

InetVis – Visualising Scans and Evaluating Scan Detection

Barry Irwin and Jean-Pierre van Riel

Security and Networks Research Group
Department of Computer Science
Rhodes University

VizSEC '07 Presentation - October 29th, 2007

Sponsored by

Overview

- Why bother with scan detection?
- IDS and scan detection
- InetVis
 - Concept
 - Visualising different types of scans with InetVis
 - Key features
- Network telescope traffic
- Results
 - False negative for Snort
 - Pseudo-random phenomena
 - Backscatter or stealth scan?
- Conclusion and questions

To detect scans or not?

- Arguments against
 - Scan activity is very prevalent but only a vague indication of threat
 - Actual exploit attempts warrant more concern
- Arguments for
 - Detect worm activity without reliance on signatures (and identify infected sources)
 - IPS application preemptively block scanners (but be careful about DoS)

IDS scan detection

- Snort and Bro are two popular open source IDS solutions
- Both have scan detection algorithms
 - Simply count unique destination IPs and ports
 - Alert at thresholds
 - Include time thresholds
 - Snort's 'sfportscan' detector has 3 preset threshold levels – 'low', 'medium' and 'high'
 - The Bro scan policy facilitates variable and multiple thresholds

InetVis concept

- 3-D scatter-plot
 - Lau's Spinning Cube
- Supports IP, ICMP, TCP and UDP
- Points represent packets
- Good Scalability as points require minimal display space

InetVis concept

- 3-D scatter-plot
 - Lau's Spinning Cube
- Supports IP, ICMP, TCP and UDP
- Points represent packets
- Good Scalability as points require minimal display space

InetVis key features

- Scaling into network and port ranges
- Logarithmic port axis option
- Time-frame control with replay position and time-window
 - Time-window acts as a filter
- Time-scaling (replay rate)
 - Min = 0.001x = 1 millisecond per second
 - Max = 86400x = 1 day per second
- Transparent decay and new event pulse
- Colour schemes and BPF filtering

Conventional scan types

- Generated with nmap
- Colour by protocol
 - TCP, UDP, ICMP
- Port-scans
 - Vertical
 - Targets host
- Address-scans
 - Horizontal
 - Targets network
 - Port-sweep (TCP/UDP)
 - ICMP-sweep

Other types of scans

- 'Grid-sweeps'
 - Combination of portscan and port-sweep
 - Targets network and hosts for multiple vulnerabilities
- Evasion-techniques
 - Slow
 - Randomized
 - Distributed between sources
 - Spoof multiple sources as decoys

Network telescope data

- Unallocated/empty address space
 - Class C network telescope (our NetScope)
 - Since August 2005
 - 6.6 million packets captured in 2006 (65% TCP, 20% UCP, 15% ICMP)
- Passive monitoring
 - No responses
 - No connections initiated
- Less traffic to deal with
- Less worry about false positives
- Observations limited to scans and backscatter
 - Address-scans are most common as most port-scans first establish presence of target

Network telescope data for 2006 visualized

Logarithmic plot

- 6 simultaneous portsweeps
 - All ports have known vulnerabilities
- Snort fails to alert
 - flaw in counting unique destination addresses and ports
- Snort does alert on just one port-sweep

Pseudo-random Patterns – backscatter or stealth scan?

- Scattered between port 1000-2000
- Very rapid (50ms)
- Each packet strikes a unique IP address
- Source port 80 with SYN/ACK flags set
- Pattern can be detected by Bro* as an address scan
- Not detected by Snort

Pseudo-random Patterns – backscatter or stealth scan?

- Also occurs between port 1000 and 2000
- Much slower (36hr)
- Less random, with clear diagonal pattern
- Not every packet hits a unique address

Conclusion (and Future Work)

- Without the insights provided by InetVis, the flaw in the Snort IDS would not have been discovered
- Future work
 - Add scan detection overlay that superimposes detected scans over the backdrop of the raw traffic
 - Evaluate additional scan detection algorithms

Barry Irwin

- b.irwin@ru.ac.za
- Project supervisor

Jean-Pierre van Riel

- jp.vanriel@gmail.com
- Final year M.Sc. Student