: subcc %o1, 1, %o1
0x22b4: 0x34bfffff ! test: bg,a loop
0x22b8: 0x90022001 ! add %o0, 1, %o0

Let us look more closely at the branch instructions at addresses 0x22a8 and 0x22b4. Decoding the first
of these we get:
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Register Set Encoding Names
Globals 0 – 7 g0...g7
Outs 8 – 15 o0...o7
Locals 16 – 23 l0...l7
Ins 24 – 31 i0...i7

Table 7.2: Register Encoding

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
00 a cond op2 displacement 22
00 0 1000 010 0000000000000000000011

We can see clearly how the condition bits specify “always” as the condition for the branch and how the
branch is not to be annulled. The displacement for the branch is the value 000000 00000000 00000011.
When this is left-shifted and sign-extended we get 00000000 00000000 00000000 00001100 (0x0000000c)
as the value to be added to the program counter. Since the address of the instruction is 0x22a8, the
result is 0x22b4, which is indeed the bg instruction labelled test in the program above. Turning to this,
the second branch instruction, it decodes as shown below.

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
00 a cond op2 displacement 22
00 1 1010 010 1111111111111111111111

Note how the annul bit is set for this instruction, and how the condition bits specify the “greater than”
test. In this case the displacement is 111111 11111111 11111111. Shifting and sign-extending this value
gives us: 11111111 11111111 11111111 11111100, or −4, which will take us back to the previous instruction
as desired.

7.3.2 The sethi Instruction

We have already seen how the sethi instruction is used to load large constants into registers. This is done
using a 22-bit immediate value in an instruction whose encoding is very similar to that of the branches
we have just been discussing. The format of the sethi instruction is as follows:

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
00 rd op2 immediate 22

As already mentioned, the op2 field is 100 for the sethi instruction to distinguish it from the various
branching instructions that also fall into this category. The rd field is used to specify the destination
register into which the value is to be stored. This 5-bit field is read as a number in the range 0 to 31.
These register numbers correspond to the 32 registers available to the programmer as shown in Table 7.2.

As mentioned when we discussed the sethi instruction previously (p. 44), the remainder of the instruction
(a 22-bit immediate value) is then stored in the upper 22 bits of the destination register while the lower
ten bits are cleared to zeroes.
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7.4 Format 3 Instructions

As mentioned in the introduction to this section, the Format 3 instructions include the arithmetic and
logical instructions and also the load and store instructions. The Format 3 instructions have two slightly
different patterns as shown below. These two formats are distinguished by the single bit i field, which is
shown as 0 or 1 in the patterns below.

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
op rd op3 rs1 0 asi rs2
op rd op3 rs1 1 immediate 13

The first of these formats is used when a register is the second field of an instruction (for example,
add %l0, %l1, %l2) and the second when an immediate value is used (for example, add %o0, 1, %o0).
The op field is either 10 or 11 for Format 3 instructions. The value of 11 is used for the load and store
instructions and 10 for the arithmetic and logical and a few other instructions. The instruction to be
performed is decoded using the second bit of the op field plus the six bits from the op3 field. The rd field
is used for the destination register, the rs1 field for the first source register, and the rs2 field for the
second source register (if there is one). All of these are five-bit fields, encoded as for the sethi instruction.
Where the second argument for the instruction is an immediate value, the 13 bit immediate 13 field is
used to hold the value. This is sign-extended to 32 bits to give a value in the range −4096 to 4095. This
range is quite adequate for most purposes (for example, for offsets in stack frames, or for incrementing
pointers and counters). In other cases a larger constant would need to be loaded into a register (using the
sethi and or instructions) and the other form of the instruction used (i.e. with a register as the second
argument). Finally, the asi field is not of great concern to us. It is used to specify an alternative address
space for certain of the load/store instructions. These instructions are only available in supervisor mode.
In most cases these bits are simply ignored.

Let us consider an example. Take the instruction sub %l0, 5, %o0. This would be encoded 0x90242005,
and broken down as follows:

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
op rd op3 rs1 i immediate 13
10 01000 000100 10000 1 0000000000101

Here op is 10, as we would expect. The value for op3 is 000100, which specifies a sub instruction (I
won’t spell out all the possible values for this field!). The destination register is set to 01000 (8) which
is the correct value for register o0, and the source register rs1 is 10000 (16), specifying register l0. The
immediate bit (i) is set to one, and so the remainder of the instruction is given over to a 13-bit constant,
in this case 00000 00000101, the binary equivalent of 5.

As another example, consider the load instruction ld [%o0 + -20], %l0. This would be encoded as
0xe0023fec and broken down into its fields as follows:

3 2 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
op rd op3 rs1 i immediate 13
11 10000 000000 01000 1 1111111101100

Here, the op field is 11, specifying a load/store Format 3 instruction. The op3 field is 000000, which
specifies an ld instruction. The destination register is 10000 (16, for register l0), and the source register
is 01000 (8, for register o0). Finally, the immediate bit is set and the immediate value is 11111 11101100,
the 13-bit two’s complement representation of −20.
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Exercise 7.1 (A little more testing!) Write a program (in SPARC assembly language) that
will take a 32-bit value and interpret it as an instruction. Your program should first elucidate
the format (1, 2 or 3) and then break down the rest of the value into the fields as given above
for the different classes of instruction. You need not decode the meaning of the cond, op2
or op3 fields, but should work out the register names for source and destination registers.
For example, given the value 0xe0023fec (see the last example) your program should produce
output something like the following (it doesn’t have to be identical to this, obviously):

op = 11 (Format 3 load/store)
op3 = 000000
rd = l0
rs1 = o0
imm13 = -20

Test your program with some of the examples from this chapter, and with some of your own.
How hard do you think this exercise would be for a processor architecture like the Intel 80x86
series?

Skills

• You should know how SPARC assembly language instructions are encoded

• You should know some of the reasons for the features and limitations of SPARC assembly
language

• You should be able to decode binary SPARC instructions, given the format information
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Glossary

This section defines a few of the terms that are used in these notes.

Address alignment Addresses of data and instructions must be an exact multiple of the size of the
item being retrieved from memory.

Big-endian convention Multi-byte data values are stored with the most significant bytes at lower
memory addresses. This is the convention used by the SPARC processor.

CISC Complex Instruction Set Computing: a form of architecture consisting of a large instruction set
with many complex instructions. These instructions often have highly variable (and sometimes
lengthy) execution times and are complex and time-consuming to decode.

Effective address The address in memory actually used by an instruction after any calculations required
by the addressing mode have been performed.

Little-endian convention Multi-byte data values are stored with the least significant bytes at lower
memory addresses. This is the convention used by the Intel 80x86 family of processors.

Program counter relative addressing The address calculated by an instruction is added to the cur-
rent value of the program counter in order to generate the effective address.

Programming model The design of a processor as experienced by an assembly-language programmer
(synonymous with instruction set architecture).

Register window The currently visible/usable subset of a large collection of physical registers.

RISC Reduced Instruction Set Computing: a form of architecture typically consisting of relatively few,
simple instructions, which are designed for optimal execution on a pipelined processor.

Sign extension When converting a numeric data value from a smaller type to a larger type, the sign
bit of the value is duplicated through the upper bits of the larger value. For example, the eight-bit
value 1000 0011 becomes 1111 1111 1000 0011 when sign-extended to form a 16-bit value (note that
both of these binary values are twos-complement representations of −125 in decimal).
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