	
	43

	
	

4

VoiceXML:
A Field Evaluation

Kristy Bradnum
8 November 2004

Thesis submitted in partial fulfilment of the requirements of the
Bachelor of Science (Honours) in Computer Science degree
at Rhodes University

[image: image11.png]¢tifée |

Abstract

In the 1990s, the Internet took the world by storm, making a new range of services and information available to many people. Today, speech technology takes this a step further, bringing this wealth of information on the Web to those who do not have access to a computer but who do have access to a telephone. The channel for this innovation is a language called VoiceXML. VoiceXML is a standard voice markup language for providing access to web applications via the most intuitive of user interfaces: speech.
VoiceXML 2.0 is a relatively new language which has recently been declared as a standard by the World Wide Web Consortium. Everyone in the speech industry seems to be speaking about this new technology and most authors believe it has much potential. This project set out to evaluate how mature the current version of VoiceXML is, and how it is faring as a new World Wide Web Consortium (W3C) standard.
The nature of the research was a field evaluation, and as such various platforms were utilized to develop VoiceXML applications. These acted as field trials used to find out if this emerging technology lives up to its claims. The iterative approach to the investigation eventually took the form of individual platform analysis and cross-platform analysis.

Grammars were found to be the biggest challenge to the developer as it seems companies have not followed the recommendations of the W3C Standard on this issue. This is a central feature of voice applications and so the consequences of this incongruence are far reaching.

The conclusions that can be drawn from the results of the study are a little disappointing but not surprising. In the author’s opinion, VoiceXML has much potential and will no doubt stabilise as it becomes an established standard. However, the software readily available at present does not conform to the requirements of the standard. Given time, the author is sure that VoiceXML will achieve its potential and command the respect that the development community should have for any mature technology.
Acknowledgements
There have been many ups and downs in the evolution of my project and this write-up, and I would like to thank my colleagues, friends and family whose assistance and interest have kept me going. I could not possibly name everyone who has supported me throughout the year but there are a few that stand out.
The first of these is my supervisor, Prof Clayton. Thank you for being so supportive and for always having faith in my ability to succeed. Thank you also for all the words of encouragement.

This project would not have been possible without the assistance of Chris and “the tech guys” who had to download so much for me. Thank you also to the other members of staff in the ComSci Department who have taught me so much this year, both in and out of the classroom.
I would like to take this opportunity to acknowledge the financial support I have received this year through the Andrew Mellon Foundation and Rhodes University. I would also like to acknowledge the financial and technical support of this project provided by Telkom SA, Business Connexion, Comverse SA, Verso Technologies and THRIP through the Telkom Centre of Excellence at Rhodes University.
To my friends and pod-mates who’ve been there through the whole process, thanks for listening and thanks for all the laughter. Thank you to my proof-readers who have helped polish this and other reports due for this project. Thank you to my precious family, for always being there for me and encouraging me in all that I do, and because I know I can always count on you.

Finally, this list would not be complete if I did not give thanks to the Lord for showering me with blessings, and I have been truly blessed.
Table of Contents

iAbstract

iiAcknowledgements

1Chapter 1 – Background

11.1.
Introduction

11.2.
Speech Technology

11.2.1.
The Case For Speech Technology

21.2.2.
The Components of Speech Technology

21.2.3.
How Successful Was Speech Technology?

31.2.4.
What Was Impeding The Entrance of Speech Recognition?

41.3.
Voice Markup Languages

41.4.
The Need For A Standard

51.5.
VoiceXML

51.5.1.
The Evolution of VoiceXML

51.5.2.
The Scope of VoiceXML

61.5.3.
The Role of VoiceXML

71.5.4.
Possible Applications of VoiceXML

81.5.5.
Who Can Use VoiceXML?

91.5.6.
Advantages of VoiceXML

111.5.7.
Limitations of VoiceXML

121.6.
In Summary… VoiceXML’s Current Status

13Chapter 2 – Aims and Motivation

14Chapter 3 – Methodology

143.1.
Introduction

143.2.
Approach

143.3.
VoiceXML Tools

153.3.1.
Choosing the VoiceXML Gateway

153.3.2.
Project Tools

153.3.2.1.
WSAD + Voice Toolkit

163.3.2.2.
OptimTalk

173.3.2.3.
BeVocal Café

183.4.
Platform Analysis

193.5.
Cross-Platform Analysis

193.6.
In Summary… Eventual Approach

20Chapter 4 – Discussion of Tests and Results

204.1.
The ROSS Prototype

204.2.
Buying an Integrated VoiceXML Gateway

214.3.
Using a Simulated Environment

214.3.1.
Input - Text vs Speech

214.3.2.
Output - Text vs Speech

224.3.3.
Sample Application

244.3.4.
OptimTalk Examples

244.3.4.1.
Handling of Variables

254.3.4.2.
Document Navigation

254.3.4.3.
Speech Input and Interrupting

264.3.4.4.
Event Handling, <nomatch> and <noinput>

264.3.4.5.
Grammars

274.3.4.6.
Options

284.3.4.7.
Mixed Initiative Dialogues

284.3.4.8.
Recording

284.3.4.9.
To Sum Up

294.4.
Hosting a Web-based Voice Application

294.4.1.
Sample Application

314.4.2.
Input

314.4.3.
Output

314.4.4.
Error Messages

324.4.5.
BeVocal Café Projects

324.4.5.1.
Namespaces

324.4.5.2.
Accepting User Input

334.4.5.3.
Event Handling, <nomatch> and <noinput>

334.4.5.4.
Grammars

344.4.5.5.
Audio

354.4.5.6.
Speech Markup

364.4.5.7.
Transferring Calls

364.5.
Overall Evaluation

374.5.1.
Some OptimTalk Shortcomings

384.6.
Grammars in More Depth

394.7.
Speech Markup in More Depth

394.8.
Design Considerations

414.9.
Platform Certification

424.10.
In Summary… Project Findings

43Chapter 5 – Conclusions and Possible Extensions

435.1.
Conclusions

445.2.
Possible Extensions

1Appendix A – VoiceXML 2.1’s new features
A

2Appendix B – Other Standards
A

21.
CCXML
A

22.
XHTML
A

23.
X+V
A

24.
SALT
A

35.
Summary
A

4Appendix C – References
A

Table of Figures

6Figure 1: VoiceXML enables voice applications to access the same information that the web applications access, stored on one server

16Figure 2: The general architecture of a voice browser built upon the W3C Speech Interface Framework

23Figure 3: A Screenshot from OptimTalk’s Example 9

23Figure 4: Extract of code for OptimTalk's Example 9

30Figure 5: BeVocal Café's VoiceXML Checker

30Figure 6: BeVocal Café's Vocal Scripter

31Figure 7: BeVocal Café’s Error Messages as displayed in Vocal Scripter

40Table 1: Speech Markup Tags of the SSML

41Table 2: VoiceXML Forum Certified Platforms

1Table 3: The new features proposed for VoiceXML 2.1 and the tags affected
A

Chapter 1 – Background

1.1. Introduction

VoiceXML has been defined by Jackson [2001], Beasley, Farley, O’Reilly & Squire [2002], and Syntellect [2003b] as a standard XML-based Internet markup language for writing speech-based applications. As speech is the most natural means of communication, it follows that speech is the “most elegant and practical way” to get information to the people [Eidsvik, 2001]. If speech is to be used, the computer needs to be able to understand speech and generate speech. Various methods have been used to do this in the past. Now it is being done through the Web and a web-based model, VoiceXML, with great success. Eidsvik [2001] is convinced that “almost every industry can benefit from VoiceXML”. According to Fluss [2004], the potential benefits of this technology certainly justify considering investing in a well designed and well implemented speech recognition application.
1.2. Speech Technology

1.2.1. The Case For Speech Technology

Speech is one of the oldest forms of communication, as A Cooper [Cooper, 2004] has pointed out, and the most ubiquitous [Fluss, 2004]. As such, it is the most familiar and most natural means of exchanging information [Eidsvik, 2001].

In this exchange of information between people, or between people and machines, accuracy is very important, and the best way to achieve this is through direct communication [Cooper, 2004]. The problem is that, while speech may be our preferred mode of communication, it is not the most convenient mechanism for machines [Datamonitor, 2003]. Put another way, while we would like to feed the data to the computer simply by speaking, the machine will still store the data as strings of 1s and 0s. The need for conversion between the two formats gave rise to the need for speech technology. Datamonitor [2003] states that the primary goal of speech recognition is “to allow humans to interact with computers in a manner convenient and natural to us, not them.”

1.2.2. The Components of Speech Technology

We would like to be able to speak to the machine and have it recognize what we are saying, and it would be useful if we could just listen to the response. Thus, there are two sides to speech technology – input and output [Beasley et al, 2002].

The first interactions between telephone and computer took the form of a dual-tone multi-frequency (DTMF) or touch-tone interface [Dass et al, 2002]. This was the basis for interactive voice response (IVR) systems. With the touch-tone systems, the input to the system was simply entered by pressing numbers on the keypad of the telephone [Datamonitor, 2003], while the output was a series of pre-recorded audio prompts [Dass et al, 2002]. These DTMF-based systems are still widely used today, but modern IVR systems make use of speech recognition and speech synthesis.

Speech recognition is utilized for input, taking the place of touch-tone and DTMF systems. Often, and in the case of VoiceXML, the automatic speech recognizer (ASR) is grammar-driven. This is more accurate than a dictation ASR [Larson, 2004].

The other aspect of speech technology is output. It has long been possible for us to listen to a set of pre-recorded audio prompts, but this is limiting in situations where not all possible responses are known in advance, and the creation of such audio files is time-consuming. Speech synthesis or Text-to-Speech (TTS) is a technology which transforms plain text into spoken words
, allowing us to tell the computer what to say and how to say it. This dynamic generation of output affords much greater flexibility [Beasley et al, 2002].

The two components translate the user’s vocal choice into a binary pattern that the Web server (ie the computer) can understand, and translate the Web server’s binary answer into a vocal answer for the user [Regruto, 2003].

1.2.3. How Successful Was Speech Technology?

In analysing the success of speech recognition, and speech technology in general, Cooper [2004] maintains that the figures should be allowed to speak for themselves. He shows that the size of the speech technologies market is increasing exponentially and is expected to continue to do so, with automatic speech recognition dominating the market [Cooper, 2004].

Berkowitz [2001] has maintained that speech is rapidly becoming the “key interface to critical information”, with global investment in voice technologies in 2001 at 33% above that of the year before [Berkowitz, 2001].

In a report written in 2002, DM Fluss [Fluss, 2004] claimed that the market was “ripe for speech recognition”, a technology she described as “very compelling”. Again, figures support the claim that the introduction of speech recognition is beneficial to companies – usage increased by as much as 60%, leading to savings of up to $6.3 million [Fluss, 2004].

However, although speech recognition technology was “ready for prime time”, few had taken advantage of this opportunity [Fluss, 2004].

1.2.4. What Was Impeding The Entrance of Speech Recognition?

The touch-tone based IVR technologies were “inherently limited” [The Economist, 2002]. Callers could only push buttons or use limited words or numbers. The proprietary nature of the coding languages [Fluss, 2004] meant that they were incompatible with competing products [Datamonitor, 2003] and expensive. The technology was hard to program [The Economist, 2002] and much time and money was required to build speech applications [Fluss, 2004].

From the customers’ point of view, the speech applications were both confusing and frustrating [Lippencott, 2004] as it was easy to get lost with all the complex menus and instructions for pressing buttons [Datamonitor, 2003]. Besides this, the IVR technology was expensive to install [Datamonitor, 2003].

One more setback for speech recognition promoters was bad timing, as this was also when the Internet was introduced; so companies chose to invest in web initiatives rather than in speech recognition [Fluss, 2004].

Efforts to overcome problems such as the difficulty in developing effective customer interfaces [Fluss, 2004] resulted in the evolution of several voice markup languages.

1.3. Voice Markup Languages

At first, many different companies defined various languages for the speech market, [Regruto, 2003] intending these markup languages to define voice markup for voice-based devices [Dass et al, 2002]. The development of Voice Markup Languages started in 1995 with the PhoneWeb project initiated by AT&T Bell Laboratories [Beasley et al, 2002]. AT&T and their subsidiary, Lucent Technologies, produced their own “incompatible dialects” of Phone Markup Language (PML) [VoiceXML Forum, 2004a]. In the meantime, researchers from AT&T had moved to Motorola and developed VoxML [Beasley et al, 2002]. Independently, IBM was also developing a voice markup language, called SpeechML, as were other companies, such as Vocalis [Dass et al, 2002].

Although all of these languages were valid solutions, they were all “owner languages” [Regruto, 2003], and it was thought that having one standard language would overcome this problem.

1.4. The Need For A Standard

“Standards serve as the foundation for growth within an industry” [Scholz, 2003]. The initial development of a new technology is typically haphazard and lacks structure, but as the technology reaches adolescence, standards are developed that add structure to the evolution and guide the growth of the technology [Scholz, 2003].

The Economist agrees that standards advance the evolution of technologies, claiming that the development and agreement on an industry-wide standard has been “the real impetus behind better voice applications” [The Economist, 2002].

So, standards have emerged in the field of speech applications and combined to allow the technology to achieve its potential [Scholz, 2003]. One of these, termed the “lingua franca” for voice applications, is called VoiceXML [The Economist, 2002].

1.5. VoiceXML

1.5.1. The Evolution of VoiceXML

After their early attempts, AT&T, Lucent Technologies, Motorola and IBM began to co-operate and combine their efforts [Regruto, 2003], and it was these four “world-class founders” [Orubeondo, 2001], that started the VoiceXML Forum. According to the Economist [2002], this is now one of the “most active” working groups within the World Wide Web Consortium (W3C).

The first version to come out was VoiceXML 0.9, released in 1999, soon followed by version 1.0 in March 2000. That May, the W3C accepted VoiceXML for consideration. In response to the many comments from the growing VoiceXML Forum community, the developers began work on version 2.0. In October 2001, the first public Working Draft was published [VoiceXML Forum, 2004a].

The Candidate Recommendation for VoiceXML version 2.0 was released in January 2003. Voice browser patent issues delayed the release of the final 2.0 recommendation, but these were resolved in July 2003 [Lippencott, 2004], and in March 2004, the W3C declared VoiceXML 2.0 a full recommendation. Just one week after this, the W3C released the first working draft for VoiceXML 2.1. The set of additional features provided in version 2.1 is given in Appendix A.
As soon as the W3C released this recommendation, the VoiceXML Forum declared its support for this release and announced that the VoiceXML Platform Certification Program would be launched the following quarter [VoiceXML Forum, 2004b]. Chapter 4 Section 0 has more on the certification process.

1.5.2. The Scope of VoiceXML

Regruto [2003] states that the scope for VoiceXML is clear. It will supply vocal access to Web applications, either by means of a telephone (fixed or mobile) and a PDA or by means of a standard personal computer (PC) equipped with speakers and a microphone [Regruto, 2003].

Raggett [2001] expresses this in simple terms: VoiceXML is “an XML language for writing Web pages you interact with by listening to spoken prompts and jingles, and control by means of spoken input”, so bringing the Web to the telephone.

In summary, VoiceXML empowers users to interact with the Internet and web-based applications in “the most natural way possible: by speaking and listening” [Nortel Networks, 2003].

1.5.3. The Role of VoiceXML

Where HTML is used for visual applications, VoiceXML is used for audio applications. A user at a PC can access information from a website using an application written in HTML. Now, as illustrated in Figure 1, people can access that same information via a telephone. The application pages (plain VoiceXML pages or pages dynamically generated by scripts) are stored on the web server which is accessed through the VoiceXML gateway. This is the key link between the telephony infrastructure and the application; it includes technology components such as ASR, TTS and telephony integration, and may include voice authentication or voiceprint technology. Examples of such gateways are those provided by VoiceGenie and TellMe Studios [Seth, 2002].

[image: image1.png]RHODES UNIVERSITY

Where leaders learn

[image: image2.png]o
— \<vxm>¥ Internet
ey L @ Phone e

Server
VoiceXML

Gateway

Figure 1: VoiceXML enables voice applications to access the same
information that the web applications access, stored on one server

One of the primary components of the gateway is the VoiceXML interpreter. This is equivalent to the visual application’s browser, and as such may provide bookmarking, caching, and similar functions. More importantly, the VoiceXML engine handles the interpretation of the spoken input and provides audio output.

VoiceXML can also be used for navigation around a visual webpage where the menus are displayed on the screen but the user speaks the navigation commands into a microphone. The focus of this project however, was on over-the-phone navigation and information access rather than voice navigation of a visual webpage.

1.5.4. Possible Applications of VoiceXML

The School of Computer Science and Information Systems at Pace University [Tappert, 2004] states that the applications currently under development can be classified into one of three categories. These are:

· Targeted applications. These are most useful when travelling or outside the office

· Cost reduction and improved customer service

· Employee productivity improvements
VoiceXML is best suited for applications with limited input and specific output [Nortel Networks, 2004]. Nortel describe a typical application as a service where callers dial a phone number to retrieve information such as stock quotes or weather. Such applications include information retrieval, electronic commerce, telephony services, directory assistance, internal processes and unified messaging. These are ‘typical’ applications, but VoiceXML can be used for far more diverse applications, such as contact centres and notification services, as the application possibilities for VoiceXML are “limited only by imagination, opportunity, and market demand” [Nortel Networks, 2004].

The W3C reports that VoiceXML 2.0 is being applied to, among others: call centres, government offices and agencies, banks and financial services, utilities, healthcare, retail sales, and travel and transportation [W3C, 2004].

Lippencott [2004] provides a further list of possible applications, which includes automated telephone ordering services, support desks, order tracking, weather services, traffic information and school closures, audio travel directions, and news reports. Uses of personal VoiceXML include accessing calendars and lists, as well as controlling voice mail and e-mail messages.

One of the applications being developed in the Pace Voice Lab is a restaurant locator application. This could have significant commercial relevance as the restaurant owners are charged a fee for advertising through the application, thus generating revenue for the developers [Tappert, 2004].

1.5.5. Who Can Use VoiceXML?

VoiceXML applications allow users to access online information via a telephone instead of a computer. Thus, voice applications are useful for the many users who do not have access to a computer but do have access to the ubiquitous telephone [Orubeondo, 2001]. According to Eidsvik [2001], there are over 1.5 billion telephones and over 450 million wireless phone users in the world today.

Regruto [2003] suggests an area of usage not many other authors mention - VoiceXML can assist those users who simply do not feel comfortable using technology more modern than the telephone, those “not readily conversant or familiar with computers” or in fact, anyone who would rather listen to results rather than read them.

When used in conjunction with a wearable headset or hands-free kit, VoiceXML can be useful for mobile users who require hands- or eyes-free such as when driving or carrying luggage through a busy airport [Orubeondo, 2001], or even “when perched atop telephone poles or driving forklifts” [Eidsvik, 2001].

Those who can benefit by using VoiceXML include disabled individuals, either visually impaired or those who lack the physical ability to use traditional computer input devices [Orubeondo, 2001]. The W3C also mentions this, stating that people with visual impairments will benefit from improved accessibility to a wide range of services. Text phones (in conjunction with VoiceXML) will afford the same benefits to those with speech and/or hearing impediments [W3C, 2004].

Eidsvik [2001] writes about voice-enabling the field staff as “VoiceXML allows mobile employees to work faster and smarter”. The need for fumbling with key pads to capture information while wearing gloves or working on multiple tasks is eliminated, immediately improving accuracy.
Other advantages of voice-enabling the task force, and of VoiceXML specifically, are presented next.

1.5.6. Advantages of VoiceXML

As has already been mentioned, it is a well-known fact that there are significantly more phones than computers in the world. Now many more users have access to the information on the World Wide Web, using any phone, at any time and from any place [Larson, 2004].

Another advantage of this form of speech technology is that phones are small, light, inexpensive and have a long battery life, and are therefore more portable and accessible than computers [Orubeondo, 2001]. Again this means that many more customers will be attracted to the service, which is developed using the ‘natural’ interface of the voice and without the use of such peripherals as mouse, keyboard, monitor or other interfaces [Regruto, 2003].

Of course, all of this returns to the convenience of voice in general [Tappert, 2004] but this specific technology has advantages of its own. The “key virtue” of VoiceXML, according to Orubeondo [2001], is its ability to retrieve and use information already stored on a corporate Web server. VoiceXML’s web-based model enables companies to “leverage their web investments” to support voice applications. This re-use of existing software components by voice applications allows both web applications and VoiceXML applications to be supported by the same web servers and application servers [Syntellect, 2003c].

Jackson sums this up, saying that VoiceXML “greatly simplifies speech recognition application development by using familiar Web infrastructure” [Jackson, 2001].

An extension of this advantage is that VoiceXML can be constructed using plentiful, inexpensive, and powerful Web application development tools [Orubeondo, 2001]. Instead of procedural program code, speech-enabled applications can be created by specifying high-level menus and forms, giving developers more time to test the usability of the application and refine its design [Larson, 2004].

Regruto agrees that developers will have more time to focus on their applications, but attributes this to the great deal of high-level structure, and the interaction with vocal devices and their drivers [Regruto, 2003].

Standard Web security features can also be extended to the Voice Web [Orubeondo, 2001], allowing banking and corporate applications to be run securely.

An advantage all enterprises will appreciate is greater savings due to greater accessibility and functionality with a more pleasant and natural user interface, giving greater customer satisfaction; voice interfaces are easier to navigate than touch-tone services [Orubeondo, 2001]. This apparent simplicity actually hides the complexity of the dialogue design as a deeper understanding of the underlying technologies is required [Brøndsted, 2004].

VoiceXML reduces the problem of costly human-operated call centres and cumbersome DTMF touch-tone menu trees implemented on proprietary IVR platforms [Tappert, 2004].

In a white paper on voice applications, Nortel Networks [2003] discusses some of the virtues of VoiceXML. Other authors have corresponding opinions. These include:

· self-service applications can be much more sophisticated. With natural language speech recognition, free-style speech, spoken in a conversational way, can be recognized. This is because form interpretation allows multiple paths through the dialogue [Brøndsted, 2004]. The route through the dialogue is determined when the user initiates the call.

· call treatments can be easily customized as VoiceXML scripts do not need to be pre-compiled. Brøndsted [2004] also mentions that VoiceXML documents can be generated “on the fly”, allowing highly dynamic dialogues.

· applications can be developed faster, are easy to deploy, and do not have to reside on a proprietary voice server. According to Syntellect [2003c], this deployment flexibility can be attributed to the web-based model. Voice browsers, like web browsers, can be located in the data centre, at a Voice Application Service Provider (Voice ASP) site, in a telephone carrier network, or a combination of all three.

· VoiceXML code is portable, which means applications can work on different platforms, if these are compliant with the standards. Syntellect [2003c] claims that this portability helps customers protect their investment in their voice applications.

Enthoven [2004] presents the advantages of packaged applications (less expensive, already tested, faster deployment) and of hosted solutions (flexible capacity and high availability).

These advantages were gleaned from an extensive literature survey conducted at the start of the project. As a result of the research performed for this project, the author is in agreement with these opinions. Chapter 4 has more details on the author’s findings.

1.5.7. Limitations of VoiceXML

Voice applications experience problems with deciphering accents and separating the user’s voice from the background noise [Orubeondo, 2001]. Lippencott [2004] adds speech impediments and natural vocal pauses (“umm” and “ahh”) to these, which means that speech recognition is still an “inherently uncertain process”. Speech recognition may also vary between portals, limiting the portability of the application. Speech synthesis differences between the various portals may confuse the users, decreasing customer satisfaction [Brøndsted, 2004].

With speech, you can only hear one thing at a time [Raggett, 2001]. Raggett draws a parallel with looking at a newspaper with a strong magnifying glass. This is not necessarily a limitation, but a precaution to the developers to take care in the design of the interface.

Catalogue-ordering applications won’t benefit because pictures convey more information than voice does – but could be used in conjunction with a printed catalogue or in circumstances where the exact product is known, such as office supplies or ticket sales [Orubeondo, 2001].

One peculiarity of VoiceXML is that developers must use the appropriate application grammar to accurately model speech input. In Orubeondo’s opinion, grammar authoring is a critical facet in the development of robust, usable telephony speech applications, and therefore this is a problem that must be resolved [Orubeondo, 2001]. The author is also of this opinion, as is discussed in the results section 4.6.

VoiceXML is not suitable for embedded dialogues as it was designed for a client/server environment and needs a large support structure [Brøndsted, 2004].

Having said that one of the advantages is the web-based model, an organisation’s web developers probably cannot create voice applications without first receiving additional training [Syntellect, 2003c].

Another of the advantages derived from the web-based model allowed voice browsers to be located anywhere, including at the Voice ASP site. However, this can limit the ability to transfer calls between live agents. Capacity, latency and reliability may also be limited [Syntellect, 2003c].

Syntellect [2003c] also mentions that, as a new standard, VoiceXML does not yet cover capabilities such as robust call control. Another emerging standard, called Call Control XML (CCXML), as the name implies, does just that – provides telephony call control features [HP OpenCall, 2003]. Other standards and how they complement VoiceXML are given in Appendix B.

1.6. In Summary… VoiceXML’s Current Status
VoiceXML technology has had a “great deal of momentum” in the speech industry [HP OpenCall, 2003]. Having seen how VoiceXML came about, it has been shown that this recently adopted standard has many advantages and, despite its limitations, can be used in many areas to the benefit of all concerned. In spite of competitors such as those listed in Appendix B, thousands of VoiceXML applications have been developed since its introduction, bringing new services to hundreds of thousands of customers that previously could not access this information [HP OpenCall, 2003].

Chapter 2 – Aims and Motivation

In 2002, a field investigation of VoiceXML 1.0 was conducted at Rhodes University by Mya Anderson, in partial fulfilment of her Computer Science Honours degree. At that stage, this technology was very new and her investigations were not successful [Anderson, 2002]. She found that there was still much work to be done before VoiceXML became stable enough to achieve its potential.

Now, two years later, and after the W3C has accepted VoiceXML 2.0 as a standard, VoiceXML is increasing in maturity and becoming widely accepted throughout the industry [Nortel Networks, 2003]. According to Jackson [2001], VoiceXML has been considered a mature technology for some time already. This project aims to investigate this claim, and examine both the maturity of VoiceXML 2.0 as a technology and its status as an industry standard.

Chapter 3 – Methodology

3.1. Introduction

An iterative approach was chosen for this project where goals were set and then used to define the next stage of evaluation. During the course of the research, three tools were used in the analysis of VoiceXML. These were IBM’s WebSphere Studio Application Developer with Voice Toolkit plug-in, OptimTalk from OptimSys Ltd, and the BeVocal Café. The implementation, support functionality, and performance of VoiceXML on each of these platforms were studied separately and then a cross-platform analysis was performed.
3.2. Approach

At the start of this project, the strategy laid down had several stages, each developed on the previous step. Because the technology was not yet widely understood, it was difficult to determine in advance what aspects would warrant the most analysis. Thus it was decided that a short term goal should be set, and then an exploratory system developed to establish its feasibility. Based on the outcomes of that goal, the next phase of the project would be determined and the next goal set.

As this was a field evaluation, the plan was to develop a prototype of one aspect of ROSS, the Rhodes Online Student Services. This application was chosen for its relevance to the University, but the primary purpose of a field trial was to give the development a direction, thus the product was secondary to the investigation.

3.3. VoiceXML Tools

Previously, the development and deployment of an IVR application required a set of proprietary technologies, and the system had to be hosted within the company. The only other option was expensive outsourcing. Today, a whole range of options exist for the development of VoiceXML applications, from hosted tools to desktop based standalone tools; similarly, there are a number of alternatives for deployment, supporting the rapid application development concept.

Seth [2002] groups the various options that have emerged into three approaches. It is possible to buy the necessary infrastructure, ie the telephony lines, the speech recognition and so on as an integrated VoiceXML gateway that can be connected to the public switched telephony network (PSTN). A cheaper option is to simply rent all or part of this infrastructure. The third choice is to build your own gateway and connect this to existing PSTN lines or to a VOIP network.

Beasley et al [2002] however define the three basic environments as a hosted environment, a simulated environment (OptimTalk), and a web-based environment (BeVocal).

3.3.1. Choosing the VoiceXML Gateway

In general, the tools chosen should be those appropriate to the situation. Requirements such as the number of calls expected and the existing infrastructure have to be considered. Circumstances such as the speed and reliability of the connection to the Internet should also be taken into account. The developer’s location is of interest here. Most of the companies that provide hosted platforms are based in the USA, and therefore, in order to test the applications from outside of the United States, an international call must be placed. Some providers offer a tool which simulates a phone call and accepts text instead of vocal input, for example, BeVocal Café’s Vocal Scripter. This is useful in situations where a second phone line is not available.

The final decision is likely to be based on the cost, the quality and level of customer support available, the level of complexity required in order to integrate the solution with the existing infrastructure, and the development tools provided with the VoiceXML gateway.

3.3.2. Project Tools

3.3.2.1. WSAD + Voice Toolkit
[image: image9.png]WebSphere

For the “buy” approach, IBM’s WebSphere Studio Application Developer Kit with the Voice Toolkit plug-in was chosen. This is a Web development IDE which provides a VoiceXML gateway with all the key technologies.

WebSphere Studio Application Developer has been built on Eclipse, which is an open, industry-supported platform for development tools, providing a comprehensive set of functions useful to tool builders. As such, the WSAD extends Eclipse technology, incorporating features such as enterprise-level project management, visual editors and extensive Web infrastructure management into a flexible open architecture, thereby maximizing developer productivity and facilitating accelerated web development [IBM, 2004a].
The Voice Toolkit is an extensive collection of tools for building, debugging and deploying voice applications. The plug-in covers VoiceXML development but also provides many other features required in the creation of sophisticated voice applications. These include a graphical Call Flow Builder, Grammar developer, Pronunciation builder, Call Control XML (CCXML) developer and Natural Language Understanding (NLU) model maintenance [IBM, 2004b].

At the time of this project, the current release of the Voice Toolkit was version 5.0.2 and this was only compatible with the WSAD 5.1 release. This fact proved to be very inhibiting, as explained in Section 4.2.
3.3.2.2. [image: image10.png]OptimTalk

OptimTalk

OptimTalk 0.9.1 is a simple VoiceXML platform tailored towards research purposes, and is an example of a desktop standalone development environment. It consists of a set of libraries that interpret the markup languages of the W3C Speech Interface Framework, the architecture of which is depicted in Figure 2.
[image: image3.png]speech grammar

Speech Recognition Grammar Format.

DTMF grammar

Telephone
network

telephony
component

Call Control
Markup
Language

S

<

speech recognizer/
DTMF recognizer

A

speech

semantics of input
Sernantic Interpretation
of speech Recagnition

v

speech
synthesizer

A

prompt
Speech Synthesis
Markup tanguage

dialog manager

VoiceXML

O

Internet

http

local
source

Figure 2: The general architecture of a voice browser
built upon the W3C Speech Interface Framework

OptimTalk supports all the languages of the W3C Speech Interface Framework, and as such, is reportedly one of the most complete implementations of the framework available today [Cenek, 2004]. The five languages supported are VoiceXML 2.0, Speech Recognition Grammar Specification (SRGS), Semantic Interpretation for Speech Recognition Specification, Speech Synthesis Markup Language (SSML), and Call Control Markup Language (CCXML).

The component based structure of OptimTalk allows the configuration of the system to be chosen at run-time, resulting in a flexible and easily extensible platform. Versions of OptimTalk have been released for both Windows and Linux platforms and this platform and hardware independent design also adds to its flexibility.

OptimTalk is tailored towards research in the speech technology field, and as such is free for non-commercial use. The platform is marketed as perfect for the home user and “very well suited” for operation on a desktop computer, requiring no more than a microphone and speakers. These were the features that first attracted the author to the product as an ideal learning platform for this research. Having chosen this as one of the tools for the project, the author later discovered that other researchers and VoiceXML developers were of the same opinion [Noor, 2004].
OptimTalk operates from a command line application that interprets VoiceXML documents. The author found the text editor UltraEdit to be the best environment in which to write these pages, as syntax highlighting is provided. Note that any other editor could have been used to write the VoiceXML documents.

3.3.2.3. BeVocal Café

BeVocal Café 2.5 is a Web-based development environment; and the environment of choice for many experienced developers in the industry. BeVocal is one of the W3C Voice Browser Working Group member companies and is actively involved in the VoiceXML forum. The company is a “premier provider” of managed call automation solutions.
The VoiceXML platform that BeVocal’s customers use to build their high quality voice-enabled applications is the BeVocal Café. The author found that much of the literature in this field highly recommended the Café, ranked as “the industry’s top VoiceXML development environment” [VoiceXML Forum, 2004d].
As a hosted platform, the Café eliminates the need for a Web server to be immediately available; VoiceXML application files are uploaded to the developer’s space allocation. This is an example of the “rent” approach defined by Seth [2002]. BeVocal is one of several application service providers that offer free access to such portals and provide various online tools for code validation, debugging and the like. A full list of the tools provided is:
· VoiceXML Checker
· Vocal Player
· Log Browser
· Vocal Debugger
· Trace Tool
· Vocal Scripter
· Grammar Compiler
· Port Estimator
In the highly respected opinion of BeVocal, VoiceXML 2.0 can be viewed as “the standard that provides a complete solution for developing sophisticated voice applications” [VoiceXML Forum, 2004d].
Although the author came across many recommendations for the environment, BeVocal Café was chosen for this project on the suggestion of Miller [2002], as described in the next section.
3.4. Platform Analysis

Initially, each of the platforms chosen was studied separately. The associated documentation provided examples and the author worked through these examples, tracing the execution of the code in order to fully understand how the various aspects of the programs worked. The effect of changing factors such as parameters and the order of tags was also studied.

As explained in the results section 4.2 of Chapter 4, the WebSphere tools were not analysed.

A number of VoiceXML examples are available for download from the OptimTalk website. The purpose of these examples is to demonstrate the basic capacity of both the platform and the language. Apart from the inevitable Hello World example, a range of features is covered, including document navigation, variables, grammars, event handling, mixed initiative dialogues and scripts. From these, the author selected examples that could be used to scope the extent of the language’s capabilities and used these for analysis of the OptimTalk platform.
For analysis of the BeVocal Café, the author used a set of projects presented in a book entitled “VoiceXML – 10 Projects to Voice-Enable Your Web Site” [Miller, 2002]. These projects utilize VoiceXML and related technologies to create fully functional solutions. The basics of the language are presented to give the developer a solid understanding of the creation of VoiceXML applications. This foundation is then built on in further projects as “frills” are added to create impressive voice systems. Although many other models are available for this clearly popular platform, the author selected these as the most instructive and the most suited to the aims of this research.
3.5. Cross-Platform Analysis

The next stage in the evaluation process was to work through the projects written for the BeVocal Café suite and attempt to implement them using OptimTalk. The Café was used to work through the examples designed for OptimTalk.

Where modifications had been necessary for the BeVocal code to be implemented in OptimTalk, these were then put through the BeVocal suite again, to test if they would be accepted. A similar process was applied to the OptimTalk code modified for operation in the Café.

Throughout this process, if the cross-platform implementation revealed features that were not supported by either one of the platforms, the author referred back to the W3C recommendation to resolve the issue.
3.6. In Summary… Eventual Approach
As shown, the approach taken for this project was iterative, working towards a series of small goals to achieve an overall final evaluation. The three tools selected represented a range of the contemporary platforms. Unfortunately version compatibility problems prevented any detailed analysis of the WebSphere tools, but BeVocal Café and OptimTalk were analysed individually. Following this analysis, VoiceXML code aimed at one of the tools was implemented in the other environment and vice versa. More details of the process followed and the results of this analysis are presented in the next section.
Chapter 4 – Discussion of Tests and Results

4.1. The ROSS Prototype

As previously explained in Chapter 3 Section 3.2, the initial plan had been to create a prototype of one aspect of ROSS as a field trial. In this case, it was not the finished product that was important, but the development process. Such a system would provide a goal to work towards and a central theme when learning new features of VoiceXML. Unfortunately, the ROSS prototype was found to be inadequate for this purpose as not all aspects of the technology are used. For example, there is no scope in the ROSS system for user authentication (where access levels depend on the phone number from which the call is received) or voice printing (the system ‘recognises’ the user’s voice and grants permissions accordingly). For this reason, the set of projects detailed in Miller’s book was deemed to be more useful as an analysis agent, as these projects cover a wider range of VoiceXML’s capabilities.

4.2. Buying an Integrated VoiceXML Gateway

The WebSphere SDK with Voice Toolkit plug-in was chosen to represent Seth’s “buy” approach. The reported advantages of this method include the low complexity of integration and partial best-of-breed integration [Seth, 2002]. In the author’s experience with these tools, the availability of the software proved too great a hurdle. Very few versions were found to be compatible with VoiceXML 2.0 and these were not freely available. Due to these difficulties, the author did not pursue this approach further.

Upon further investigation, the author discovered that researchers in this field based at other universities and commercial developers of VoiceXML applications had experienced similar difficulties.

4.3. Using a Simulated Environment

As explained earlier, OptimTalk is a command-line environment. Initially, the author tried to use UltraEdit’s tool configuration feature to initiate interpretation of the appropriate command, but this was unsuccessful. Although the applications appeared to run correctly, input was not recognized, in either text or speech format. Instead the author simply worked with both UltraEdit and a separate command prompt window open at the same time.

4.3.1. Input - Text vs Speech

OptimTalk provides components which use either the keyboard or speech for input. The latter component uses Microsoft Speech API 5.1 for speech recognition. Both components also contain a DTMF simulator. Switching between the two formats was a simple matter of changing the application’s configuration file. As an aside, OptimTalk also provides an input component that interprets Czech. Not surprisingly, the author did not make use of this feature.

Unfortunately the speech recognition component of OptimTalk was found to be somewhat erratic, but for most of the testing, the author found the keyboard input component sufficient.

4.3.2. Output - Text vs Speech

Similar components are provided for the output as part of the standard distribution. com.optimtalk.console_output is a simple component that sends the output as text to the standard output (usually the console). This has an advantage over speech output in terms of speed, and is therefore useful for research purposes. Again there is a component available which supports Czech output. Another component (com.optimtalk.cons_and_sapi_output) provides speech synthesis through the Microsoft Speech API 5.1, but also sends the output to the console. This was the author’s preferred output component.

No component providing just speech synthesis was available. It is important to bear this in mind, and to remember that the user of such a system would not be in the same position as the developer who can face the screen and see the information displayed as text. A resulting design consideration to be taken into account when designing any voice application is that long menus can not be used as humans have inherently bad memories and cannot remember more than the last couple of choices given. The author tried to simulate the user’s position by running the applications without looking at the screen and using speech input.

This brought to light another positive feature of this testing platform – the voice application could be run in the background while the author (in the role of the user) was working with other documents or programs on the computer, thus simulating one of the target scenarios. Recall that one of the areas that voice technology would be most useful is in an environment where the user is busy with other tasks and can not, or would prefer not to, interrupt that work to access the information provided by the voice application.

One of the areas affected by the use of the Speech API is pronunciation. More is mentioned about this in the section on Design Considerations on page 39.

4.3.3. Sample Application

Figure 3 is taken from one of the OptimTalk example applications, a mixed initiative airplane reservation system. The input required from the user is the city of departure and destination. Depending on which information the user provides, the computer prompts the user for any other information needed to make the ticket booking. Section 4.3.4.7 has more on mixed initiative dialogues and the example used here. In Figure 3, the lines highlighted represent the user input, which could have been spoken or typed, but for the purposes of this demonstration were typed. Part of the code used to generate this application is given in Figure 4, which also serves to provide an example of the syntax highlighting feature of UltraEdit.

[image: image4.png][D:\Project\0pt inTalk\exanples\exanple@9doptintalk_test example@9.uxnl
lelcon to the airplane ticket reservation system-

here do you want to fly from and to?

[want to £ly to Paris

our arrival city is Paris.

ron uhich city are you leaving?

our departure city is Rome.
ticket from Rome to Paris is reserved for you.

[D:\Project\0pt inTalk\exanples\exanple@9doptintalk_test example@9.uxnl
lelcon to the airplane ticket reservation system-

here do you want to fly from and to?

gain please

0K, once moret

here do you want to £ly from and to?

[want to £ly to Paris

our arrival city is Paris.

ron which city are you leaving?

our departure city is London.
ticket from London to Paris is reserved for you.

Figure 3: A Screenshot from OptimTalk’s Example 9
Airplane Ticket Reservation System

[image: image5.png]24
a5
6
a7
8
s
a0
a1
a2
a3
m
s
16
4
8
s
s0
s
sz
53
4
ss
s6
5
se
ss
0
P
62
63
64
65
P
&
P
65

<nomateh count="zTs
I am sorry, I still do not wnderstand you. Valid cities are London, Prague, Rowe and
</momatch>
<nomatch count="3Ts
I did not understand again. I am giving up. Bye.
<exit/>
</momatch>

<block> Velcome to the airplane ticket reservation system. </block>

<inmitial name="bypass_init”>
Where do you want to fly from and to?
<nomatch count="ivs
Sorry, I did not understand you. Say something like "from London to Prague”.
</momatch>
<nomatch count="zTs
I am sorry, I still don't understand.
I will ask you for information one piece at a time.
<assign name="bypass_init" expr=rtruer/>
<reprompt/>
</momatch>
</initial>

<field name="from city” slot="from"s
<gramwar src="eities.grmmlifrom”/>
From which city are you leaving?
<prompt cownt=rz"> Tell me from which city you are leaving, please </prompt>
</tield>

<field name="to_city” slot="tor
<grammer srceveities.grxmlfta”/>
To which city do you vant to fly?
<prompt count=rz"> Tell me to which city you vant to fly, please </prompt>
</tield>

Paris

Figure 4: Extract of code for OptimTalk's Example 9
Produces Application in Figure 3
4.3.4. OptimTalk Examples

As introduced in Section 3.4, the author selected a range of examples that tested specific features of VoiceXML and of OptimTalk. The author chose to take a more interactive approach than simply tracing the execution of the sample pages, and at times tried to “break” the code to determine the boundaries of the language.

4.3.4.1. Handling of Variables

The first of these examples was of course an elementary “Hello World” application, used to introduce the language and to set up a template the other applications could build on. This simple example also introduced the concept of using variables which could be used to determine at run-time what would be said.

Further examples concentrating on the use of variables brought to light the fact that VoiceXML variables are not strongly typed, so a variable called myVar with value 42 could later be changed to hold the value "life". Note that the variables are case-sensitive, thus myVar is a different variable from MyVar. An attempt to call such a variable that has not been previously defined, throws a semantic error “Uncaught VoiceXML event 'error.semantic'”. In the calculation of an expression, the interpreter automatically converts the variable to the required type. Thus, given variables defined as follows:

<var name="myVar" expr="42"/>
<var name="b" expr="'hello'"/>,
the expression <value expr="myVar+3"/>, returned the value 45, having interpreted the value myVar as a number. However, the same variable was interpreted as a string in the expression <value expr="myVar+' world'"/>, which returned "forty two world".
Similarly the variable b was interpreted as a string when used in the string concatenation expression <value expr="b+' world'"/> which returned "hello world". When combined with a number, the interpreter forces the number to a string as well, so <value expr="b+3"/> simply evaluated to "hello three". Global and local declaration and definition of variables were also explored.

4.3.4.2. Document Navigation
The structure of most voice applications is a series of menus that the caller navigates through to get the required information. Thus document navigation is one of the most important features of VoiceXML, simply because it is used in all applications. The next example chosen introduced the concept of navigation between dialogues within a document and navigation to other documents that are part of the application. One of the mechanisms demonstrated for such navigation was the use of the form item’s variable. If this variable has been assigned a value, the form item will not be interpreted until the variable is cleared. This is done through the use of the <assign> and <clear> tags as follows:

<assign name="formOne" expr="true"/>
<clear namelist="formOne"/>

Other example applications, although primarily demonstrating different features of VoiceXML, continued to explore document navigation and transfer of control.

4.3.4.3. Speech Input and Interrupting

Having learnt how to move between various forms and VoiceXML pages, we could move on to accepting what the caller has to say. This is done using the <field> tag nested within a <form>, similar to the <input> tag found within HTML forms.

The author quickly established that the prompts could be interrupted by the caller, regardless of whether the input was via the keyboard or speech. The technical term for this is “barging in”. The OptimTalk documentation mentions that “barging in is always active” because the <bargein> attribute of the <prompt> tag is not supported. Cross-checking this with the W3C specification revealed that the implementation of this attribute is optional, and gave further insight into the logic behind this feature. If the <bargein> attribute is set to false, callers can not interrupt the prompt. While interrupting may speed up a conversation, sometimes it is necessary for the caller to listen to the whole prompt, for example in the case of a warning or legal notice. Although this feature is not supported by OptimTalk, it is clear that this would be a very useful VoiceXML quality in platforms that do support it.

4.3.4.4. Event Handling, <nomatch> and <noinput>
The example used to learn about speech input also introduced <nomatch> and <noinput> tags. These go hand-in-hand with grammars which are discussed in the next section. The concept of limiting the number of times a caller can say something that the ASR does not recognise or does not hear was also explored in further examples. This is a design consideration to take into account as each application will have a different level of tolerance.
Once analysis had been done on the BeVocal platform, the developer realised that OptimTalk does not have meaningful default values for <nomatch> and <noinput> but simply reprompts for <noinput> and says “Unrecognized input” then reprompts for <nomatch>. <help> is handled as a <nomatch> and also says “Unrecognized input” then reprompts. Compare this non-user friendly response to the default values of BeVocal Café, given in section 4.4.5.3. The recommendations of the W3C are that the platform should set default values for events such as <nomatch>, <noinput> <help> and <maxspeechtimeout>. For a <maxspeechtimeout> event, OptimTalk interrupts the caller with “Your talk exceeded time limit.” then repeats the prompt.
The developer can gain more control over the navigation of the application by throwing or returning events which will then be caught, as shown:

<catch event="slow">
 You have slow reactions. Better come another day. See you then.
 <exit/>
</catch>

...

<form id="test">
 <field name="answer">
 <noinput> <return event="slow"/> </noinput>
...

A later example demonstrated how to handle help and quit events through links and grammars.

4.3.4.5. Grammars

After discovering what to do if a caller says something unexpected, we need to a way to find out exactly what is expected. The mechanism for this is to define a grammar, or a set of user utterances that the ASR will accept as an answer to the particular question being asked.

The first example that needed to define a grammar did so using the <grammar> tag with nested <rule>s. This is an example of an inline grammar. The alternative to this is to use an external grammar defined in a .grxml file and called using the src attribute of the <grammar> tag. The content of the .grxml file is essentially the same as the content of the <grammar> tag when used as an inline grammar. The advantage of defining the grammar externally is that many different fields can access the same grammar rather than each field having to redefine the grammar every time. This is extremely useful for grammars that are used often such as “yes-no” grammars that offer alternatives such as “yup” or “nope”.

Some grammars, although easy to describe in English, do not have a finite number of possibilities and so are hard to define. An example of such is a number grammar. This can not be defined using the usual inline or external grammars. Instead the LSD Regular Grammar format is used. This is a grammar based on regular expression matching and as such is useful for unrestricted speech recognition. To specify a number grammar use:

<grammar type="application/x-lsd-rg"> /(^\d+$)@*@/ </grammar>

Further discussion of grammars is provided in section 4.6.

4.3.4.6. Options

Now that we have a way of determining what the caller is saying, we can present him with a list of options. The example chosen to illustrate the use of the <option> tag uses this in conjunction with the <enumerate> tag. One serious drawback resulting from the use of the <enumerate> tag is that the words of the options get run together and are spoken very quickly with a smaller break between them than between normal words in a sentence. This makes it very hard to understand, particularly in situations where the options consist of more than one word, and the caller is likely to become frustrated.

Another problem arising from the use of the <enumerate> tag is that, in some situations, the list of choices would not be read out if this tag was the last element in a prompt. Placing a full stop after the call to <enumerate> seemed to solve this problem, although it is still not known what the cause of the problem is.

4.3.4.7. Mixed Initiative Dialogues

A mixed initiative dialogue is a more natural form of conversation than the usual directed dialogue. The caller directs the dialogue using natural language while the system extracts what it can from what the user has said, and then prompts the caller for any missing information.

Figure 3 and Figure 4 on page 23 are taken from the example chosen to examine mixed initiative dialogues. The example application was based on an airline reservation system which lets the caller specify his city of destination and arrival. If any of this information is missing, or if the system can not extract the information from what was said, the system prompts the user for the name of his arrival city and/or departure city.

This is an important step in the development of voice applications as this makes the caller feel much more relaxed and so more likely to use the system again.

4.3.4.8. Recording

The author had little success with the record element. Even the sample code taken directly from the website did not work for this example. The sample application did not throw any exceptions or events which could have been interpreted and understood as an error message.

4.3.4.9. To Sum Up
Finally, the author looked for an example that would bring together some of the lessons learnt. The example chosen was a fun one which simulated a game of blackjack between the user and the computer. The author is happy to report that this example was implemented successfully.

4.4. Hosting a Web-based Voice Application

The BeVocal Café is a suite of Web-based VoiceXML development tools, which enable developers to build and test VoiceXML applications without buying or installing and hardware or software. Although the Café requires registration, once this has been done, applications can be developed for free.

4.4.1. Sample Application
The tools the author made most use of were the VoiceXML checker, the Vocal Scripter and the Log Browser. Files are uploaded to the developer’s account through the Tools and File Management page. A file can then be opened and checked using the VoiceXML Checker tool, as displayed in Figure 5. As shown, VoiceXML Checker does not use syntax highlighting, which means that the code is harder to read. This minor inconvenience can be overcome by creating the VoiceXML page in UltraEdit and then uploading the file and using the VoiceXML Checker to fix the code if necessary.
Once it has been confirmed that the file contains valid VoiceXML, pressing the Activate button will make this file the active file. The active file is the file the VoiceXML interpreter will execute when the Café account is called or when the Vocal Scripter simulates such a call to test the application, as shown in Figure 6.

The advantages of using the Vocal Scripter can be seen in situations where a second phone line is not available (the developer would otherwise have to disconnect from the Internet to make the phone call) or where the developer is not in the USA (the developer would have to make a very expensive international phone call). This feature was of great benefit to the author, who was conducting this research outside of the States.

Another of Vocal Scipter’s useful features was the ability to use the Scripter in batch mode. This is helpful where the developer is testing the application’s reaction to a pre-defined set of responses.

[image: image6.png]Logout
Home
Welcome

Tools & File
Management
+ VoiceXML Checker

[Hostivg Today!

s s Call Now to Test Your App: 1.877.33.
B Sl Up et 1 405

VoiceXML Checker

VOCAL

307.7328

Home > Tools & File Management > VoiceXHL Checker

< links.vxml >

Status: No errors detected in links.vxml

Advanced search

* Vocal Plaver

* Log Browser

* Vocal Debugger
* Trace Tool

* Vocal Seripter
* Grammar Compiler
* Port Estimator
* Update Account
Resources
Deployment
Documentation
Support

Account 6038291

<oxml version="1.0">
DOCTYPE vxml PUBLIC *~//Bevossl Ine//VoicexhL 2.0//¢
"hitp:/cafe bevocal.com/libraries/dtd/vxmiz-0-bevocal.did

0" xemin:

hitp: /fwin w3.0rg/2001fvxml” >

<1-- START OVER >
<link next="links vxml">
<grammar>
<I[CDATAL
[(start over)]
1>
=/arammar>
</link>

Enter a fils name(vxml, js, txt, grammar):

(Gavets

)

Figure 5: BeVocal Café's VoiceXML Checker
[image: image7.png]Call Now to Test Your App: 1.877.33 VOCAL
International’ 1.408.007.7328

= Dialing in progress.
Cannection established

(OUTPUT > Welcome to Mars Colony 7. | am your personal
vocal attendant What subject are you interested in? group
actviies popular restaurants changes ta the colony

USER -» hanges o e olony
OUTPUT - Haneyounshed he colony i e pat
manins?
USER = yes
OUTRUT > You st now i the Previcus Visto o Center. f

you were here within the last week, say"Week" Ifyou were here
Record user input within the last month, say*Month”. Otherwise, say"Contirue".

et bt

(@ Batch mode

Clear screen §

[Interactive mode

For help on using Vocal Scripter tool, see Vocal Scripter User's Guide for more details

% Café Home | Developer Agreement | Privacy Policy | Site Map | Terms & Conditions
sevocat 1999-2004 BeVocal, Inc. All Rights Reserved | 1.577.33.UOCAL

‘Applet bevacal.toals vocalscripter applet. VocalScripter Applet started |

Figure 6: BeVocal Café's Vocal Scripter

4.4.2. Input

Using the Vocal Scripter, the only possible method of input was using the keyboard. This was found to be very limiting as speech recognition could not be analysed and applications displaying features such as recording could not be tested. To simulate DTMF input, type “dtmf-1” in the user input box of Vocal Scripter.
In the author’s experience with the Vocal Scripter, the time taken to respond to the caller’s input was very long. This is an important design consideration as this would probably cause the user to be dissatisfied with the voice application.

4.4.3. Output

Again this was limited to text shown in the Vocal Scripter’s display, so the effect of speech synthesis could not be examined. The effect of speech markup elements such as <break>, <emphasis> and <say‑as>, which control the way spoken output is produced, could not be tested either.

All prompts were displayed as one long string with no line breaks or any indication of pauses between different forms or different menu items.

4.4.4. Error Messages

Another problem which arose from the use of the Vocal Scripter was the handling of error messages. Rather than using text-to-speech, a series of audio files are played to inform the caller of the error message when a call is made to the developer’s account. This was very confusing to the developer using the Scripter. An example error message is shown in Figure 7:

[image: image8.jpg]Call Now to Test Your App: 1.877.33 VOCAL
International’ 1.408.907.7328

%

B

N S0 sone - Dialing in progress.

X Vocal Scripter
| im_soryl dcdObal.way.
here_was 39620049 wav
enor badi37116922way
alline2a768dce war
8 01284751 way

T welcame dotvxm | see_logd2203f1 3way.

Disconnected

Clear screen §

Record user input

(@ Batch mode
[Interactive mode *

User input:

For help on using Vocal Scripter tool, see Vocal Scripter User's Guide for more detsils

Café Home | Developer Agresment | Privacy Policy | Site Map | Terms & Conditions
959-2004 BeVocal, Inc. All Rights Reserved | 1.877.33.VOCAL

Figure 7: BeVocal Café’s Error Messages as displayed in Vocal Scripter

To get round this, the author made use of the Log feature although this was tedious and less intuitive than listening to an error message would have been.
4.4.5. BeVocal Café Projects

As explained in section 3.4, the analysis of VoiceXML through BeVocal Café was based on a set of projects provided in Mark Miller’s book “VoiceXML – 10 Projects to Voice-Enable Your Web Site” [Miller, 2002]. Note that this book was published in 2002, at a time when VoiceXML 2.0 was only a working draft and not yet a full recommendation. There have been many changes to the language since then and BeVocal has kept abreast of these changes and released new versions of the Café as new versions of VoiceXML have come out. The version of BeVocal Café used in the book was 2.1. This project was conducted with version 2.5. Some of these changes were listed as errata on the BeVocal’s webpage about these projects.

The range of projects chosen reflects the scope of VoiceXML’s capabilities, as shown in the following sections.
4.4.5.1. Namespaces

Once again, the investigation of this platform began with the Hello World application. One of the first things brought to light with this basic program was the need for a namespace. Previous versions of VoiceXML had not mentioned the use of a namespace, but the latest standard has stipulated that all VoiceXML documents shall have: xmlns="http://www.w3.org/2001/vxml"
as one of the attributes of the <vxml> tag at the start of the page. This is required for the document to be considered a valid XML document.

On this note, Miller [2002] recommends using a call to a DTD when building a VoiceXML application. Rules within the DTD govern the use of VoiceXML elements and attributes within a page. Calling the DTD forces validation of the structure of the document against these rules. This will be useful for debugging and to catch syntax errors. Once it has been confirmed that the script is valid and works as intended, the call to the DTD can be removed for optimization.

4.4.5.2. Accepting User Input

Again the author tested user input via the <field> tag. The documentation for BeVocal Café reports that the bargein attribute of the <prompt> tag is supported but the author could not test this using the Vocal Scripter.
4.4.5.3. Event Handling, <nomatch> and <noinput>
As the <field> tag was introduced by itself, before the <nomatch> and <noinput> tag had been included, this revealed that BeVocal has default values for these events: “I am sorry. I did not understand you.” and “I am sorry. I could not hear you.” respectively, followed by a reprompt. As an aside, the Vocal Scripter requires the caller to “force” a <noinput> event by pressing Enter without having entered an answer. The default event for help is “No help is available right now.” then a reprompt.

Further investigation revealed that the W3C specification requires these default values as well as a default value for the <maxspeechtimeout> event which is thrown when the caller talks for too long. When the author was using the Vocal Scripter, it was not apparent that the BeVocal Café had such a default. The BeVocal documentation reports that the default value of the maximum duration of user speech is 6 seconds but does not say what should happen if this time limit is exceeded.

4.4.5.4. Grammars

One of the first projects that made use of grammars gave an error message:

ERROR error.badfetch: Line 18: All XML <grammar> elements must have a "version" attribute set to 1.0.

After much investigation, the author discovered that one of the new requirements added to VoiceXML 2.0 was that the version attribute of the <grammar> tag is required for all XML grammars, ie those that use the root attribute.

The W3C VoiceXML 2.0 recommendation does not deal with this specifically but passes responsibility onto the Speech Recognition Grammar Specification (SRGS) which states that “The version number of the grammar element indicates which version of the grammar specification is being used … The grammar version is a required attribute” [W3C SRGS, 2004]. The reason the VoiceXML 2.0 recommendation does not handle this is that inline grammars are defined by the XML Form of the W3C Speech Recognition Grammar Specification.
BeVocal supports built-in grammars, inline and external grammars and currently has support for the following types of grammars:

· XML Speech Grammar

· ABNF Speech Grammar

· Nuance GSL

· Nuance Grammar Object

· Java Speech Grammar Format
· XML Speech Grammar

· ABNF Speech Grammar

· Nuance GSL
These three formats are currently supported but will be removed from future releases.

A further discussion of grammars can be found in section 4.6.

Also related to the subject of grammars is the concept of a vocabulary which relates words that have the same meaning. Thus “hi”, “hello”, and “good morning” are all variations of a greeting. Some applications may require more informal greetings, such as “howzit”, to be added to the list and this can be done using Brainhat. The Brainhat Server is a platform for Natural Language Processing (NLP) and can be used with in conjunction with VoiceXML to create such vocabularies. Nothing is mentioned about this in the W3C Recommendation as this does not form part of the VoiceXML 2.0 language.

Grammars help us define what is acceptable as input. The other side of this is the output of the application which can take the form of pre-recorded sounds, using the <audio> tag, or of speech dynamically generated using the text-to-speech feature of the VoiceXML platform. Speech markup gives us more control over the output of the application. These are discussed in the next two sections.

4.4.5.5. Audio

Sometimes a pre-recorded prompt is more suitable than the usual TTS. This may be in order to present a friendly welcome or to play an advertising jingle. This is done using the <audio> tag. Using this element as prescribed in the tutorial projects resulted in error messages. The author discovered that this was because the <audio> tag was missing required attributes. According to the BeVocal Café documentation, this version requires one of the following attributes of the <audio> tag to be specified:

src, expr, bevocal:ssml, bevocal:ssmlexpr
The W3C VoiceXML 2.0 specification reads:
“Exactly one of "src" or "expr" must be specified; otherwise, an error.badfetch event is thrown. Note that it is a platform optimization to stream audio: i.e. the platform may begin processing audio content as it arrives and not to wait for full retrieval. The "prefetch" fetchhint can be used to request full audio retrieval prior to playback” [W3C VoiceXML, 2004].
Expr is a new addition to VoiceXML 2.0 while the bevocal:ssml, and bevocal:ssmlexpr are extensions specific to the BeVocal platform which represent a URI which refers to an SSML document. Speech Synthesis Markup Language (SSML) documents can be loaded from URIs using the BeVocal VoiceXML Dynamic SSML facility.
4.4.5.6. Speech Markup
One of the sample projects discussed the use of pauses to make the output speech sound more comprehensible and user friendly. The element to be used for this is the <break> tag. The duration of the break can be set using the size attribute which can have a value of small, medium or large. The BeVocal default values for these are 500ms, 1s and 2s respectively. For finer control of the length of the pause, the time attribute can be set to a value in milliseconds.

When the author turned to the W3C VoiceXML 2.0 recommendation to determine if there are recommended defaults for the small, medium and large values, it was discovered that the size attribute is no longer supported. The VoiceXML recommendation passes responsibility for this element on to the SSML 1.0 recommendation, which was ratified as a full recommendation in September 2004. The last time the size attribute appeared with these values was in the version of the working draft dated 5 April 2002. Subsequent versions do not have this option. However, they have not done away with the idea completely, as this seems to have been replaced by the strength attribute which has similar functionality. Although BeVocal claims to be fully compliant with the VoiceXML specification for the <break> tag, it does not support strength but still supports size.

In the author’s interpretation of the function of these attributes, which is supported by the usage notes of the SSML candidate recommendations, a break defined by the size attribute was a relative term in comparison with the fixed length of a break set by the time attribute. By supplying default values for the values of the size attribute, BeVocal appears to defeat the purpose of having two different choices.

Other speech markup tags supported by BeVocal are <mark> and <sub>. Only the rate and volume attributes of the <prosody> tag and only the name attribute of <voice> are supported. The <emphasis>, <paragraph>, <phenome> and <sentence> tags can be included in the code but have no effect.

More discussion on speech markup is given in section 4.7.

4.4.5.7. Transferring Calls
One of the optional elements that a VoiceXML platform can choose to support is the <transfer> element. This feature is supported by BeVocal Café but the duration of the call transferred must be less than 60 seconds. The maxtime attribute of this tag can be set by the developer to suit individual situations as long as this value is less than the 60 seconds maximum.

Note that OptimTalk does not support the <transfer> tag.

4.5. Overall Evaluation
The author found that there was a learning curve involved but this was only for the platforms and development environments, and not for the VoiceXML language itself. In fact, the author found the language easy to learn and to master, as it is a simple tagged language with an element set smaller than that of HTML [Miller, 2002]. However, by definition, this tag set is extensible. Some platform developers, having found that VoiceXML lacks some features, have implemented these features themselves, and it is often these proprietary extensions that limit the platform independence of VoiceXML applications. Both BeVocal and OptimTalk provide a list of the proprietary extensions added to their platforms, some of which were mentioned in the previous results sections.

Although some features have been added to the platforms, some have been left out. By the developer’s own admission, OptimTalk is a work in progress. Even though the VoiceXML interpreter follows the VoiceXML 2.0 specification, there are some features that are not yet supported. As previously highlighted, this list includes built-in grammars, which would allow for typed fields such as the boolean field for yes/no type answers or numeric fields.

In the author’s opinion, the BeVocal Café proved to be the more mature platform but even this environment does not support all of the features. Often the features not supported were those recently added to version 2.0’s recommendation.

The example code was written taking into account these additions and omissions of the platforms for which they were designed and not surprisingly, most of them did work successfully
. However, by analysing the two platforms at the same time and constantly referring back to the W3C recommendation, the author was able to obtain an overall picture of VoiceXML’s capabilities.
4.5.1. Some OptimTalk Shortcomings
Some of the mechanisms that are available in the BeVocal Café, but not in OptimTalk are just convenient but not essential, while some of the omissions are more serious.

The type attribute of the <field> tag is not supported by OptimTalk. In some cases, this is merely inconvenient and is easy to work around; for example, a field of type boolean can be replaced by a field with a yes/no grammar. However, it is harder to specify a grammar for a field of type number. The author found this to be a very restrictive omission.

Another attribute not supported is type of the <say-as> tag. One of the results of this is that a phone number, such as 744106, that is less than seven digits is pronounced as “seven-hundred-forty-four-thousand-one-hundred-and-six” instead of as “seven-four-four-one-zero-six”. Again, this was found to be limiting, particularly in projects such as the automated telephone directory. In the building that houses the computer science department at Rhodes, the telephone extensions are generally four digits such as 8090.

A proposed solution for this problem is to insert spaces between the numbers, for example 8 0 9 0 or 7 4 4 1 0 6. This would be successful in situations where just one or two numbers were being spoken and where the number was known beforehand. However if the number was extracted from a database, this solution would not work.

4.6. Grammars in More Depth
As mentioned elsewhere in this document, a grammar defines a set of caller utterances that are acceptable at a specific point in time and pairs each utterance with its semantic interpretation. Grammar is an aspect of voice applications that is often encountered; most, if not all, applications need to use grammars at some stage, and probably throughout the program. Because grammars are so important, the variations between the two platforms in the syntax used to reference the grammars caused a serious problem.
The W3C recommendation dictates that VoiceXML platforms must support the XML form of the W3C Speech Recognition Grammar Specification (SRGS) and should support the Augmented Backus-Naur Form (ABNF) of the SRGS. Platforms may choose to support other grammar formats.

The types of grammar available are built-in grammars and application-defined grammars which can be further broken down into inline or external grammars. External grammars are defined as those grammars which have a value for either the src or the expr attributes. Grammars defined by the <grammar> tag which do not have a value for either of those attributes are inline grammars.

Built-in grammars are not normally specified using the <grammar> tag but rather as the value of the type attribute of a <field> element, eg:

<field name="num" type="number">

A built-in grammar can be referenced in the grammar tag, eg:

<grammar src="builtin:grammar/number"/>

Standard built-in grammars include:

· Boolean – which recognizes a positive or negative response

· currency – which recognizes an amount of money, in dollars
· date – which recognizes a calendar date
Some platforms choose to extend this with types such as BeVocal’s airline extension, which recognizes an airline name or code, such as AA or American Airlines. This is just one of many types which BeVocal has used to extend the built-in grammars. As discussed previously, OptimTalk does not support built-in grammars.

4.7. Speech Markup in More Depth
Several elements are provided which facilitate the markup of TTS prompts. These are given in Table 1 on page 40 together with an indication of whether the two platforms under analysis support these tags.

These elements are defined in the associated SSML specification and are now available in VoiceXML 2.0. Formerly the tags had been based on the Java Markup Language (JML) Specification and many of the elements available at that time have been removed from the current recommendation, and replaced with the tags currently in the list. Because there have been so many changes to the specification, many platforms have not changed the tags they support. Consequently, some platforms (including the BeVocal Café and OptimTalk) still support the older tags instead of, or as well as, the new tags.

Although the maturity of the SSML specification standard was not under scrutiny in this project, the author observed that the specification appears to lack maturity and can not yet be considered a stable standard.

4.8. Design Considerations

Care must be taken not to overlook design issues – a poorly designed application, one that is hard to use to or simply does not appeal to the target audience, will not be successful. Examples of this category of omission include the lack of support for the break attribute in the <enumerate> tag in OptimTalk. The choices are spoken so quickly that it is hard to distinguish them.
Design considerations that apply to all voice applications, and not just those written in VoiceXML, include the fact that long menus should not be used. Humans have inherently short attention spans and so cannot remember a long list of options. Therefore menus must be broken down to several short menus rather than one long one.

Another difference to be taken into account is the pronunciation of words and the interpretation of punctuation by the different voices. Because OptimTalk makes use of the text-to-speech voice property set at the operating system level, phrasing must be carefully chosen to suit the range of voices available. For example, ROSS is pronounced as one word by LH Michael but the

	Element
	Purpose
	Supported by:

	
	
	OptimTalk
	BeVocal

	<audio>
	Specifies audio files to be played and text to be spoken
	(
	(

	<break>
	Specifies a pause in the speech output
	?
	?

	<desc>
	Provides a description of a non-speech audio source in <audio>
	(
	(

	<emphasis>
	Specifies that the enclosed text should be spoken with emphasis
	(
	?

	<lexicon>
	Specifies a pronunciation lexicon for the prompt
	(
	(

	<mark>
	Ignored by VoiceXML platforms
	(
	(

	<meta>
	Specifies meta and "http-equiv" properties for the prompt
	(
	(

	<metadata>
	Specifies XML metadata content for the prompt
	(
	(

	<p>
	Identifies the enclosed text as a paragraph, containing zero or more sentences
	(
	?

	<phoneme>
	Specifies a phonetic pronunciation for the contained text
	(
	?

	<prosody>
	Specifies prosodic information for the enclosed text
	(
	?

	<say-as>
	Specifies the type of text construct contained within the element
	?
	(

	<s>
	Identifies the enclosed text as a sentence
	(
	?

	<sub>
	Specifies replacement spoken text for the contained text
	(
	(

	<voice>
	Specifies voice characteristics for the spoken text
	(
	?

Table 1: Speech Markup Tags of the SSML
	?
	 = partially supported

individual letters are spelt out by Microsoft Sam
. Concerning the interpretation of punctuation, an exclamation mark had no effect using LH Michael but Microsoft Sam took the rising inflection to extremes: the dismissal “Bye!” was pronounced “Byeeee”.

Note that these are design issues that should be considered even if a platform meets the criteria laid out by the W3C and is eligible for platform certification, as detailed in the next section.
4.9. Platform Certification

Unfortunately there is still a lack of structure and few VoiceXML platforms currently available have adopted the standards, or implemented all of the recommendations, of the W3C. Earlier this year, the VoiceXML Forum introduced their Platform Certification Program, consisting of a test suite of about 700 test programs [Wagner, 2003]. For a fee of US$10,000.00, companies can submit their first telephony interface for testing to ensure that the platform is compliant with VoiceXML 2.0. Each subsequent interface submitted for testing for certification will be charged at US$5,000.00.
The program, due to have been released in June or July, was actually only launched in September. Since then, only three platforms have passed the program. Of these, two are only for use in a Windows 2000 environment, while the third is limited to a Linux operating system [VoiceXML Forum, 2004c].

	Vendor
	Product Name
	Product Version
	Operating System
	Date Certified

	Nuance Communications
	Nuance Voice Platform (NVP)
	NVP-2004_07_28
	Windows 2000 SP4
	September 2004

	VoiceGenie Technologies, Inc.
	VoiceGenie Platform
	Version 6
	Linux
	September 2004

	Voxpilot
	Voxpilot Open Media Platform
	v1.0
	Windows 2000 SP4
	September 2004

Table 2: VoiceXML Forum Certified Platforms

4.10. In Summary… Project Findings
As shown in the previous sections, VoiceXML is capable of a range of functions required by voice applications. While testing, the author regarded the two platforms studied as typical of the available tools, but always referred back to the W3C recommendation. The language now seems a lot more mature than it was two years ago and its maturity continues to increase. The number of platform extensions needed has decreased and this can be taken as an indication that the standard now meets more of the needs of the voice community.
As it appears that the language is not quite stable yet, the platforms should be given a chance to “catch up” to the requirements of this still fairly new standard. There are still hurdles in the development process, especially in South Africa as there are no hosted environments available in this country.

In the author’s opinion, the development process may be easier for commercial enterprises but at this stage, it is still very limited for researchers. However, the situation is improving all the time.
Chapter 5 – Conclusions and Possible Extensions
5.1. Conclusions
VoiceXML technology has gained a “great deal of momentum among communications service providers” in the speech industry as a means to bring services to thousands of customers who were previously unable to access such information [HP OpenCall, 2003]. Despite its limitations, many VoiceXML applications have been developed since the introduction of this new markup language.
The aim of this project was to review the status of VoiceXML 2.0 as a W3C standard and to assess the maturity of VoiceXML as a new technology. Field trials were conducted for this purpose and a series of projects developed using a range of tools and platforms.
While it has been shown that this recently adopted standard has many advantages and much potential, there are still many hurdles in the development process. The W3C only recently fixed this as a standard, and at the moment, only a minority of VoiceXML platforms meet the W3C’s criteria.
Although use of the technology currently lacks structure, this is an issue that time and commercial pressure will hopefully resolve. Thus the author is confident that VoiceXML will, in time, be able to reach its potential.
5.2. Possible Extensions

All coding and application development for this project was done in a Windows XP environment. However, OptimTalk (and others) do provide an equivalent platform for the Linux operating system. A comparison of VoiceXML platforms in Linux and in Windows could be conducted.

VoiceXML 2.0 is part of a greater framework – the W3C Speech Interface Framework. The goal of a subsequent project could be to assess this framework to obtain an overall perspective.

As was mentioned earlier, VoiceXML 2.1 is on its way. This could be studied as part of a future project. The tools that the author found problematic this year are now settling down and hopefully becoming more freely available in South Africa, so could be used to study the new version of VoiceXML if and when it is released as a standard. An investigation that uses these commercial hosted platforms could be carried out to discover whether serious commercial pressure does induce a conformance to standards.

Appendix A – VoiceXML 2.1’s new features
	Tag or Property
	Description

	Alternative Description

	<grammar>
	Allow dynamic specification of a grammar source URL.
	Referencing Grammars Dynamically – Generation of a grammar URI reference with an expression

	<script>
	Allow dynamic specification of a Javascript source URL.
	Referencing Scripts Dynamically – Generation of a script URI reference with an expression

	<mark>
	Provide the ability to detect barge-in during prompt playback.
	Using <mark> to detect barge-in during prompt playback – Placement of ‘bookmarks’ within a prompt stream to identify where a barge-in has occurred

	<data>
	Allow to fetch XML without requiring a dialog transition
	Using <data> to fetch XML without requiring a dialog transition – Retrieval of XML data, and construction of a related DOM object, without requiring a transition to another VoiceXML page

	<foreach>
	Allow dynamic concatenation of prompts.
	Concatenating prompts dynamically using <foreach> - Building of prompt sequences dynamically using Ecmascript

	<recordutterance>
	Allow the interpreter to conditionally enable recording while simultaneously gathering input from the user.
	Recording user utterances while attempting recognition – Provides access to the actual caller utterance, for use in the user interface, or for submission to the application server

	<disconnect>
	Allow a new attribute, namelist, which lists variable names to be returned to interpreter context.
	Adding namelist to <disconnect> - The ability to pass information back to the VoiceXML platform environment (for example, if the application wishes to pass results to a CCXML session related to this call)

	<transfer>
	Allow a new attribute, type, to specify the type of transfer. The value can be "bridge", "blind", or "consultation".
	Adding type to <transfer> - Support for additional transfer flexibility (in particular, a supervised transfer), among other capabilities.

Table 3: The new features proposed for VoiceXML 2.1 and the tags affected

	currently supported
by BeVocal
	supported by BeVocal
with modifications
	not yet supported
by BeVocal

At the time of writing, the latest version was a W3C Last Call Working Draft for review by W3C Members and other interested parties. The most up-to-date version of the VoiceXML 2.1 draft can be found at http://www.w3.org/TR/voicexml21/.

Appendix B – Other Standards

1. CCXML

The Call Control Extensible Markup Language (CCXML) is designed to provide telephony call control features. It is not meant to be a replacement for VoiceXML, but rather to serve as an adjunct and complementary language [HP OpenCall, 2003]. Nortel Networks [2004] explains further, saying CCXML works with, and complements, VoiceXML to offer greater control. CCXML enables applications to “seamlessly transfer calls, establish conference calls, or monitor incoming calls involving an unplanned event” [Nortel Networks, 2004].

2. XHTML

The eXtended HyperText Markup Language (XHTML) is the latest version of HTML. XHTML document types are XML-based and designed to work with XML agents [Scholz, 2003]. The Voice Working Group has announced that speech markup in XHTML may be possible [Lippencott, 2004].

3. X+V

The XHTML + Voice specification combines spoken interaction with standard web content by integrating mature XHTML and XML-Events technologies with XML vocabularies. Voice modules that support speech synthesis, speech dialogues, command and control, speech grammars and the ability to attach voice event handlers, are included in the specification [Scholz, 2003].

4. SALT

Speech Application Language Tags is a platform-independent set of development tags. SALT, originally intended for use in an interface on handheld devices [Lippencott, 2004], makes possible multimodal and telephony enabled access to information, applications and Web services from PCs, telephones, tablet PCs and wireless PDAs. The standard extends the existing markup languages such as HTML, XHTML and XML [HP OpenCall, 2003]. According to an announcement in October 2003, Microsoft supports SALT over VoiceXML [Lippencott, 2004].

5. Summary

In summary, there are now three alternatives for the speech industry: VoiceXML, XHTML and SALT [Lippencott, 2004]. There appears to have been some confusion in the industry about whether SALT can work with VoiceXML, or if there is conflict between the two standards. There has been considerable press devoted to this conflict, termed a “mini spice war” [Comverse, 2002]. According to Scholz, some developers do not want to make a choice between the two key standards and are waiting for the industry to choose one [Scholz, 2003]. Platt suggests that, although either one may emerge as the dominant standard, they may coexist equally first, or they may even merge. Either way, they will both continue to evolve and new standards will emerge. So it is irrelevant which standard will win in the contact centre market [Platt, 2004].

Jackson claims that SALT and VoiceXML will coexist because they appeal to different markets: SALT appeals to those web developers creating multimodal applications; VoiceXML appeals to telecom companies and traditional IVR based companies who want greater control over voice-only applications [Jackson, 2004].

Comverse also believes that the two standards were intended to work together, each adding value in their unique way. Once again, the distinction is drawn that SALT works best with multiple devices, whereas VoiceXML is optimized for voice-only applications. Many companies are members of both the SALT and the VoiceXML Forums [Comverse, 2002].

Potter looks at the similarities between the two markup languages and comes to the same conclusion. There are two specifications because they were designed to address different needs, and were designed at different stages in the life cycle of the Web. When VoiceXML was developed, the aim was over-the-telephone dialogues; SALT arose from the need to enable speech on more devices [Potter, 2002].

Although Potter states his bias toward SALT, he offers objective information on both SALT and VoiceXML, comparing and contrasting the two.

Appendix C – References

	[Anderson, 2002]
	Anderson, Mya L. VoiceXML An Investigation. 11 November 2002.

	[Beasley et al, 2002]
	Beasley, R., Farley, K.M., O’Reilly, J. and Squire, L.H.
Voice Application Development with VoiceXML. Sams Publishing, Indianapolis, 2002.

	[Berkowitz, 2001]
	Berkowitz, Stuart. “VoiceXML in an Economic Slowdown”
VoiceGenie Technologies Inc. 28 November 2001. Available online: http://www.voicegenie.com/pdf/BottomLine_12c.pdf
Accessed: 20 May 2004.

	[Brøndsted, 2004]
	Brøndsted, Tom. “Unification Grammar + VoiceXML”
Aalborg University. 07 April 2004. Available online: http://cpk.auc.dk/~tb/kurser/IMMSPEECH2004/IMM-SpeecchSpring 2004_MM9.pdf
Accessed: 15 May 2004.

	[Cenek, 2004]
	Cenek, Pavel. “OptimTalk Characteristics” OptimSys Ltd. 09 July 2004. Available online: http://www.optimsys.cz/technology/characteristics.php
Accessed: 18 August 2004.

	[Comverse, 2002]
	Comverse. “A Dash of SALT to Bring Multimodality to an Application Near You” Comverse Insights. January 2002. Available online: http://www.comverse.com/news/pdf/insights_0201.pdf
Accessed: 26 May 2004.

	[Cooper, 2004]
	Cooper, Andrew. “The Speech Technologies Market: Past, Present and Future” Ectaco Inc. Available online: http://www.speechtechmag.com/whitepapers/ectaco.doc
Accessed: 20 May 2004.

	[Dass et al, 2002]
	Dass, A., Gupta, V. and Shukla, C. VoiceXML 2.0 Developer's Guide: Building Professional Voice-Enabled Applications with JSP, ASP, & ColdFusion. McGraw-Hill/Osborne, Berkeley, 2002.

	[Datamonitor, 2003]
	Datamonitor. “Voice Automation: Past, Present and Future” Datamonitor. July 2003. Available online: http://www.speechtechmag.com/whitepapers/Intervoice.pdf
Accessed: 20 May 2004.

	[Eidsvik, 2001]
	Eidsvik, Bruce. “Power to the People! VoiceXML in the Hands of the Workforce” VoiceGenie. 26 November 2001. Available online: http://www.voicegenie.com/pdf/PowerToThePeople_12c.pdf
Accessed: 20 May 2004.

	[Enthoven, 2004]
	Enthoven, Daniel. “VoiceXML on Auto Row” VoiceXML Review. February 2004. Available online: http://www.voicexmlreview.org/Feb2004/features/Feb2004_auto_row.html
Accessed: 10 May 2004.

	[Fluss, 2004]
	Fluss, Donna M. “The Practical Guide to Speech Recognition”
DMG Consulting LLC. 25 November 2004. Available online: http://www.speechtechmag.com/whitepapers/dmg.pdf
Accessed: 20 May 2004.

	[HP OpenCall, 2003]
	HP OpenCall. “VoiceXML: Changing the landscape of voice services” HP OpenCall. July 2003. Available online: http://www.speechtechmag.com/whitepapers/hp1.pdf
Accessed: 20 May 2004.

	[IBM, 2004a]
	IBM. “IBM WebSphere and Eclipse”
IBM Website. Available online: http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=eclipse/index
Accessed: 10 October 2004.

	[IBM, 2004b]
	IBM. “Voice Toolkit for WebSphere Studio” IBM Website. Available online: http://www-306.ibm.com/software/pervasive/voice_toolkit/
Accessed: 10 October 2004.

	[Jackson, 2001]
	Jackson, Eric. “VoiceXML: Open for Business” Wireless Week,
Vol. 7 Issue 29, p33. 16 July 2001.

	[Jackson, 2004]
	Jackson, Eric. “VoiceXML and SALT which is best for you?” VoiceGenie. Available online: http://www.speechtechmag.com/whitepapers/voicegenie.ppt
Accessed: 20 May 2004.

	[Larson, 2004]
	Larson, James. “VoiceXML lets you talk to computers”
NetworkWorld. Vol. 21 Issue 12, p63. 22 March 2004.
Available online from EBSCOhost: http://search.epnet.com/direct.asp?an=12603666&db=buh
Accessed: 22 May 2004.

	[Lippencott, 2004]
	Lippincott, Richard, J. “Voice Extensible Markup Language Status” Intercom. Vol. 51 Issue 4, p23. April 2004. Available online: http://www.stc.org/intercom/PDFs/2004/200404_23-25.pdf
Accessed: 25 May 2004.

	[Miller, 2002]
	Miller, Mark. VoiceXML: 10 Projects to Voice-Enable Your Web Site.
Wiley Publishing, New York, 2002.

	[Noor, 2004]
	Noor, Sadaf. Msg id: 1098. Email to Yahoo VoiceXML Developer Group. Sent 05 July 2004.

	[Nortel Networks, 2003]
	Nortel Networks. “Go ahead, talk. The Web is listening.”
Nortel Networks White Paper. August 2003. Available online: http://www.nortelnetworks.com/products/04/eba/asr/collateral/nn104680_081203.pdf
Accessed: 24 May 2004.

	[Nortel Networks, 2004]
	Nortel Networks. “Understanding the real business value of VoiceXML and Call Control XML”
Nortel Networks. April 2004. Available online: http://www.speechtechmag.com/whitepapers/NortelNetworks.pdf
Accessed: 20 May 2004.

	[Orubeondo, 2001]
	Orubeondo, Ana. “The Power of Voice” InfoWorld Test Center.
18 May 2001. Available online: http://archive.infoworld.com/articles/tc/xml/01/05/21/010521tcvxml.xml
Accessed: 24 May 2004.

	[Platt, 2004]
	Platt, George T. “VoiceXML Versus SALT: Selecting A Voice Application Standard” TMC Customer Inter@ction Solutions.
May 2004. Available online: http://www.tmcnet.com/cis/0504/cccrm1.htm
Accessed: 27 May 2004.

	[Potter, 2002]
	Potter, Stephen. “SALT or VoiceXML for Speech Applications?”
DevX. 17 September 2002. Available online: http://www.devx.com/xml/Article/9624/1954
Accessed: 24 May 2004.

	[Raggett, 2001]
	Raggett, Dave. “Getting Started with VoiceXML 2.0”
W3C. 14 November 2001. Available online: http://www.w3.org/Voice/Guide/
Accessed: 22 March 2004.

	[Regruto, 2003]
	Regruto, Luciano. “VoiceXML – Surfing on the Internet Using Voice” Business Briefing: Wireless Technology 2003. p122 Available online: http://www.vxmlitalia.com/bb2003.pdf
Accessed: 26 May 2004.

	[Scholz, 2003]
	Scholz, K. W. “Beyond SALT Versus VoiceXML: Coping With The Wealth Of Standards In Speech And Multimodal Self-Service Applications” TCM Customer Inter@ction Solutions.
Vol. 21 Issue 9, p52. March 2003. Available online: http://www.tmcnet.com/cis/0303/0303cccrmms.htm
Accessed: 24 May 2004.

	[Seth, 2001]
	Seth, Hitesh. “Tools for Developing VoiceXML Applications”
XML-Journal. 07 March 2001.
Available online: http://www.sys-con.com/xml/article.cfm?id=135
Accessed: 20 May 2004.

	[Seth, 2002]
	Seth, Hitesh. “Selecting a VoiceXML Gateway”
XML-Journal. 20 June 2002.
Available online: http://www.sys-con.com/xml/article.cfm?id=445
Accessed: 20 May 2004.

	[Syntellect, 2003a]
	Syntellect. “Maximize Your Internal Customer Service With Syntellect Speech-Enabled Solutions” Speaking of…
August 2003, p3. Available online: http://www.syntellect.com/downloads/AugustNewsletter.pdf
Accessed: 21 May 2004.

	[Syntellect, 2003b]
	Syntellect. “Navigating the Waters of VoiceXML Part I”
Speaking of… June 2003, p7. Available online: http://www.syntellect.com/downloads/JuneNewsletter.pdf
Accessed: 21 May 2004.

	[Syntellect, 2003c]
	Syntellect. “Navigating the Waters of VoiceXML Part II”
Speaking of… July 2003, p6. Available online: http://www.syntellect.com/downloads/JulyNewsletter.pdf
Accessed: 21 May 2004.

	[Syntellect, 2003d]
	Syntellect. “Navigating the Waters of VoiceXML Part III”
Speaking of… August 2003, p8. Available online: http://www.syntellect.com/downloads/AugustNewsletter.pdf
Accessed: 21 May 2004.

	[Tappert, 2004]
	Tappert, Charles C. “VoiceXML Business Applications”
Pace University. Available online: http://csis.pace.edu/~ctappert/pervasive/voicexml/business.htm
Accessed: 24 May 2004.

	[The Economist, 2002]
	The Economist. “The Power of Voice” The Economist.
14 December 2002, Vol. 365, Issue 8303. Available online: http://search.epnet.com/direct.asp?an=8683466&db=aph
Accessed: 25 May 2004.

	[VoiceXML Forum, 2004a]
	VoiceXML Forum. “VoiceXML’s History” VoiceXML Forum Tutorial. Available online: http://www.voicexml.org/tutorials/intro7.html
Accessed: 28 May 2004.

	[VoiceXML Forum, 2004b]
	VoiceXML Forum. “VoiceXML Forum Endorses Release of VoiceXML 2.0 Recommendation by W3C” VoiceXML Forum Press Release. 16 March 2004. Available online: http://www.voicexml.org/pr20040316.html
Accessed: 28 May 2004.

	[VoiceXML Forum, 2004c]
	VoiceXML Forum. “VoiceXML Forum Certified Platforms” VoiceXML Forum Platform Certification Program. Available online: http://www.voicexml.org/platform_certification/certified_platforms.html
Accessed: 15 September 2004.

	[VoiceXML Forum, 2004d]
	VoiceXML Forum. “Member Testimonials” VoiceXML Forum Testimonials. Available online: http://www.voicexml.org/testimonials.html
Accessed: 02 May 2004.

	[Wagner, 2003]
	Wagner, Jim. “Forum to Certify VoiceXML Platforms” Boston.Internet.Com. Available online: http://boston.internet.com/news/article.php/3086401
Accessed: 15 September 2004.

	[W3C SRGS, 2004]
	W3C. Speech Recognition Grammar Specification Version 1.0

W3C Recommendation, 16 March 2004. Available online:

http://www.w3.org/TR/2004/REC-speech-grammar-20040316/
Accessed: 12 August 2004.

	[W3C VoiceXML, 2004]
	W3C. Voice Extensible Markup Language (VoiceXML) Version 2.0

W3C Recommendation, 16 March 2004. Available online:

http://www.w3.org/TR/2004/REC-voicexml20-20040316/
Accessed: 29 April 2004.

� or, more accurately, a digital audio format which resembles speech.

� artwork available at http://www.eveandersson.com/arsdigita/asj/vxml/

� Adapted from http://www.optimsys.cz/technology/voicebrowser.php#arch

� More details about this can be found in the previous section on platform analysis�.

� LH Michael and Microsoft Sam are two of the voices available for use with the Microsoft Speech API which OptimTalk uses for generation of speech.

� Description as found at � HYPERLINK "http://cafe.bevocal.com/docs/vxml2-1_summary/index.html" ��http://cafe.bevocal.com/docs/vxml2-1_summary/index.html�

� Description as found at � HYPERLINK "http://www.voicexmlreview.org/Sep2004/columns/sep2004_first_words.html" ��http://www.voicexmlreview.org/Sep2004/columns/sep2004_first_words.html�

