
CSP for Java programmers, Part 1

 Country/region [select] Terms of use

 Home Products Services & industry solutions Support & downloads My IBM

developerWorks
In this article:

Concurrent
programming in the
Java language
Thread safety and
synchronization
Thread states
Four common pitfalls
The problem of
verification
Conclusion to Part 1
Resources
About the author
Rate this page

Related links

Java technology
technical library

developerWorks > Java technology >

CSP for Java programmers, Part 1
Pitfalls of multithreaded programming on the Java platform

Document options

Print this page

E-mail this page

Free download:

Using Apache
Tomcat but need
to do more?

Rate this page

Help us improve
this content

Level: Intermediate

Abhijit Belapurkar (abhijit_belapurkar@infosys.com), Senior Technical
Architect, Infosys Technologies Limited

21 Jun 2005

While the constructs of multithreaded application programming in the
Java™ language aren't difficult to learn, many developers struggle with
applying them correctly. As a result, multithreaded programs are often
far more prone to subtle errors than we would like them to be, leading
some developers to avoid them at all costs, even when concurrency
and parallelism would clearly yield the most elegant design. In this
three-part article, regular developerWorks contributor Abhijit
Belapurkar sets you on the path to overcoming your fear of
multithreaded programming for good, starting here with an overview
of the most common issues involved: race hazards, deadlocks, livelocks, resource
starvation, and more.

It is is widely acknowledged that multithreaded programming on the Java platform is a daunting
proposition. In fact, the general theory seems to be that multithreaded programming is best left to
the Java gurus. Sun Microsystems has indirectly furthered this notion by stating (in the EJB
specification -- see Resources) the following as one of the goals of the EJB architecture:

[a]pplication developers will not have to understand low-level transaction and state
management details, multi-threading, connection pooling, or other complex low-level
APIs.

Given this as a starting point, it is no surprise that many Java developers shy away from designing
and developing multithreaded applications. The fact is, however, that many -- if not most --

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (1 of 11)2006/09/01 02:28:50 PM

http://www.ibm.com/
http://www.ibm.com/developerworks/country/
http://www.ibm.com/legal/
http://www.ibm.com/
http://www.ibm.com/products/
http://www.ibm.com/servicessolutions/
http://www.ibm.com/support/
http://www.ibm.com/account/
http://www.ibm.com/developerworks
http://www.ibm.com/developerworks/views/java/library.jsp
http://www.ibm.com/developerworks/views/java/library.jsp
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/
javascript:print()
javascript:void newWindow()
http://www.ibm.com/developerworks/kickstart/webserver.html?S_TACT=105AGX01&S_CMP=SIMPLEART
http://www.ibm.com/developerworks/kickstart/webserver.html?S_TACT=105AGX01&S_CMP=SIMPLEART
http://www.ibm.com/developerworks/kickstart/webserver.html?S_TACT=105AGX01&S_CMP=SIMPLEART
mailto:abhijit_belapurkar@infosys.com?subject=CSP for Java programmers, Part 1

CSP for Java programmers, Part 1

enterprise problems are best suited to be resolved by some form of multithreading, and EJB and
similar frameworks aren't always the easy answer they're set out to be.

In this three-part article, I introduce you to a theory that honors the complexity of concurrent
programming without hiding it from you or making it unnecessarily difficult to learn and apply.
Communicating Sequential Processes (CSP) is a precise mathematical theory of concurrency that
can be used to build multithreaded applications that are guaranteed to be free of the common
problems of concurrency and (perhaps more importantly) can be proven to be so.

Before I introduce you to the theory of CSP and its Java language-based implementation, the JCSP
library, I would like to be sure that we have a common framework for discussion. I start here with a
technical overview of concurrent programming on the Java platform, followed by an in-depth
overview of the pitfalls of multithreaded application development; namely race hazards, deadlocks,
livelocks, and resource starvation. I wrap up by discussing exactly why you cannot verify your
multithreaded Java applications, much as you would like to, and confirm the ultimate partiality of
the existing workarounds.

Don't miss
the rest of
the series!

"CSP for Java
programmers"
is a three-part
introduction to
Communicating
Sequential
Processes
(CSP), a
paradigm for
concurrent
programming
that honors its
complexity
without
abandoning
you to it. Read
the other parts
of the series:

Part 2:
Concurrent

With these basics in hand, you should fully appreciate the
advantages of JCSP, a conceptual and practical solution to
the problems of multithreaded programming on the Java
platform, which I discuss in Part 2, as well as the more
advanced applications of CSP on the Java platform, which I
discuss in Part 3.

Note that all three parts of this article are published
simultaneously for your convenience. The article assumes
that you are generally familiar with concurrent
programming in the Java language, although I do provide a
brief overview of the topic here. Refer to the Resources
section for more detailed information.

Concurrent programming in the Java language

By itself, concurrent programming is a technique that
provides for the execution of operations simultaneously,
whether on a single system or spread across a number of
systems. Such operations are essentially sequences of
instructions, such as the subtasks for a single top-level
task, that can be executed in parallel, either as threads or
processes. The essential difference between threads and
processes is that while processes are typically independent

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (2 of 11)2006/09/01 02:28:50 PM

http://www.ibm.com/developerworks/java/library/j-csp2/
http://www.ibm.com/developerworks/java/library/j-csp2/
http://www.ibm.com/developerworks/java/library/j-csp2/
http://www.ibm.com/developerworks/java/library/j-csp3/

CSP for Java programmers, Part 1

programming
with JCSP

Part 3:
Advanced
topics in JCSP

(separate address spaces, for example) and can therefore
interact only through system-provided interprocess
communication mechanisms, threads typically share the
state information of a single process and can share objects
in memory and system resources directly.

You can achieve concurrency through multiple processes in
one of two ways. The first way is to run the processes on
the same processor, with the OS handling the context switching between them. (Understandably,
this switching is slower than the context switching between multiple threads in the same process.)
The second way is to build a massively parallel and complex distributed system by running these
multiple processes on different physical processors.

In terms of built-in support, the Java language provides for concurrent programming via threads;
each JVM can support many threads of execution at once. You can create a thread in the Java
language in one of two ways:

● By subclassing the java.lang.Thread class. In this case, the overridden run() method of the
subclass must contain the code that implements the thread's run-time behavior. You execute
this code by instantiating the subclassed object and then calling the start() method on it,
thus internally executing the run() method.

● By creating a custom implementation of the Runnable interface. This interface consists of
a single method called run(), into which you place your application code. You execute this
code by instantiating an object of the implementor class, then passing it in as a constructor
parameter when creating a new Thread. You can then call the newly created thread object's
start() method to begin executing the new thread of control.

 Back to top

Thread safety and synchronization

A method in a Java object is said to be thread safe if it can be safely run in a multithreaded
environment. To achieve this safety, there must be a mechanism by which multiple threads running
the same method can synchronize their operations, such that only one of them is allowed to
proceed when accessing the same object or lines of code. This synchronization requires the threads
to communicate with each other using objects called semaphores.

One specific type of semaphore is called a mutual exclusion semaphore or a mutex. As the name
indicates, ownership of this semaphore object is mutually exclusive, in that only one thread can
own the mutex at any given time. Any other thread that tries to acquire ownership will be blocked

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (3 of 11)2006/09/01 02:28:50 PM

http://www.ibm.com/developerworks/java/library/j-csp2/
http://www.ibm.com/developerworks/java/library/j-csp2/
http://www.ibm.com/developerworks/java/library/j-csp3.html
http://www.ibm.com/developerworks/java/library/j-csp3.html
http://www.ibm.com/developerworks/java/library/j-csp3.html

CSP for Java programmers, Part 1

and must wait until the owning thread releases the mutex. If multiple threads are waiting in line for
the same mutex, only one of them will get it when it is released by the current owner; the others
will continue to block.

In the early 1970s, C.A.R. Hoare and others developed a concept known as a monitor (see
Resources). A monitor is a body of code whose access is guarded by a mutex. Any thread wishing
to execute this code must acquire the associated mutex at the top of the code block and release it
at the bottom. Because only one thread can own a mutex at a given time, this effectively ensures
that only the owing thread can execute a monitor block of code. (The guarded code need not be
contiguous -- for example, every object in the Java language has a single monitor associated with
it.)

Any developer with exposure to thread programming in the Java language will immediately
recognize the above as the net effect of what the synchronized keyword does. Java code enclosed
within a synchronized block is guaranteed to be run by a single thread at any given time. Internally,
the synchronized keyword is translated by the run time into a situation wherein all contending
threads are trying to acquire the (single) mutex associated with the object instance on which they
(the threads) are operating. The thread that succeeds in acquiring the mutex runs the code and
releases the mutex when exiting the synchronized block.

Waiting and notification

The construct of wait/notify also plays an important role in the Java language's interthread
communication mechanism. The essential idea is that one thread needs a certain condition that can
be brought about by another thread to become true. It therefore waits for the condition to be met.
Once the condition is true, the causing thread notifies the waiting thread to wake up and proceed
from where it left off.

The wait/notify mechanism is much more difficult to understand and reason about than the
synchronized mechanism. To reason about the behavioral logic of one method that uses wait/notify
requires that you reason about the logic of all the methods using it. Reasoning about one method at
a time, in isolation from others, is a sure means to arriving at incorrect conclusions about the
overall system behavior. Clearly, the complexity of doing this increases very rapidly as the number
of methods to be reasoned about increases.

 Back to top

Thread states

I previously mentioned that the start() method of a newly created thread must be called to start
its execution. However, simply calling the start() method need not imply the thread starts running

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (4 of 11)2006/09/01 02:28:50 PM

CSP for Java programmers, Part 1

immediately. This method just changes the state of the thread from new to runnable. The thread
state becomes running (from runnable) only when it is actually scheduled for execution by the OS.

Typical OSes support two threading models -- cooperative and preemptive. In the cooperative
model, each thread has the final say on how long it will retain control of the CPU and when it will
give it up. In this model, because a rogue thread may never relinquish control, the other threads
may never get to run. In the preemptive model, the OS itself uses a timer on the clock "ticks" on
which it can abruptly transfer control from one thread to another. In this case, the scheduling policy
that decides which thread will gain control next may be based on a variety of criteria, such as
relative priorities, how long a particular thread has been waiting to execute, etc.

A thread in the running state can enter the blocked state if it decides to sleep for some reason,
needs to wait for a resource (for example, for input data to arrive on a device, or for notification
that some condition has been set), or is blocked while trying to acquire a mutex. A blocked thread
reenters the runnable state when either the sleep period expires, the expected input arrives, or the
current owner of the mutex has released it and notified the waiting threads that the mutex is up for
grabs again.

A thread terminates when its run() method completes, either by returning normally or by throwing
an unchecked exception such as RuntimeException. At this time, the state of the thread is dead.
Once a thread is dead, it cannot be restarted by reinvoking its start() method, as doing so will
throw the InvalidThreadStateException.

 Back to top

Four common pitfalls

As I've shown, multithreaded programming in the Java language is facilitated by a number of well-
designed constructs supported by the language. In addition, a large collection of design patterns
and guidelines have been devised to help you steer clear of the many pitfalls of this complex
undertaking. In spite of this, it is very easy to inadvertently introduce a subtle bug into your
multithreaded code and, more importantly, such problems are just as difficult to analyze and
debug. What follows is a list of the most common problems you'll encounter (and likely have
encountered) while attempting multithreaded programming in the Java language.

Race conditions

A race condition is said to exist in a system when there is contention for a shared resource between
multiple threads and the winner determines the behavior of the system. Allen Holub provides a very
simple example of a multithreaded program with this bug in his article "Programming Java threads
in the real world" (see Resources). An even more insidious consequence of incorrect

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (5 of 11)2006/09/01 02:28:50 PM

CSP for Java programmers, Part 1

synchronization between conflicting access requests is data corruption, wherein the shared data
structure is partly updated by one thread and partly by another. In this case, instead of the system
behaving per the winning thread's intent, it behaves according to neither's intent, so that both
threads end up losing.

Deadlocks

A deadlock is a condition where a thread is blocked forever because it is waiting for a certain
condition to become true (such as a resource being available), but the condition is prevented from
becoming true because the thread that would make it true is, in turn, waiting for the first thread to
"do something." In this way, both threads are waiting for the other to take the first step and neither
is able to do anything. Read Allen Holub's article (see Resources) for examples of how deadlocks
can happen in multithreaded Java code.

Livelocks

A livelock, unlike a deadlock, happens when threads are actually running, but no work gets done.
This usually happens when the two threads are working at cross-purposes, so what is done by the
first thread is undone by another. A simple example is where each thread already holds one object
and needs another that is held by the other thread. Now imagine a situation wherein each thread
puts down the object it possesses and picks up the object put down by the other thread. Clearly,
these two threads can run forever in lock-step, effectively managing to achieve nothing at all. (A
common real world example is when two people approach each other in a narrow corridor. Each
person tries to be polite by moving to one side to let the other one pass, but both keep moving to
the same side at the same time, thereby ensuring that neither can pass. This continues for some
time, with both of them swaying from side to side and no progress being made.)

Resource starvation

Resource starvation, also known as thread starvation, is a consequence of the fact that the wait/
notify primitives of the Java language do not guarantee live-ness. It is mandatory that these
methods hold locks for the objects that they are waiting or notifying. The wait() method called on a
particular thread releases the monitor lock prior to commencing to wait, and it must be reacquired
before returning from the method, post notification. Accordingly, the Java Language Specification
(see Resources) describes a wait set associated with each object, in addition to the lock itself. Once
a thread releases the lock on an object (following the call to wait), it is placed in this wait set.

Most JVM implementations place waiting threads in a queue. Therefore, if there are other threads
waiting for the monitor when a notification happens, a new thread will be placed at the back of the
queue and won't be the next one to acquire the lock. So, by the time the notified thread actually
gets the monitor, the condition for which it was notified may no longer be true and it will have to
wait again. This can continue indefinitely, thereby leading to wasted computational effort (because

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (6 of 11)2006/09/01 02:28:51 PM

CSP for Java programmers, Part 1

of the shunting of threads in and out of the wait sets) and thread starvation.

The fable of the greedy philosopher

The archetypal example to demonstrate this behavior is the "Wot, no chickens?" problem described
by Professor Peter Welch (see Resources). In this scenario, the system under consideration is a
college consisting of five philosophers, a chef, and a canteen. All the philosophers except one think
for a while (three seconds, in the code sample) and then go to the canteen for food. The "greedy"
philosopher doesn't want to waste any time on thinking -- instead he returns to the canteen again
and again in the hopes of getting a chicken to eat.

The chef cooks chickens in batches of four, replenishing the canteen when each batch is ready. In
spite of going to the kitchen continuously, the greedy philosopher always misses out on the food!
This is what happens: the first time he gets there, it is too early and the chef isn't done cooking yet.
This results in the greedy philosopher being put on hold (by the wait() method call). When released
(via a notify() method call), he is put back on the canteen queue again. However, while he was on
hold, his other four colleagues had arrived, so his position in the canteen queue is behind all of
them. The colleagues take the whole batch of four just arrived from the kitchen and the greedy
philosopher gets put on hold again. Sadly (or perhaps justly), he never gets out of this cycle.

 Back to top

The problem of verification

In general, it is very difficult to verify a multithread program written in Java code against formal
specifications. Nor can an automated tool be easily developed for complete and foolproof analysis of
common concurrency problems such as deadlock, livelock, and resource starvation -- particularly
not in arbitrary Java programs and in the absence of a formal model of concurrency.

Worse yet is the fact that concurrency issues are notoriously fickle and hard to track down. Every
Java developer has heard about (or written himself) a Java program that undergoes rigorous
analysis and runs correctly for extended periods of time without a latent deadlock manifesting itself.
Then one day, suddenly, the problem decides to kick in, costing the development team many a
sleepless night trying to get to and fix the root cause.

On the one hand, multithreaded Java programs are prone to errors that are far from obvious and
can occur at seemingly arbitrary times. On the other hand, it is entirely possible that none of these
bugs will ever manifest in your programs. The problem lies in the not knowing. The complex nature
of multithreaded programs makes them difficult to effectively verify. There is no cut-and-dried set
of rules for ferreting out such problems in your multithreaded code or conclusively proving their
absence, which leads some Java developers to shy away completely from designing and developing

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (7 of 11)2006/09/01 02:28:51 PM

CSP for Java programmers, Part 1

multithreaded applications, even where it would make perfect sense to model the system in terms
of concurrency and parallelism.

Developers who do attempt multithreaded programming usually settle for one or both of the
following, at best partial, solutions:

● Test the code long and hard, sort out all the concurrency issues that do crop up, and fervently
hope that all such problems have been discovered and fixed by the time the application goes
live.

● Make ample use of the design patterns and guidelines established for multithreaded
programming. Such guidelines work only if the entire system is designed to their specification,
however, and no design rule can cover all types of systems anyway.

While less known, there is a third option to the problem of writing (and then verifying) correct
multithreaded applications. Issues like deadlock and livelock are best handled at design time, using
the precise mathematical theory of thread synchronization known as Communicating Sequential
Processes (CSP). Developed by C.A.R. Hoare in the late 1970s, CSP offers an effective means to
prove that a system built using its constructs and tools is free of of the common problems of
concurrency.

 Back to top

Conclusion to Part 1

In this first part of a comprehensive look at CSP for Java programmers, I focused on the first step
to overcoming the common issues in multithreaded application development, which is
understanding them. I walked you through the currently supported constructs for multithreaded
programming on the Java platform, explained their origins, and discussed the problems that such
programs can have. I also explained the difficulty of applying a formal theory to either weed out or
prove the absence of these problems (namely race hazards, deadlocks, livelocks, and resource
starvation) in arbitrary, large, and complex applications.

In Part 2, with this basic framework in mind, I introduce you to CSP and its Java-based
implementation, the JCSP library. As you'll discover, CSP is a complex mathematical theory with
numerous powerful applications (I discuss some of the more advanced ones in Part 3), including the
resolution of common issues in multithreaded programming.

To learn how the JCSP library distills the essence of CSP into a well-understood framework of Java
constructs, jump to "Part 2: Concurrent programming with JCSP" now.

Acknowledgments
http://www-128.ibm.com/developerworks/java/library/j-csp1.html (8 of 11)2006/09/01 02:28:51 PM

http://www.ibm.com/developerworks/java/library/j-csp2/
http://www.ibm.com/developerworks/java/library/j-csp3.html
http://www.ibm.com/developerworks/java/library/j-csp2/

CSP for Java programmers, Part 1

I would like to gratefully acknowledge the kind encouragement I received from Professor Peter
Welch during the writing of this article series. His busy schedule notwithstanding, he took time to
do a very thorough review of a draft version and gave many valuable inputs towards enhancing the
quality and accuracy of the series. All remaining errors are mine alone! The examples I have
worked with in my articles are based on and/or derived from those documented in the Javadocs for
the JCSP library and/or the Powerpoint presentation slides available on the JCSP Web site. Both of
these sources offer a wealth of information to be explored.

 Back to top

Resources

● Brian Goetz's three-part "Threading lightly" is a smart and methodical approach to resolving
synchronization issues on the Java platform (developerWorks, July 2001).

● Brian's Java theory and practice column regularly covers the multithreaded programming.
"Concurrency made simple (sort of)" (developerWorks, November 2002) is a first look at util.
concurrent, a widely used open-source package of concurrency utilities for the Java platform.

● Allen Holub has written a great deal about multithreaded programming on the Java platform.
His "Programming Java threads in the real world" (JavaWorld, October 1998) provides
examples of threading problems such as race conditions and deadlocks.

● Also read Holub's famous diatribe, "If I were king: A proposal for fixing the Java programming
language's threading problems" (developerWorks, October 2000).

● Professor Peter Welch of the University of Kent at Canterbury, UK, devised the "Wot, no
chickens?" problem to illustrate resource starvation in Java programs.

● C.A.R. Hoare's seminal paper "Communicating Sequential Processes" introduced the parallel
composition of communicating sequential processes as a fundamental program structuring
method (Communications of the ACM Archive, 1978).

● Hoare's "Monitors: an operating system structuring concept" (Communications of the ACM
Archive,1974) first introduced the concept of monitors to the world, via illustrative examples
including a single resource scheduler, a bounded buffer, an alarm clock, a buffer pool, a disk
head optimizer, and a version of the problem of readers and writers.

● Enterprise JavaBeans is one of several frameworks that attempt to hide the complexities of

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (9 of 11)2006/09/01 02:28:51 PM

http://www.ibm.com/developerworks/java/library/j-threads1.html
http://www.ibm.com/developerworks/java/library/j-jtp1126.html
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-toolbox.html
http://www.ibm.com/developerworks/java/library/j-king.html?dwzone=java
http://www.ibm.com/developerworks/java/library/j-king.html?dwzone=java
http://www.cs.ukc.ac.uk/projects/ofa/java-threads/0.html
http://www.cs.ukc.ac.uk/projects/ofa/java-threads/0.html
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/355620.361161
http://java.sun.com/products/ejb/docs.html

CSP for Java programmers, Part 1

multithreaded programming from Java programmers.

● Read the Java Language Specification.

● You'll find articles about every aspect of Java programming in the developerWorks Java
technology zone.

● Also see the Java technology zone tutorials page for a complete listing of free Java-focused
tutorials from developerWorks.

 Back to top

About the author

Abhijit Belapurkar has a B.Tech. degree in computer science from the Indian Institute of
Technology (IIT), Delhi, India. He has been working in the areas of architectures and information
security for distributed applications for the last 11 years and using the Java platform to build n-tier
applications for about six years. He is presently working as a senior technical architect in the J2EE
space, with Infosys Technologies Limited, Bangalore, India.

 Back to top

Rate this page

Please take a moment to complete this form to help us better serve you.

Did the
information help
you to achieve
your goal?

Yes No Don't know

Please provide us
with comments to
help improve this
page:

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (10 of 11)2006/09/01 02:28:51 PM

http://java.sun.com/docs/books/jls/index.html
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/views/java/libraryview.jsp?type_by=Tutorials
http://www.ibm.com/developerWorks/

CSP for Java programmers, Part 1

How useful is the
information?
(1 = Not at all,
5 = Extremely
useful)

1 2 3 4 5

 Back to top

 About IBM Privacy Contact

http://www-128.ibm.com/developerworks/java/library/j-csp1.html (11 of 11)2006/09/01 02:28:51 PM

http://www.ibm.com/ibm/
http://www.ibm.com/privacy/
http://www.ibm.com/contact/

	ibm.com
	CSP for Java programmers, Part 1

	DOLANPGBHLBCEFNINAJIEEGGIOEBHHBD:
	form1:
	x:
	f1: 1
	f2: dW
	f3: [dW]
	f4:

	f5:

	form2:
	x:
	f1: CSP for Java programmers, Part 1
	f2: Java technology
	f3: http://www.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: 86172
	f5: 06212005
	f6: abhijit_belapurkar@infosys.com
	f7:
	f8: http://www-128.ibm.com/developerworks/java/library/j-csp1.html
	f9: Off
	f10:
	f11: Off

	f12:

