Flock Inspired Area Coverage Using Wireless Boid-like Sensor Agents

Colin Chibaya <u>c.chibaya@ru.ac.za</u> Rhodes University Computer Science Department Grahamstown, South Africa Shaun Bangay s.bangay@ru.ac.za

Rhodes University Computer Science Department Grahamstown, South Africa

Exemplary scenario

•Background •The goal •Movie •Control routine •Experiment •Results •Conclusion •contributions

Exemplary scenario

- Free neighbouring locations
- Free locations in sensing range
- The mean free path

Control routine-1

Mode separation FOR_EVERY agent X at location L_i **IF** (cardinality of $L_i > 1$) **THEN IF** (exist free neighbouring spaces (L^{*})) **THEN** X move to L* **ELSE IF** (free spaces, L^{**} are in sensing range) **THEN** X move to L* that is closest to L** ELSE X uses the mean free path ELSE Mode cohesion

Control routine-2

Literature
The goal
Movie
Control routine
Experiment
Results
Conclusion
contributions

Mode cohesion

FOR_EVERY agent X at location L_i

IF (exists a neighbouring location L^{*} whose cardinality > 0) **THEN**

mode erch

ELSE IF (exist some covered locations in sensing range) THEN

X moves to L* closest to the covered locations

ELSE

X uses the mean free path

Experiment 1: Separation speed

•Literature •The goal •Movie •Control routine •Experiment •Results •Conclusion •contributions

- How we measure separation speed
 - -number of agents that are successfully perched within a specific time in simulation
- Centrally placed values
 - 10 simulations are averaged

- Results
 - Compared against a random guess.

Result 1: Separation speed

Findings

- 50.57% of agents were perched in 31 iterations, compared to only 19.14% using a random guess
- Our model achieved complete coverage in 135 iterations when a random guessing model was at 65.66%

•Literature •The goal •Movie

Control routine
 Experiment
 Results
 Conclusion
 contributions

Experiment 2: Cohesion speed

- How we determine cohesion speed
 - Count iterations from isolation until cohesion

• Procedure

- Allow coverage to occur in some continuous space
- Deploy an isolated agent
- Record the iterations
- Repeat for 1000 times
- Results
 - Compare with random guessing

•Literature •The goal •Movie •Control routine •Experiment •Results •Conclusion •contributions

Result 2: Cohesion speed

<u>Table 1</u>

			_
	Model	Guess	1
Mean steps	16	39	
Standard deviation	3	14	
Entropy levels	0.5%	41.2%	

Findings

- Agents achieved cohesion in 16 ±3 steps, compared to 39 ±14 steps using random guessing
- Chances that agents fail to perch are 0.5% in our model and 42.2% in random guess model

•Literature •The goal

•Control routine •Experiment •Results •Conclusion •contributions

•Movie

Experiment 3: Coverage quality

- Metrics of importance
 - Fraction of area covered at any time slot
 - Time it takes to achieve complete coverage
 - Measured in iterations
 - Results
 - Compared with results achieved

- Literature
 The goal
 Movie
 Control routine
 Experiment
 Results
 Conclusion
 - •contributions

Result 3: Coverage quality

•Literature •The goal •Movie

•Control routine •Experiment •Results

Experiment 4: Fault tolerance

•Literature •The goal •Movie •Control routine •Experiment •Results •Conclusion •contributions

- Purpose of experiment
 - Model performance where agents may fail
- How we conducted the experiment
 - Allow coverage to occur
 - Kill 40 agents

- Results
 - Compare with a random guess

Result 4: Fault tolerance

- Literature
 The goal
 Movie
 Control routine
 Experiment
 Results
 Conclusion
 contributions
- Our model self-repaired to 94.35% coverage quality in 34 iterations Agents that used the random guessing model could not rewww.www. organize. -

Conclusions

Literature
The goal
Movie
Control routine
Experiment
Results
Conclusion
contributions

- We proposed an area coverage model inspired by Reynolds' flocking algorithms.
- The model exhibits good separation speed and cohesion properties of the flocking algorithm
- The model is fault tolerant and adaptive to agents' failures
- The model is fast, achieving high quality coverage in a relatively short period of time

Contributions

- •Literature •The goal •Movie •Control routine •Experiment •Results •Conclusion •contributions
- We presented a novel sensor agents control model using simulated flocking rules

• We devised and evaluated a plausible strategy for determining coverage quality as well as fault tolerance

• This work provides a new way of measuring the performance of agent based coverage models