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ABSTRACTWe propose a probabilisti movement model for ontrollingant-like agents foraging between two points. Suh agentsare all idential, simple, autonomous and an only ommu-niate indiretly through the environment. These agentsserete two types of pheromone, one to mark trails towardsthe goal and another to mark trails bak to the startingpoint. Three pheromone pereption strategies are proposed(Strategy A, B and C). Agents that use strategy A pereivethe desirability of a neighbouring loation as the di�erenebetween levels of attrative and repulsive pheromone in thatloation. With strategy B, agents pereive the desirability ofa loation as the quotient of levels of attrative and repulsivepheromone. Agents using strategy C determine the produtof the levels of attrative pheromone with the omplement oflevels of repulsive pheromone. We ondut experiments toon�rm diretionality as emergent property of trails formedby agents that use eah strategy. In addition, we omparepath formation speed and the quality of the formed pathunder hanges in the environment. We also investigate eahstrategy's robustness in environments that ontain obsta-les. Finally, we investigate how adaptive eah strategy iswhen obstales are eventually removed from the sene and�nd that the best strategy of these three is strategy A. Suha strategy provides useful guidelines to researhers in furtherappliations of swarm intelligene metaphors for omplexproblem solving.
Categories and Subject Descriptors1.3.2 [Computer Graphis℄: Graphis systems-Distributed/network graphis; 1.3.6 [Computer Graphis℄: Methodol-ogy and Tehniques-interation tehniques; 1.6.5 [Simulationand Modeling℄: Model development
KeywordsEmergent behaviour, searh and return pheromone, dissipa-
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tion, diretionality, speed, quality and reruitment.
1. INTRODUCTIONAnts in nature are fasinating reatures - not so muh be-ause they are partiularly intelligent on their own, but be-ause as a olony they display ompelling swarm intelligene.The olletive e�et of individuals wandering in searh offood results in the formation of an established path betweenthe ant hole and a food soure. This path is an emergentbehaviour of the olony.We investigate olletions of agents modelled on ants, in-vestigating strategies for e�iently ahieving shortest pathformation as the resulting emergent behaviour. Suh olle-tive behaviour absorbs many individual agent failures anddisabilities. Our agents are all idential, autonomous andonly ommuniate through stigmergy (an indiret, non sym-boli form of ommuniation mediated by the environment).We support two types of pheromone with levels that o-existindependently: one to mark trails towards the goal and an-other to mark trails bak to the starting point. Pheromonelevels at eah loation are inreased on every agent visit.Our agents have neither a priori knowledge of their globalloation nor awareness of the absolute position of the goal.
1.1 Problem statementA number of fators an in�uene the rate at whih pathformation ours, and how robust it is under hanges in theenvironment. We investigate the following:
• Pheromone sensitivity: we propose three strategies fordetermining agent sensitivity to o-existing pheromonelevels.
• Pheromone dissipation: we evaluate the e�ets of envi-ronmental fators suh as pheromone evaporation anddi�usion to model performane.
• Robustness and adaptability: we evaluate the perfor-mane of eah strategy in environments ontaining ob-stales.

1.2 OverviewThe rest of the paper proeeds as follows: In Setion 2, wepresent related work onentrating mainly on foraging algo-rithms and swarm ontrol systems. Setion 3 presents thealgorithm and strategies that we use for ontrolling agentmovements. Pheromone dissipation ontrols are also pre-sented in this setion. An in-depth desription of how ex-periments are onduted is presented in setion 4 and the



results ahieved thereafter are presented and disussed insetion 5. We onlude the paper in setion 6 highlightingontributions and future diretions of our work.
2. RELATED WORKThe basis for our agent's movement poliy is the variousAnt Colony Optimization algorithms that have been sug-gested for ontrolling agent mobility towards a goal [3, 13,11, 2℄. The ommon feature of these algorithms is the se-retion of pheromone either by the agents themselves or bythe searh targets. Agents are very simple, unintelligent,idential, autonomous and an only ommuniate indiretlyvia the environment.Control models where agents use a single type of pheromone[4, 3, 5, 6, 10℄ are ommon. In these, pheromone is seretedas agents forage, essentially marking trails that other agentsmay follow. In other ases, the searh target itself seretespheromone that an be used to reate an orientation gradi-ent [6, 5℄. Return journeys, if required, make use of otherad ho mehanisms. [4℄ proposes a model where agents re-ognize their return diretion by the height and angle of thesun. However, this would require agents to have some mem-ory for reording the path followed.Multiple pheromone gradients an also be reated. A goodexample is in the work of [1℄ on nanorobots ommuniationtehniques where the aner ell targets serete attrationpheromone while obstales serete fear pheromone. Workof [9℄ suggests two pheromones used as signals that alertagents about the availability of a goal in the environment.Suh indiators would allow agents to either exhaustivelysearh for the goal or wait until the goal is introdued again.We investigate agent movement ontrols using a two phero-mone laying model with agents that neither have global in-formation nor look ahead apabilities. Existing two pheromonelaying models di�er in that they require global visibility ofwhere the targets are, and determine agent's distane fromthe desired goal [12℄. Suh distane is ritial when agentsselet the next loation to visit and when deiding on theamount of desired pheromone levels to be sereted thereafter(zero to MAX_PHEROMONE) [12℄. Other two pheromonelaying models use look-ahead mehanisms for agents orien-tation [11℄.The model we suggest works on a 2D square spae sim-ilar to a ellular automaton. However, the desirability ofeah disrete loation of the spae is not in�uened by thedesirability of any of its neighbouring loations. In addi-tion, our agents do not hange their state and behaviouraltendeny after every update as suggested in ellular automa-tion models [8℄. Instead, eah agent is autonomous and anonly serete spei� pheromone that is used to update theenvironment.Various strategies with whih agents pereive the desir-ability of loations and their sensitivity to o-existing phero-mone levels an be suggested. We propose, investigate andevaluate the performane of three of these.
3. MOBILE AGENT MODELWe developed a �foraging ants simulator � and assume amodel that is motivated by apabilities of ants in nature.Our agents are simulated as moving at a onstant speed, se-reting the same amount of pheromone and exeuting thesame routine. Variation of agents speed was not an ex-

Algorithm 1 Control algorithm for ant-like agents.mode ← Searhwhile (true)diretion ← Noneforeah loation L around agentif L ontains no obstales
RL ← return pheromone at L
SL ← searh pheromone at Lif mode = Searh

PL ← P (SL, RL)else
PL ← P (RL, SL)else

PL ← 0hoose diretion probabilistially based on PLif mode = Searhdeposit return pheromoneelsedeposit searh pheromoneif at goalmode ←Returnif at starting pointmode ←Searhperiment variable in this study. No expliit oordinationamongst agents ours. All behaviour results from the in-teration of agents with the pheromone in the environment.We also assume a dynami environment where pheromonelevels hange in every agent movement step due to evapora-tion and di�usion.
3.1 Agent movement controlsThe routine that we use for ontrolling the movements ofour ant-like agents is as shown in Algorithm 1. Eah agentdeides its next destination based on the levels of both re-turn (RL) and searh (SL) pheromone in reahable neigh-bouring loations L. We onsider a loation to be reahablewhen it is free from obstales (objets that prevent agentsfrom aessing some parts of the environment). Upon de-ployment all agents are in the default searh mode. Theyserete return pheromone at their urrent loation resultingin the formation of return pheromone trails whih lead re-turning agents towards the starting point. They are likely tomove towards loations with high levels of searh pheromonewhile simultaneously being repelled by return pheromone.However, this tropism is reversed when the agent reahes itsgoal, and needs to return to the starting point. Returningagents serete searh pheromone resulting in the formationof trails whih guide searhing agents towards the goal.We propose three strategies with whih agents pereivethe desirability of a neighbouring loation based on the rel-ative levels of o-existing pheromone. In eah ase, thesestrategies are suh that agents favour high quantities of onepheromone, while penalizing high quantities of the other.The expressions we present below are of our own makingalthough they are inspired by related work in [8, 10℄. Let
N be the set of reahable neighbouring loations, where theparameters τn and ηn respetively stand for the levels ofattrative and repulsive pheromone at neighbouring loa-tion n ∈ N . The desirability Pn, of a neighbouring loation
n ∈ N an be expressed as:



strategy A: The di�erene between levels of attra-tive and repulsive pheromone relative to the smallestlevel as shown in (2).
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(3)strategy C: The produt of levels of attrative withthe omplement of levels of repulsive pheromone asshown in (4).
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(4)In all ases, ‖N‖ refers to the ardinality (number of el-ements) of N and λ ∈ [0, 1] is the degree of randomness.Pheromone levels are initialized to a very small δ = 0.00001to avoid any divisions by zero.One the desirability measures for all the reahable neigh-bouring loations PL,n have been determined, these mea-sures are expressed as end to end intervals. Highly desirableneighbouring loations will orrespond to bigger intervals.A point is randomly seleted and the interval into whih itfalls orresponds to the agent's next destination.Initially agents disover the goal by random guess (strat-egy D), having reated return trails. On the return tripthey follow return trails, sereting searh pheromone whihguides other agents towards the goal. Both searh and re-turn pheromone trails form, reating gradients towards thegoal and the starting point respetively. Shorter trails arereinfored more often than longer trails [4, 3℄ making themhighly desirable. One the shortest path is slightly more at-trative, it is likely to get stronger still due to mass reruit-ment. Adding environmental features suh as pheromoneevaporation would dissipate the weak trails while di�usionreinfores and widens the shortest path.

3.2 Pheromone dissipation controlsOur agents forage in an environment onsisting of thestarting point, the goal and pheromone trails. The goal andthe starting point are plaed at �xed loations as depitedin Figure 1.Pheromone dissipation is applied through evaporation anddi�usion. Pheromone di�usion reinfores levels in neigh-bouring loations while evaporation redue levels at the ur-rent loation. We use Algorithm 2 to e�et pheromone dissi-pation. The parameters ρ ∈ [0, 1] and γ ∈ [0, 1] respetivelyindiate evaporation and di�usion oe�ients.In eah movement step, both return and searh pheromonelevels on all loations of the environment are updated. Thereare two reasons why pheromone levels may derease: eitherbeause pheromone has been evaporated or it has been dif-fused to neighbouring loations. However pheromone levelsan inrease as a result of seretions from agents urrentlyvisiting that loation. It an also be inreased by pheromone

Figure 1: Simulation Environmentdi�used from neighbouring loations. Our model supportsdi�usion towards loations with lower pheromone levels.
4. EXPERIMENTAL SETUPWe ondut three simulation experiments aimed at in-vestigating the e�ieny and robustness of eah pheromonepereption strategy. The �rst experiment investigates dire-tionality as emergent property of laid pheromone trails. Theseond experiment measures the relative performane (pathformation speed and the quality of the path formed) of thethree pheromone pereption strategies desribed in setion3.1. Finally we assess the robustness and adaptability ofeah pheromone pereption strategy in environments thatonsist of obstales.
4.1 DirectionalityIn this �rst experiment, we preset a path along the linesegment that joins the goal and the starting point. Searhpheromone in loations along this line inreases linearly fromthe goal to the starting point. Return pheromone inreasesfrom the starting point towards the goal. Ten thousandagents in eah mode are suessively reruited into the formedpath by plaing them at positions lose to the path. Thefrequeny with whih eah agent orients towards the desiredtarget when it intersets the path is reorded. An agent islassi�ed as lost when it rosses over or retreats away fromthe path. In all ases, pheromone dissipation and furtheragent seretions are initially disabled.
4.2 Path formationIn the seond experiment, we assess the performane ofeah pheromone pereption strategy. Two metris are ofpartiular interest:Speed: This measures the in�uene of both attrative andrepulsive pheromone. We measure time in the sim-ulation using the number of iterations exeuted. Tomeasure path formation speed, we �rstly determinethe number of iterations exeuted until the �rst agentarrives at the goal. The model speed towards the goalis then determined using the iteration gap between the�rst agent's arrival time until ten more agents arriveat the goal. From observation, ten agents are su�-iently many to ause model onvergene. We alsoreord the iterations exeuted from the time when thegoal is �rst disovered until the time when the �rst



Algorithm 2 Pheromone update rules.foreah loation L in environmentforeah pheromone at L
PL,i←pheromone levels at L in iteration i
SL,i←sereted pheromone levels at L in iteration iforeah neighbour n around Lif P n,i > PL,i then

Dn,i ← γPn,i(pheromone diffused from neighbour n in iteration i)else
Dn,i ← 0

PL,i+1 ← (1− γ)(1− ρ).PL,i +
P

n Dn,i + SL,iagent return bak to the starting point. The time gapbetween this measure until ten more agents return tothe starting point indiates the model's return speed.Smaller measures in both diretions indiate few it-erations before the target is found, orresponding tobetter performane.Quality: This indiates the tendeny of agents to followthe path, as opposed to reahing the goal by randomguess. We measure trail quality using the number ofsuessful trips of agents towards the target in a settime period, in this ase 1000 iterations. The higherthe quality of the path, (the greater the number ofagents whih found the target) the shorter it is. Wealso measure this metri using the intervals betweensuessive agents arriving at the target. Shorter inter-vals indiate the use of a well de�ned path.For eah test, ten simulations are onduted. The time val-ues (measured in iterations) are averaged over the results ofall ten simulations, giving a entrally plaed time value uponwhih the two metris are alulated. For the parameters:
• λ, whih determines the degree of randomness [7℄ is as-signed the following values: 1 (only pheromone e�ets), 0.5 (a ombination of both pheromone and randomwandering e�ets) and 0 (omplete randomwandering)
• evaporation oe�ients used are: ρ = 0.0%, (no evapo-ration), ρ = 0.01% (deay of pheromone onentrationby 0.01% in eah movement step due to evaporation),

ρ = 0.05%, ρ = 0.1% and ρ = 1%.
• di�usion oe�ients used are: γ = 0.0% (no di�u-sion), γ = 0.01% (deay of pheromone onentrationby 0.01% in eah movement step due to di�usion to-wards neighbouring loations),γ = 0.05%,γ = 0.1%and γ = 1%.

4.3 Robustness and adaptabilityThe third experiment investigates eah strategy's robust-ness and adaptability. We measure robustness by investigat-ing path formation speed and path quality in environmentsthat onsist of obstales. We progressively inrease our seneomplexity by introduing these obstales one at a time toeventually reah the senario depited in Figure 1. Theseobstales are plaed at random positions between the goaland the starting point. Path formation speed and path qual-ity are then measured in the same way they are measuredwhen agents forage in environments that are free from ob-stales (see setion 4.2). We say a strategy is robust when a

Metri MeasureDiretionality Agent orientation on reruitmentPath formation speed Sensitivity to pheromone levelsPath quality Path following behaviourRobustness Path formation with obstalesadaptability Re-organization speedTable 1: List of measured metrisfairly quality path is rapidly formed in an environment withobstales.On the other hand, adaptability refers to a situation wherean even shorter path an be re-established after one or allof the obstales are removed from an environment where apath has already formed. We measure adaptability using thefrequeny with whih agents pass through the loation wherean obstale was plaed. These frequenies indiate the speedwith whih the model re-organizes and high frequenies aredesirable.We present in Table 1 , the �ve metris that we measurefor eah of the three strategies.
5. RESULTS AND DISCUSSION

5.1 DirectionalityTable 2 presents the results ahieved from the experi-ment testing agent orientation on reruitment (experiment1). The values indiate the number of agents that ahievedeah possible outome when ten thousand agents were re-ruited into an already established path.Agents that use strategy A ahieve desired orientation oninterseting with the set path. Table 2 indiates that 95% ofagents in searh mode suessfully orient themselves towardthe goal. Of these, 99% manage to follow the path untilthey reah the goal. Of the agents that started headingtoward the starting point, 66% eventually redireted them-selves towards the goal. Only 36% of lost agents wanderedinto the goal. Overall 97% of agents in searh mode su-essfully found the goal. Returning agents exhibit identialbehaviour.Similarly, agents that use strategy B ahieved desired ori-entation, although performane is lower than that for strat-egy A. We observe that 88% of searhing agents initiallyahieve desired orientation, with 90% of these following thepath until they reah the goal. A larger proportion of agentsfail to reah the target after starting o� in the orret di-retion. Contrary to strategy A, performane of returningagents is signi�antly lower than that of searhing agents.



A B CGoal Nest Lost Goal Nest Lost Goal Nest LostSearhingGot to target 9508 ± 110 331 ± 39 161 ± 19

9441 ± 93 219 ± 18 59 ± 11

8826 ± 184 923 ± 232 251 ± 32

7956 ± 193 491 ± 53 79 ± 11

1911 ± 843 1101 ± 428 6988 ± 771

101 ± 41 129 ± 38 379 ± 119ReturningGot to target 302 ± 19 9577 ± 83 121 ± 17

207 ± 35 9499 ± 97 49 ± 9

786 ± 183 7991 ± 149 1223 ± 121

547 ± 131 7033 ± 162 844 ± 101

1219 ± 511 1304 ± 392 7477 ± 649

211 ± 78 183 ± 69 411 ± 167Table 2: Agent orientation on reruitmentP1

attr:1.0000rep:1.0000 P2

attr:1.0000rep:2.0000 P3

attr1.0000rep:3.0000P8

attr:1.0000rep:8.0000 Agent P4

attr:1.0000rep:4.0000P7

attr:1.0000rep:7.0000 P6

attr:1.0000rep:6.0000 P5

attr:1.0000rep:5.0000Table 3: Example layout of attrative and repulsivepheromone levels at eah neighbouring loation.Numbers of lost agents are muh higher on the return trip,indiating agents that do not reat to the path.Unlike strategies A and B, only 19% of agents deployedin searh mode and 13% of agents deployed in return modeusing strategy C ahieved the desired orientation on inter-seting the path. Of these, 5% and 14% respetively followthe path until they reah the target. Re-orientation of ini-tially disoriented agents ours with only an 11% level ofsuess for agents in searh mode and 17% for agents inreturn mode.
SummaryAgents using strategies A and B ahieve desired orienta-tion and exhibit path following behaviour. However agent'ssensitivity to attrative and repulsive pheromone di�ers be-tween the two strategies. Strategy A penalizes pheromonelevels in loation PL,min and assign to that loation, theminimum possible desirability level (δ = 0.00001). On theother hand, strategy B aentuates desirability levels to-wards loations where attrative and repulsive pheromoneratios are good in favour of attrative pheromone levels. Asevidene, onsider a senario in Table 3 depiting an agentand the pheromone levels at eah of its eight neighbours.The top index represents attrative pheromone while thebottom index represents repulsive pheromone at that loa-tion. Figure 2a ompares the desirability of eah of theseloations as they are pereived by agents in searh modeusing eah strategy. Conversely, Figure 2b ompares thepereption of agents in return mode to the desirability ofthe same loations. From this example we an see that:
• Strategy A is onsistent. Levels of attrative and re-pulsive pheromone bear the same e�ets to both searh-ing and returning agents. Consequently the absolutegradients of the urves plotted in Figures 2a and 2bare equal.
• Strategy B is inonsistent. Diretionality is weak inloations where repulsive pheromone is higher than at-trative pheromone as evidened by the �atter gradi-ent observed in Figure 2a. Agents that are reruitednear the starting point (where repulsive pheromone islikely to be higher than attrative pheromone) are less

likely to orretly orient themselves, and even if theydo, will be more likely to fall o� the path. In addi-tion, this strategy does not tail o� to zero, allowingeven unlikely ases to have some possibility of beingseleted - hene more hane of random wander. Thusstrategy B performs worse than strategy A.
• In strategy C, agents are weakly sensitive to pheromonelevels when repulsive pheromone is higher than at-trative as indiated by the shallow gradient of theline segment in Figure 2a. In ases where attrativepheromone levels are high (as in the return trip exam-ple in Figure 2b) the example returns the same �guresas strategy B. The simulations indiate that the dire-tional performane of this strategy is indistinguishablefrom a random seletion of any one of the eight neigh-bouring loations.

5.2 Path formationTable 4 presents simulation results investigating path for-mation speed and quality. Values measured when pheromonedissipation and random wandering are ignored serve as refer-ene levels. We assess the e�ets of pheromone dissipationand hanges in values of λ by omparing results to theseases.
5.2.1 Path formation speedIn the referene ase for strategy A, the �rst ten agentsdisover the goal in an average of 777 iterations with a stan-dard deviation of 25 iterations. Return trips are muh faster(439 iterations with standard deviation of 14 iterations) be-ause return trails are formed when agents are still searhingfor the goal. These return trails give diretional lues as towhere the starting point is. This strategy ahieves best re-sults with parameters λ = 1, ρ = 0.0% and γ = 0.05%.Low levels of evaporation eliminate suboptimal trails be-fore they in�uene agent's movement. However as evapora-tion inreases further, speed drops again. This is beausehigh evaporation levels deplete trails before they are used.Cases where searh trips are faster than return trips anbe attributed to the searhing agents being entrally de-ployed, sereting repulsive return pheromone whih speedsup agents exploration away from the starting point. In-reased di�usion further speeds them on their outward jour-ney.Returning agents do not ommene their return journeyat the same time. This results in an in�ation in the valuesreported for return speed, sine some agents may have re-turned before others have even found the goal for the �rsttime. Additional e�ets of agents leaving the goal at dif-ferent time intervals inlude the lak of searh pheromonearound the goal, whih would repel agents, and depletion oftrails due to evaporation.



Evaporation → 0.0% 0.01% 0.05% 0.1% 1%Di�usion ↓ λ = 1. A B C A B C A B C A B C A B CSpeed towards goal 777 689 2568 407 489 3560 320 429 - 229 491 - 436 495 -0.0% Speed on return trip 439 402 - 442 857 - 458 904 - 666 962 - 1254 965 -Quality towards goal 35 16 4 31 21 6 30 23 - 27 21 - 24 15 -Quality on return trip 39 21 - 35 15 1 33 10 - 20 13 - 8 12 -Speed towards goal 366 557 - 362 397 - 327 338 - 359 574 - 386 491 -0.01% Speed on return trip 334 517 - 373 837 - 411 820 - 600 849 - 732 891 -Quality towards goal 40 23 2 38 27 3 35 21 - 29 19 - 26 26 -Quality on return trip 46 20 - 51 15 - 35 46 - 33 12 - 14 14 -Speed towards goal 326 545 3764 319 390 - 293 324 - 375 680 - 377 552 -0.05% Speed on return trip 321 804 - 523 803 - 441 744 - 762 784 - 1271 844 -Quality towards goal 69 17 5 51 20 6 54 24 - 42 18 - 19 13 -Quality on return trip 73 12 2 37 11 3 56 11 - 25 13 - 6 11 -Speed towards goal 321 600 2496 310 483 - 311 514 - 309 575 - 335 522 -0.1% Speed on return trip 438 884 - 581 867 - 50-2 733 - 473 727 - 987 623 -Quality towards goal 76 32 3 71 24 3 68 11 - 51 24 - 26 26 -Quality on return trip 53 13 2 43 10 1 52 12 - 53 17 - 10 19 -Speed towards goal 290 2335 1113 423 1344 - 624 740 - 656 1107 - 375 796 -1.0% Speed on return trip 717 3035 - 655 1881 - 613 1150 - 803 1389 - 448 1893 -Quality towards goal 30 2 9 23 6 6 28 11 - 25 8 - 51 14 -Quality on return trip 14 1 2 17 2 1 23 7 - 19 6 - 43 6 -
λ =

1

2
. A B C A B C A B C A B C A B CSpeed towards goal 437 610 - 549 585 - 306 522 - 420 353 - 395 705 -0.0% Speed on return trip 494 1206 - 428 1117 - 650 778 - 580 476 - 666 1096 -Quality towards goal 20 16 - 25 13 - 33 19 - 25 25 - 23 11 -Quality on return trip 11 8 - 17 8 - 14 13 - 16 16 - 15 9 -Speed towards goal 561 598 - 605 704 - 324 468 - 314 710 - 594 567 -0.01% Speed on return trip 768 932 - 843 648 - 700 904 - 638 1291 - 695 805 -Quality towards goal 23 20 - 20 19 - 20 25 - 25 12 - 26 26 -Quality on return trip 13 12 - 11 11 - 13 12 - 14 8 - 12 15 -Speed towards goal 444 513 - 399 772 - 283 478 - 443 387 - 223 370 -0.05% Speed on return trip 752 1331 - 711 1239 - 738 580 - 752 502 - 538 454 -Quality towards goal 20 17 - 31 16 - 30 19 - 22 24 - 37 29 -Quality on return trip 11 8 - 15 5 - 17 14 - 11 16 - 17 28 -Speed towards goal 484 638 - 206 594 - 325 824 - 322 789 - 424 808 -0.1% Speed on return trip 700 624 - 561 969 - 514 993 - 697 1099 - 484 927 -Quality towards goal 31 19 - 37 14 - 29 18 - 27 16 - 35 18 -Quality on return trip 16 12 - 16 10 - 15 10 - 15 5 - 19 14 -Speed towards goal 306 728 - 516 625 - 757 1796 - 333 551 - 318 533 -1.0% Speed on return trip 863 930 - 1023 1069 - 1560 2996 - 887 1212 - 792 1434 -Quality towards goal 13 14 - 13 13 - 10 6 - 15 15 - 14 12 -Quality on return trip 10 13 - 10 9 - 7 3 - 10 7 - 11 7 -

λ = 0. A B CSpeed towards goal 1939 1939 19390.0% Speed on return trip 1793 1793 1793Quality towards goal 5 5 5Quality on return trip 5 5 5Table 4: Path formation speed and path quality reords using eah strategy.



(a) Searhing agent (b) Returning agentFigure 2: Agent's pereption of the desirability of loations in Table 3We observe that di�usion improves model speed. This isbeause when di�used:
• repulsive pheromone speeds up exploration away fromthe starting point, and
• attrative pheromone reates a gradient towards thegoal.However high di�usion auses pheromone to over the entirearea evenly reverting agents to random wandering. This isbeause, later in simulation time, the di�usion proess de-sribed in Algorithm 2 allows di�usion of more pheromonelevels than an agent an serete, resulting in paths beingoverwritten. Combining the e�ets of both evaporation anddi�usion is more desirable beause in addition to reinfore-ment through agent seretion, trails are strengthened andwidened by di�usion while long and suboptimal trails getweaker still due to evaporation.Changes in values of the parameter λ slows down themodel exept when evaporation oe�ients are high. Thereason for this is that an inrease in randomness (λ < 1) inagents' movements straightens paths when agents randomlyut orners. However, when evaporation is low, inreasingrandomness an derail agents.In the referene ase for strategy B, the �rst ten agentsdisover the goal in an average of 689 iterations with a stan-dard deviation of 72 iterations. These results are onsistentwith data presented in Figure 2, on�rming that the modelis good during exploration stages. Late in simulation time,high evaporation gradually enourages the establishment ofthe shortest path with onstant levels of both attrative andrepulsive pheromone. Di�usion maintains the smoothnessand widen the remaining trails while some degree of ran-domness( λ = 1

2
) helps to ounter trail depletion.Observation of the simulation reveals agents that use strat-egy C as suessfully ahieving exploration and goal disov-ery. However agents orientation is poor. We have shownin setion 5.1 that agents using this strategy are less sen-sitive to repulsive pheromone. If they remain at a singlespot for any length of time they serete additional repulsive

pheromone whih further dereases their diretional sensi-tivity and beome trapped. Any other agent that visits thisloation is also trapped.
SummaryAgents that use strategy A symmetrially pereive pheromonelevels with equal importane regardless of their internal stateor the time in simulation. However, late in simulation time,the levels of di�using pheromone may exeed what agentsan serete ausing agents to randomly wander. Agents thatuse strategy B perform best with high pheromone dissipa-tion and some degree of randomness. Strategy C is worsethan a random guess.
5.2.2 Quality of pathMeasurements of path quality are also presented in Table4. The values indiate the number of trips ahieved within aperiod of 1000 iterations. Larger values orrespond to betterde�ned paths.In the referene ase for strategy A, an average of 35± 4trips and 39± 5 trips are respetively ahieved to and fromthe goal. As with path formation speed, return trails are ofbetter quality beause a gradient of return pheromone formstowards the starting point when agents are still searhing forthe goal. This strategy ahieves best results with the sameparameter values with whih the best path formation speedis ahieved. With these parameters, strategy A ahieves 92%improvement in path quality ompared to the referene ase.We observe similar trends in strategy B where the bestpath quality results are ahieved with the same parametervalues with whih the best path formation speed is ahieved.Path quality degrades late in simulation time due to drops inagents sensitivity to repulsive pheromone that reverts agentsto random wandering. Figure 3a illustrates the trends inarrival times for typial sample paths produed by strategiesA and B. The path formed by agents that use strategy Aindiates that agents follow the path while the one formedby agents using strategy B dissipates.When path formation is ahieved through pheromone dis-sipation, agents using strategy C may �nd their targets.Agents that use this strategy have a high tendeny of not



(a) A omparison of strategies A and B (b) strategy C and random guess (strategy D)Figure 3: Quality measure using intervals of suessive arrivalA B C DSpeed towards goal 326 370 1113 1939No obstales Speed on return trip 321 454 0 1793Quality towards goal 69 29 9 5Quality on return trip 73 28 2 5Speed towards goal 583 2496 0 0One obstale Speed on return trip 802 2297 0 0Quality towards goal 20 7 0 3Quality on return trip 33 5 0 3Speed towards goal 590 3269 0 0Two obstales Speed on return trip 960 3839 0 0Quality towards goal 17 4 0 1Quality on return trip 11 5 0 1Table 5: Robust and fault tolerane testgetting to the desired target. For this reason, the quality ofthe path is low. In addition, high di�usion depletes the pathwhen pheromone eventually overs the entire area. Figure3b ompares the trends in arrival times for typial samplepaths produed by strategy C and random guess. It is in-diated in Table 4 that the quality of the path formed byagents that use strategy C in the referene ase is lower thanthe path formed by agents that use random guess. The rea-son is that, without pheromone dissipation, agents that usestrategy C annot follow path and are trapped on subopti-mal solutions before they reah their targets.
SummaryWe observe that the parameter values with whih eah strat-egy ahieves best path formation speed are the same param-eter values with whih it ahieves best path quality results.
5.3 Robustness and adaptabilityThe robustness measures for eah pheromone pereptionstrategy are presented in Table 5. The parameter values forwhih the best results were ahieved in the previous experi-ments (see setion 5.2) are used. A strategy is robust when aquality path an rapidly form in an environment onsistingof obstales.

With strategy A, path formation is ahievable with theparameter values λ = 1, ρ = 0.0% and γ = 0.05% withwhih the best results were ahieved in the previous exper-iments. Searh speed drops as obstales are introdued be-ause agents are delayed when they are negotiating explo-ration paths around the obstales. Return trips are muhslower beause return pheromone, whih should guide agentsbak to the starting point, annot be di�used from highlyonentrated loations near the starting point through ob-stales to loations that are on the other side of the ob-stales (near the goal). When the �rst few agents disoverthe goal return trails lose to the goal are still very weakbeause they have only been formed from pheromone se-reted by these few agents. Later in simulation time, a pathnegotiated around the obstale emerges depiting the se-nario illustrated in Figure 4a and 4b . Pheromone dissi-pation through evaporation helps to eliminate suboptimaltrails while di�usion straightens and widens the emergentpath.Strategy B ahieves path formation slowly. The qualityof the formed path is poor. The reason why the results arepoor is that the repulsive e�ets of return pheromone dropsand agents revert to random wandering before the targetis found. High pheromone dissipation is detrimental as thepath length inreases.We established earlier in setion 5.2.1 that strategy C annot ahieve reliable path formation. It is worse still in anenvironment ontaining obstales. The strategy performsworse than a random guess (strategy D) as shown in Table5.
SummaryStrategy A satis�es our riteria for a robust and adaptivemodel. Rapid formation of a high quality path is ahievedin an environment onsisting of obstales. Strategies B andC do not meet the riteria of robust models. After pathformation with agents that use strategy A, an even shorterpath is established after obstales are removed from the en-vironment as evidene of the strategy's adaptability. Agentsthat use strategy B improve in performane immediately af-ter obstales are removed.



(a) Path formation with one obstale (b) Path formation with two obstalesFigure 4: Path formation in environments with obstales
6. CONCLUSIONWe proposed a probabilisti movement model for ontrol-ling ant-like agents based on the use of two pheromones.Three pheromone pereption strategies have been devisedand are investigated. Experiments that evaluate and om-pare eah strategy yield the following onlusions:
• Strategy A exhibits the best performane in all ate-gories measured.
• Performane in the presene of obstales learly revealsweaknesses in strategies B and C.The ontributions of this work are:
• We present a novel agent ontrol model using two phero-mone types with agents that neither have global infor-mation nor look ahead apabilities.
• We devise and evaluate three plausible strategies forombining a pair of pheromone gradients into a dire-tion vetor, and assess the merits of eah.
• We evaluate ways in whih di�usion and evaporatione�ets an in�uene the emergene of a path.
• We devise new ways to measure and ompare the per-formane of agent based path formation strategies.Further researh in formalizing the nature of the emergentbehaviour as a funtion of agent density, pheromone dissi-pation parameters, degree of randomness and terrain om-plexity is underway. The work is on the initial levels of adesriptive phenomenon aimed at providing auses of emer-gent behaviour.
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