
 I

A COMPARATIVE ANALYSIS OF THE LAMP AND

MICROSOFT.NET FRAMEWORKS.

By: Christo Crampton, g01c1073

Supervised by: Madeleine Wright

2005

Abstract:

The LAMP (Linux, Apache, MySQL, PHP) and .NET web development stacks

represent two dominant competing technologies in the web development problem

domain. New features in recent major releases of PHP and MySQL show a drive

within the LAMP platform towards larger scale enterprise development.

Similarly, ASP.NET 2.0 is an impressive upgrade from ASP.NET 1. This project aims

to conclusively analyze these new technologies, and compare their relative strengths

and weaknesses

To develop a successful understanding of the technologies a web application was

produced. This application, in conjunction with stress and load testing was used to

critically analyse the relative technologies. Analysis was performed in particular with

regards to performance and capability of the applications in terms of data access,

security, support for Web Services and XML, and performance.

From the research it is evident that both technologies are well suited to development

within the web domain, however, ASP.NET is better suited to large-scale enterprise

development. Although LAMP is comparable to ASP.NET in terms of performance

and final product, development and maintenance of complex applications using

LAMP is more intricate and problematic than the same with ASP.NET. While LAMP

is ideal for smaller projects, and is capable of creating high-quality large scale

applications, ASP.NET is better suited to larger scale development.

 II

Acknowledgments

Special thanks must go to my supervisor, Madeleine Wright for her consistent help,
advice and direction throughout the year; and friendly support and constructive
criticism. Thanks also to the Telkom COE for providing testing servers on which
comparative tests could be performed. Thanks to Mike Horne for help and technical
support with regards to setting up the Linux environment.

 III

ACKNOWLEDGMENTS.. II

TABLE OF FIGURES ..V

TABLES AND CODE LISTINGS ...VI

CHAPTER 1 – INTRODUCTION... 1

1.1. PROBLEM STATEMENT : .. 1
1.2. BACKGROUND .. 1
1.3. METHODOLOGY .. 2
1.4. DOCUMENT STRUCTURE ... 3

CHAPTER 2 – THE APPLICATION ... 5

2.1. OVERVIEW ... 5
2.2 CHANGES TO THE APPLICATION ... 6
2.3. ARCHITECTURE OF THE APPLICATION .. 6
2.4. DESIGN IMPLICATIONS WITH .NET ... 9
2.5. DESIGN IMPLICATIONS WITH LAMP... 11
2.6. CONCLUSION ... 12

CHAPTER 3 – DATABASE CONNECTIVITY .. 13

3.1. INTRODUCTION .. 13
3.2. THE CORE STRUCTURE OF THE DATABASE ... 13
3.3. DATA ACCESS WITH PHP ... 14
3.3.1 CREATING THE DATA ACCESS LAYER (DAL) .. 14
3.3.2. PERFORMANCE... 18
3.3.3. SHORTCOMINGS... 19
3.3.4. CONCLUSIONS REGARDING LAMP DATABASE CONNECTIVITY 21
3.4. DATA ACCESS WITH .NET ... 21
3.4.1. CONCLUSION ON DATA ACCESS WITH .NET ... 26
3.5. CONCLUSION ... 27

CHAPTER 4 – SECURITY.. 28

4.1. INTRODUCTION .. 28
4.2. SECURITY VULNERABILITIES ON THE INTERNET .. 28
4.2.1. COMMON WEB-BASED SECURITY EXPLOITS.. 28
4.3. TECHNOLOGY NEUTRAL SECURITY POLICY ... 32
4.3.1. MATCHING INPUT DATA TO A PATTERN.. 32
4.3.2. RUNNING ON LEAST PRIVILEGES.. 32
4.3.3. STORAGE OF PRIVATE DATA ... 33
4.4. IMPLEMENTING A SECURE SYSTEM WITH LAMP ... 33
4.4.1. WRITING SECURE PHP...33
4.4.2. SECURITY WITH APACHE... 35
4.4.3. SECURING MYSQL .. 37
4.5. IMPLEMENTING A SECURE SYSTEM WITH .NET.. 38
4.5.1. SECURITY IN THE VISUAL ENVIRONMENT ... 38

 IV

4.6. CONCLUSION ... 42

CHAPTER 5 – WEB SERVICES AND XML .. 44

5.1. INTRODUCTION .. 44
5.2. THE USE OF WEB SERVICES ... 44
5.3. IMPLEMENTING WEB SERVICES WITH LAMP.. 46
5.3.1. CONCLUSION ON LAMP WEB SERVICES... 51
5.4. IMPLEMENTING WEB SERVICES WITH .NET .. 52
5.5. CONCLUSION ... 56

CHAPTER 6 – PERFORMANCE... 57

6.1. INTRODUCTION .. 57
6.2. WHAT IS CACHING ?... 57
6.3. OPTIMIZATION WITH LAMP.. 58
6.3.1. USING CACHE_L ITE FOR CHUNKED, FILE-BASED OUTPUT CACHING 58
6.3.2. CACHING WITH ASP.NET ... 63
6.4. CONCLUSIONS.. 67

CHAPTER 7 – CONCLUSION ... 70

7.1. OUTCOMES AND CONCLUSION ... 70
7.2. FUTURE WORK .. 71
7.2.1. EXTENSION OF THE CORE APPLICATION... 71
7.2.2. FURTHER ANALYSIS... 71

REFERENCES .. 72

APPENDIX I – SCREENSHOTS ... I

APPENDIX II – UML AND DESIGN.. I

 V

Table of Figures

FIGURE 1 - 3 TIERED ARCHITECTURE...7
FIGURE 2 - AN EXAMPLE OF AS MASTERPAGE ..10
FIGURE 3 - CORE DATABASE STRUCTURE ..14
FIGURE 4 - DATA ACCESS OBJECT [ALUR. ET AL., 2003] ..15
FIGURE 5 – CLASS DIAGRAM OF THE DAL DATA OBJECTS FOR PHP....................................17
FIGURE 6 - DATA ACCESS PERFORMANCE..19
FIGURE 9 – DATASET ..24
FIGURE 10 - QUERY ANALYZER ...25
FIGURE 12 - VULNERABLE TEXTBOX ...41
FIGURE 13 - EXPLOITED VALIDATION CONTROL..42
FIGURE 14 - SCREENSHOT OF THE .NET GUI ...45
FIGURE 15 - REST ARCHITECTURE [HINCHCLIFF. 2005] ...48
FIGURE 16 - REST SERVICES VS. SOAP SERVICES (.NET), ORANGE IS REST, GREEN IS

SOAP, THE RED LINE REPRESENTS USER LOAD...54
FIGURE 17 - .NET SOAP AND REST SERVICES AND LAMP REST SERVICE............................55
FIGURE 18 – A CACHED PAGE...61
FIGURE 19 – CREATING THE CACHE ...61
FIGURE 20 - A PAGE WITH NO OUTPUT CACHING ...61
FIGURE 22 - LAMP HOME PAGE .. I
FIGURE 23 – LAMP FRANCHISE PAGE .. II
FIGURE 24 – LAMP GALLERIES PAGE... II
FIGURE 25 - LAMP GALLERY PAGE ... III
FIGURE 26 – LAMP PICTURE PAGE... III
FIGURE 27 - .NET HOME PAGE ..IV
FIGURE 28 - .NET FRANCHISE PAGE ..IV
FIGURE 29 - .NET GALLERIES PAGE..V
FIGURE 30 - GALLERY PAGE ..V
FIGURE 31 - PICTURE PAGE ...VI
FIGURE 32 - LAMP DATA ACCESS LAYER.. I
FIGURE 33 - COMPLETE USE CASE DIAGRAM.. II
FIGURE 34 - SITE MAP ... III

 VI

Tables and Code Listings

LISTING 1 - STANDARD SQL QUERY CONSTRUCTION USING DB::PREPARE AND

DB::EXECUTE ..16
TABLE 2 - DATA CONNECTIVITY PERFORMANCE...19
LISTING 3 - REFLECTION OF A DATA OBJECT REVEALING CONNECTION INFORMATION

..20
LISTING 4 - STORED PROCEDURES CREATED BY SQL QUERY ANALYSER.........................25
LISTING 5 - REGISTER GLOBALS EXPLOIT [PHP MANUAL. 2005] ...34
TABLE 6 - SQL INJECTION..39
LISTING 7 - USING THE SOAPSERVER AND SOAPCLIENT CLASSES46
LISTING 8 - CREATING A REST WEB SERVICE ..50
LISTING 9 - CALLING A WEB SERVICE USING THE HTML IMAGE TAG51
TABLE 10 - AVERAGE RESPONSE TIMES FOR WEB SERVICES..55
TABLE 11 - AVERAGE RESPONSE TIMES FOR A CACHED AND UN-CACHED PAGE...........61
LISTING 12 - HOW THE ASP.NET TEMPLATING ENGINE CONVERTS AN ASP:LABEL

CONTROL TO HTML...65
TABLE 13 - CACHING WITH .NET..65
LISTING 14 - CACHING WITH THE .NET CACHE OBJECT ..67
LISTING 15 - APPLYING SQL SERVER 2005 NOTIFICATION-BASED CACHE INVALIDATION

TO A SQLDATASOURCE..67

Chapter 1 - Introduction

 1

Chapter 1 – Introduction

1.1. Problem Statement:

The primary goal of this project is to provide valuable insight into the inner workings

of the LAMP (Linux, Apache, MySQL, PHP) and .NET Frameworks so as to provide

a strong comparative analysis of these technologies in terms of both their capabilities

and performance for creating web applications.

1.2. Background

LAMP applications and classic ASP (Active Server Pages) have over the years

stamped their authority on the internet as the leading and most commonly used server-

side scripting languages [Netcraft, 2005]. Prior to the release of ASP.NET it was

fairly unanimous that the LAMP platform had the edge over classic ASP.

However, with the release of ASP.NET - Microsoft’s next generation web

development platform - in 2000, the position of LAMP as the top web development

platform suddenly seemed threatened. ASP.NET was not simply an upgrade of classic

ASP, but an entire rewrite. ASP.NET offered several important features including a

strongly object oriented framework, support for multiple languages (including an

entirely new language - C#), and compiled ASP.NET pages boasting (according to

Microsoft), twice the speed of classic ASP pages.

ASP.NET quickly established itself as the platform of choice, alongside Java, for

large-scale enterprise-level web development. LAMP on the other hand has generally

been sidelined to smaller applications and considered not yet ready for the enterprise.

The new releases of PHP 5 and MySQL 5 see both these platforms maturing, with

increasing emphasis on enterprise related features. PHP 5, released early in 2005,

offers much improved object oriented support as well as improved in-built support for

XML and Web Services. MySQL 5, released in November 2005, also sees a maturing

Chapter 1 - Introduction

 2

of MySQL with new support for enterprise features such as stored procedures,

functions and triggers.

On the .NET side, the .NET framework version 2, alongside Visual Studio 2005, was

also released in 2005. ASP.NET 2 includes many impressive new features such as

new controls, masterpages and themes which promote rapid and robust development.

In 2000, when ASP.NET was introduced, the question on many people’s minds was:

Is LAMP dead? In 2005 the new question is: Is LAMP ready for the enterprise? This

paper looks at LAMP against a well established enterprise development framework,

ASP.NET, and aims to establish a solid unbiased report as to the relative strengths and

weaknesses of these development frameworks

1.3. Methodology

Firstly it must be emphasised that this project analyses the framework as a whole. The

development frameworks, as mentioned earlier, are: LAMP, running Ubuntu

“Breazy” Linux (Debian) server version, Apache 2, MySQL 4.0.24, and PHP 5; and

.NET using Microsoft Windows Server 2003, Microsoft IIS (Internet Information

Services) web server, Microsoft SQL Server 2005 database server and ASP.NET C#

as a programming language.

This paper analyses the performance and capabilities of the entire framework. The

LAMP and .NET configurations above represent typical configurations which are

widely used in the enterprise. It is important that the framework as a whole is

analyzed and not its separate components (such as just PHP or ASP.NET) because

any typical web application requires a web server, database engine and coding

language. Results from comparative analysis of the single components are easily

doctored and are unreliable because performance can be affected by other components

used in the testing framework. For example although both PHP and ASP.NET can

connect to SQL Server, we would expect the configuration to favour ASP.NET

because it is tailored for use with SQL Server. By analysing the defined system as a

whole we obtain a far more holistic view of the comparative performance and

capabilities of the technologies operating within their optimal frameworks.

Chapter 1 - Introduction

 3

Additionally, since the entire platform is analyzed, it is important to bear in mind that

the strengths or weaknesses of a single component affect the overall analysis of the

entire framework.

From the outset a number of features were decided upon as core features critical to

most modern, enterprise–level, web applications. These features are: database

connectivity, security, Web Services and XML, and performance. Research was

undertaken to critically analyse the frameworks in terms of support for these features.

Credit was given not only for high performance solutions, but also for frameworks

which encouraged or promoted the development of robust, scalable and maintainable

solutions.

To establish an effective analysis of the frameworks a web application was developed

using both frameworks. The application served as the basis for feature comparison

within the frameworks and provided practical experience upon which to base analysis

of the capabilities of the frameworks.

In addition to practical experience and insight, test pages were created to test various

features of the platforms. These pages were submitted to load tests as well as being

tested for general response time.

Comparative tests were performed on identical separate computers. These computers

boast high-end desktop computer specifications: 3Ghz Pentium 4 processor, 1

Gigabyte of RAM and 250 Gigabytes of storage space. Load tests were performed

against both technologies using the Microsoft Visual Studio load test and web test

tools, and Apache Bench benchmarking tool on Linux.

1.4. Document Structure

Chapter 2 offers insights into the architecture of the web application which was

developed for testing. This chapter illustrates both the core features of the application

as well as explaining how the application was used to gain expertise in the various

sections and why it proved a useful test-bed for analysis. Thereafter, chapters 3 to 6

analyze in depth the issues with regards to data access, security, web services and

Chapter 1 - Introduction

 4

performance respectively. Finally, chapter 7 outlines the outcomes of the project and

draws relevant conclusions.

Chapter 2 – The Application

 5

Chapter 2 – The Application

In this chapter we explore the example application which was developed as a test-bed

for evaluating the frameworks. The changes which were made to the applications and

improvements are discussed, in particular with reference to the improved architecture

of the new system. Finally a short discussion of the design environments for .NET and

LAMP is discussed.

2.1. Overview

www.38.co.za is an existing, live photo gallery website which was developed by the

author and was founded in February 2003. The site generates over a million hits a

month and to date has over 17 000 photographs, over 200 galleries and a subscribed

user-base of over 6000 users. www.38.co.za serves as the perfect test-bed for

examining the capabilities of the frameworks because of both the performance and

feature requirements of the site.

Chapter 2 – The Application

 6

2.2 Changes to the Application

The original application was developed using LAMP. The existing application has

become bloated over the two years over for which it has been running, due to ad-hoc

development which has been implemented to supply new features on top of the

original framework. As a result code has become riddled with unnecessary or repeated

logic and spurious, complicated SQL statements. The goals for developing the new

application were to use it as a test-bed for the project, re-creating the basic

functionality of the old system but implementing a new robust n-tier architecture. It

was not a goal to reproduce the complete functionality of the application, but rather,

to produce a smaller, robust application with a solid architecture which would be

easier to extend and maintain than the previous application.

The application developed in this project, although not as complete a solution as the

original application provides a solid architecture for the application on which future

development can be performed.

2.3. Architecture of the Application

The major design goals for the new application were to refactor the 2-tier LAMP code

into a solid and robust 3-tier architecture, separating business logic to the BLL

(Business Logic Layer) and data access code to the DAL (Data Access Later). The

presentation layer, responsible for organizing data and delivering an interface to the

end user, was designed to be a thin layer with all complicated logic pushed into the

BLL, and all data access code pushed to the DAL. Figure 1 illustrates a typical n-tier

architecture, and the architecture of the new application.

Chapter 2 – The Application

 7

Figure 1 - 3 tiered architecture

Each layer in the application performs a specific task. This provides solid separation

of logic, which eases the tasks of future maintenance and extension of the application.

Another advantage of a tiered architecture is that it provides a centralized and

specialized framework which promotes re-use of objects. The major advantage of

such centralization is that changes to code need only be implemented once to reflect

throughout the entire application. For example, input validation at the presentation

layer is delegated to objects in the BLL. To upgrade validation throughout the entire

presentation layer requires only that a single object in the BLL is updated. This

improves control of the system because it is easier to keep track of functionality

within the application. It also helps in creating and enforcing a policy towards issues

such as security throughout the application.

Chapter 2 – The Application

 8

Furthermore, a tiered architecture improves the scalability and flexibility of the

application. Theoretically any layer can be swapped or replaced with little or no effect

on the system. Although this may not often be the case in practice, it is one of the

potential benefits of a layered architecture.

Specialized security can be implemented at every layer. For example, the tiered

architecture promotes validation of input at the presentation layer, as well as integrity

validation of data at the DAL against the database structure. The layered approach

greatly decreases the chances of vulnerabilities in the application.

At the presentation layer there are two interfaces: a public Web Service API (which

interacts with client applications through SOAP Web Services and XML, REST

(Representational State Transfer) Web Services or RSS (Really Simple Syndication));

and the private HTML presentation layer used to serve web pages to the browser. By

placing almost all logic in the BLL and DAL, the presentation layer is kept as thin as

possible. Therefore, necessary changes to the structure or logic of the system need

only be implemented in the backend layers of the system. The presentation layer is

merely concerned with the display and format of information and workflow from the

lower layers. The presentation layer is abstracted from the logic and structure issues

dealt with by the lower layers.

Each tier represents unique challenges with regards to the project: issues regarding

database connectivity, discussed in chapter 3 – “Database Connectivity”, are

encapsulated in the DAL. Similarly Web Services and XML, discussed in chapter 5 –

“Web Services”, are encapsulated at the presentation layer. Most security issues,

discussed in chapter 4 – “Security”, are dealt with in the BLL, although security is

implemented at every layer of the application. Finally, performance, such as caching,

which is discussed in chapter 6 – “Performance”, is typically implemented at the

presentation layer.

The application embodies a typical web application, and highlights challenges facing

web developers. Therefore, it is a good test-bed for comparative analysis of the

capabilities of the technologies.

Chapter 2 – The Application

 9

2.4. Design Implications with .NET

In the ASP.NET version of the application, the database was a SQL Server database.

A lot of the data access functionality was pushed into the database server by using

stored procedures so that no actual SQL is written in code. The Data Access Layer

(DAL) was built using .NET DataSet objects. DataSets abstract database tables to in-

memory programmable objects. Creating the DAL with .NET is discussed in more

detail in chapter 3 – “Database Connectivity”, in the section “Data Access with

.NET”.

The Business Logic Layer (BLL) consists of a package of ASP.NET classes

responsible for handling business logic and workflow. The presentation layer is a thin

layer and is built using ASP.NET Web Forms and SOAP as well as REST Web

Services. There are effectively three presentation interfaces, namely: an HTML

interface typically used for browsing the site; and REST and SOAP Web Service

interfaces used to empower remote syndication via remotely accessibly web methods

and services.

At the presentation layer, new features in ASP.NET 2.0 such as master-pages, skins

and themes, mentioned in more detail below, greatly improve the ability of the

designer to create a uniform look and feel for a webpage. It is important that all

possible logic at this level is abstracted to the BLL Layer so that changes to logic and

structure can be centralized to changes in the BLL and therefore do not need to be

implemented in all three presentation interfaces.

Presentation level design in Visual Studio .NET 2005 is aided by a number of new

controls. Most notable are master-pages and themes. Master-pages allow the

developer to easily define a uniform structure for a website. Pages inheriting from the

master-page automatically inherit the structure and logic encased in the parent master-

page. Master-pages effectively abstract the fairly complex issue of creating a uniform

look and feel for an entire site, or section of a site. Furthermore, master-pages make it

extremely easy to change the entire look and feel of a website from a central location.

Chapter 2 – The Application

 10

Master-pages achieve centralized control of a system similar to, but more flexible and

easier to use than CSS (Cascading Style Sheets). Figure 2 shows a screenshot of the

core masterpage for the application. This image illustrates how master-pages help

maintain a uniform look and feel over a webpage. The core frame of the site is

included in all pages inheriting from the master page, and content unique to the

specific page is stored in the ContentPlaceHolder (the box with the blue heading in

the image below).

Figure 2 - An example of a Masterpage

Similar to master-pages, themes enable the developer to attach defined themes to

controls. For example, the developer can define the look of a single control in a

themed .skin file, and easily apply this to all controls of the same type throughout

the application. Again, similar to CSS technology, but more powerful because, like

master-pages, they are built into the ASP.NET templating engine, not merely used at

an HTML level, and therefore can be accessed transparently through C# code.

Chapter 2 – The Application

 11

Every step of the design process in .NET is accomplished through the use of rich

visual aids. An impressive feature of Visual Studio, which has always been a strong

point, and has been improved with version 2005, is the interaction between visual aids

and implementation, as will be discussed in the following paragraphs.

UML (Unified Modelling Language) tools such as class diagrams, ORM database

diagrams (see Figure 3 - Core Database Structure) and the visual dataset designer

(Figure 9 – DataSet) are integrated into the environment and serve to merge the

design and implementation processes, so easing the process of synchronisation

between the two and shortening development time by enabling the developer to

produce the core implementation of the project at design time.

A particularly good example of this is the class diagram tool (new to Visual Studio

2005) which enables the developer to design a class diagram in UML, while Visual

Studio 2005 creates the respective class stubs in the background. Changes that are

made at a later stage to the code are automatically synchronised with the class

diagram ensuring that the diagram and code are accurate reflections of each other. The

visual design environment is useful because it makes it easier to manage larger

applications where design and code or application structure often become

unsynchronised.

2.5. Design Implications with LAMP

The LAMP version of the Application was developed using the popular PHP/MySQL

combination running on an Apache web server.

MySQL (prior to the recent release of version 5) is a light database which emphasized

speed as a priority over issues such as advanced functionality. As a result stored

procedures were not used, all data access was written in code and SQL queries were

generated dynamically. According to Gulutzan [2005] stored procedures add extra

security to applications as well as improving the performance of database queries.

However, stored procedures are new to MySQL 5, and even the MySQL website

issues a warning regarding their use in applications: “Stored procedures are something

new for MySQL, so naturally you'll approach them with some caution. After all,

Chapter 2 – The Application

 12

there's no track record, no large body of user experience that proves they're the way to

go” [Gulutzan. 2005]. This debate as well as an explanation of how the DAL was

created in LAMP using PHP data objects is taken up in chapter 3 – “Database

Connectivity”, in particular in the section entitled “Data Access with LAMP”.

In the BLL functionality to encapsulate workflow and user logic is stored. In addition

we created classes to handle forms similar to controls in ASP.NET. The classes in the

BLL and DAL proved a useful testing ground for the new object orientation in PHP 5.

Chapter 5 – Web Services, and the section, “Implementing Web Services with LAMP,

offer some interesting insights into the complexities of creating Web Services with

PHP, and reveal an alternative method of Web Services to the conventional SOAP

Web Service.

2.6. Conclusion

A complex and complete 3-tier application was created using both technologies. The

application improves on the architecture of an existing web application. Although the

new application provides only the core functionality of the existing application, this

core is built on top of a solid architecture featuring code-separation and logic

centralization which help produce a robust application that is both easier to maintain

and upgrade.

The application provides a complete problem domain for successful feature

comparison of web development technologies in particular, with relevance to security,

data access, performance and Web Services.

Chapter 3 – Database Connectivity

 13

Chapter 3 – Database Connectivity

3.1. Introduction

Data connectivity is a vital component of almost all web applications. Whether the

data is stored in a database, XML or even a text file, the vast majority of web

applications use some form of data storage mechanism to store persistent data. A good

application should be able to connect to a data store effectively and efficiently.

This chapter evaluates the technologies, LAMP and .NET, in terms of support for

efficient and robust data access. With each technology, we examine the various data

access methods which are available, measuring up the strengths and weaknesses of

these methods.

It is important that data access is flexible. The main objective of a good data access

layer is to decouple the database server (MySQL or SQL Server in this case) from the

application code. The DAL provides a defined interface between the database server

and application code. This chapter examines the effectiveness of tools and methods

provided by the technologies to promote decoupling, and robust data access.

In our evaluation of the relative data access capacities of the technologies we

emphasise the requirements that data access logic be contained to the DAL, and that

data access is flexible, with emphasis on decoupling the database from the application

code.

3.2. The Core Structure of the Database

The core structure of the database is illustrated in Figure 3. The structure for the

database was modified from the original database. Extra tables were dropped and the

Chapter 3 – Database Connectivity

 14

core structure below was achieved. The database is a relational database with data

organized in a hierarchy which represents the data objects in the presentation layer.

Figure 3 - Core Database Structure

3.3. Data Access with PHP

3.3.1 Creating the Data Access Layer (DAL)

The LAMP DAL was developed with three major components: a database abstraction

layer (using PEAR::DB), a base-class DBHelper object, and data-objects (see Figure 4).

Chapter 3 – Database Connectivity

 15

Figure 4 - Data Access Object [Alur. et al., 2003]

The database abstraction layer provides the logic necessary to write pluggable DALs

which are decoupled from a particular database server. For example, PEAR::DB

connects with a “dsn ” (data source name) such as:

$dsn = "mysqli://$this->user:$this->pass@$this->hos t/$this->db_name";

This dsn specifies the database server to use as well as the connection details. In

theory this suggests that simply by changing the dsn one should be able to connect

and interact seamlessly with a completely different database server, provided that the

table structure of the database is the same. For example, to switch from using a

MySQL to a PostgreSQL database one need only change dsn as follows:

$dsn = "mysqli ://$this->user:$this->pass@$this->host/$this->db_na me";

to

$dsn = " pgsql://$this->user:$this->pass@$this->host/$this->db_na me";

Obviously changing the database backend is a more complicated process that simply

changing the one line of code, but a database abstraction layer such as PEAR::DB (or

ADO .NET’s table adapters) does go a long way in simplifying the process.

Chapter 3 – Database Connectivity

 16

Another complexity with regards to data connectivity is that not all databases support

standard SQL (in fact MySQL is notorious for its diversion from the SQL standard

[Troels. 2005]). Therefore, any custom written SQL code may not be compatible with

other database servers. It is the responsibiliy of the data abstraction layer to ensure

that code written is compatible. PEAR::DB includes functions (prepare() and

execute()) which contruct standard or compatible queries based on parameters

passed to them. For example:

$sql = "select t_categories.*, count(t_gal_cat.gal_ ID) as num_Gals

 from t_categories join t_gal_cat

 on t_gal_cat.cat_ID = t_categories.t_cat_ID

 where cat_ID = ?

 group by t_categories.t_cat_ID";

$sql = $this->db-> prepare($sql);

$this->rs = $this->db-> execute($sql,$id);

Listing 1 - standard SQL query construction using DB::prepare and DB::execute

Thus, using the PEAR::DB abstraction layer for both connections to a database as well

as dynamic query construction provides enhanced flexibility at the DAL.

Chapter 3 – Database Connectivity

 17

PEAR::DB

+countCols()

+countRows()

+doConnect()

+doDisconnect()

+next()

+reset()

-db

-rs

-db_name

-db_host

-db_pass

-user

-db_row

DBHelpe

«uses»+getAllNets()

+getAllNetsAndFranchises()

+getNetID()

+getNetName()

+nextNet()

-allNetsRS

siteDO

+getNetworkByID()

+getNetworkByName()

+loadNets()

+nextNet()

+getAllNetworks()

+getFranchises()

+getFranID()

+getFranName()

+add()

+update()

+delete()

-dbTable

-ID

-name

-netRS

NetDO

+getFranchiseByID()

+loadFranchise()

+add()

+update()

+delete()

+getCategories()

+getCatDesc()

+getcatID()

+getCatKwords()

+getCatName()

-dbTable

-ID

-name

-netID

FranchiseDO

+getCategoryByID()

+loadCategory()

+add()

+update()

+delete()

+addGalleryToCategory()

+removeGalleryFromCategory()

+getGalDate()

+getGalDesc()

+getGalHits()

+getGalID()

+getGalKeywords()

+getGalleries()

+getGalName()

+getNumGals()

-dbTable

-description

-OD

-keywords

-name

-numGals

categoriesDO

+getGalleryByID()

+getCategories()

+getPictures()

+getGalleryByID()

+loadGallery()

+nextCat()

+nextPic()

+add()

+addAndLoad()

+update()

+delete()

+removeGalleryFromCategory()

+addGalleryToCategory()

+getCatID()

+getCatName()

+getImgID()

+getImgHits()

+getImgNumVotes()

+getImgName()

+getImgRating()

+getImgUrl()

+()

-catID

-catRS

-count

-dbTable

-description

-fid

-hits

-ID

-keywords

-name

-picRS

-status

-timestamp

-url

-username

-userSubs

galleryDO

+getPicByID()

+loadPicByID()

+getApprovedComments()

+getComments()

+getCats()

+nextComment()

+nextCat()

+add()

+update()

+delete()

+getCommentID()

+getCommentDay()

+getCommentMonth()

+getCommentYear()

+getCatID()

+getCatName()

-catRS

-commentRS

-dailyHits

-dbTable

-emailHits

-galid

-galName

-Height

-Width

-hits

-ID

-keywords

-monthlyHits

-name

-number

-numVotes

-tnHeight

-tnWidth

-totalRating

-url

PictureDO

+getCommentByID()

+loadComment()

+add()

+update()

+delete()

-by

-day

-dbTable

-ID

-imgID

-month

-status

-year

commentDO

Figure 5 – Class Diagram of the DAL Data Objects for PHP

On top of the PEAR::DB abstraction object, PHP data objects are used to encapsulate

the data structures and handle reading and writing to the persistent data store (in this

case a MySQL database), see Figure 5 above. Data objects in the DAL provide a

centralized interface to the database and improve the structure of the system by

Chapter 3 – Database Connectivity

 18

decoupling the code from the database. The UML diagram illustrated in Figure 5

above shows how the data objects created map closely to the core database structure

(Figure 3).

Because data is fed to the presentation layer through data objects, the presentation

layer is protected from changes to the database structure because table and row names

as well as SQL queries are issued only in the DAL. Changes to the database need to

be reflected only once in the DAL, and are consequently replicated throughout the

application, because the DAL provides a central access point to the database through

which all data access is performed.

3.3.2. Performance

In terms of performance the lightweight PHP/MySQL combination is successful.

Tests were performed on a page which connected to the database and queries the

database for 100 rows. These were in turn rendered to the browser in a table as

HTML.

Three pages were tested. One used a .NET SQLconnection to connect to a SQL

Server database, one used a ObjectConnection to connect to a SQL Server database

through a DataSet , and finally, the LAMP version used a MySqli connection to

connect to a MySQL database. The .NET templating engine, in order to support

controls and view state, adds a fair amout of HTML bloat to web-pages (see the

chapter on caching for a more detailed explanation of this). This bloat was removed

from the pages tested where possible so that HTML code rendered by the respective

pages was almost identical, although some extra form tags needed to be added to the

.NET pages so that the DataList control on the page was able to function properly

and the page could compile. A stepped load test was performed using Visual Studio’s

load-test tool. The load was increased at intervals of 10 concurrent users every 10

seconds until a maximum of 200 users was reached.

Results from the test are illustrated in Figure 6, and average response times for the

period of the load test are tabulated in Table 2. As the graph illustrates, LAMP out-

Chapter 3 – Database Connectivity

 19

performed .NET by increasing amounts as the load increased. LAMP performed

consistently as the load increased, whereas .NET started off with more impressive

response times, but performance decreased consistantly as the load increased. This

suggests that in terms of data access the LAMP stack provides a more scalable

solution.

Figure 6 - Data Access Performance

Table 2 - Data Connectivity Performance

.NET SQL connection .NET DataSet Connection

(optimized)

LAMP MySQLi

connection

3.36 seconds 3.30 seconds 0.016 seconds

3.3.3. Shortcomings

The lack of a suitable connection pooling facility in PHP means that for larger

applications the programmer has to be vigilant as to how he goes about connecting to

databases. He needs to be vigilant that connections which are opened are then closed.

Object-oriented data access further complicates the process of centralized connection

configuration. Traditionally a central file is created which holds connection string

Chapter 3 – Database Connectivity

 20

details (host, user, password and database to connect to). This global connection can

then be shared by all queries running on a specific page. However, when classes

perform data connections page-level variables are out of scope to PHP classes, and the

central configuration file cannot be directly accessed. A tempting alternative would be

to include a connection class in the DAL. This class would be responsible for holding

connection details and connecting to the database. The problem with this approach is

that every instantiation of a data object would require a new connection to the

database. Thus, for example, on a page such as the home page where three new data

objects are created to access network, franchise and category data from the persistent

store, we would require three database connections when only one would be

sufficient.

The simplest solution to this problem is to pass a connection object to a class as an

argument. This enables us to use a single connection instance across a number of

classes, which improves performance and decreases the load on the database, but it is

not an elegant solution. A major security flaw that results from this approach is that

connectivity information (username, password, host and database) is included in the

class, and can be viewed transparently by using the print_r reflection command.

Listing 3 illustrates example output from running the print_r command on a data

object containing connection details.

siteDO Object
(
 . . .

 [connection] => Resource id #12
 [dsn] => Array
 (
 [phptype] => mysql
 [dbsyntax] => mysql
 [username] => theusername
 [password] => *********
 [protocol] => tcp
 [hostspec] => localhost
 [port] =>
 [socket] =>
 [database] => toast38
)

 . . .
)

Listing 3 - Reflection of a Data Object revealing connection information

Chapter 3 – Database Connectivity

 21

These issues will be discussed further in the section on security (chapter 4 –

“Security”)

3.3.4. Conclusions Regarding LAMP Database Connecti vity

The use of PHP/MySQL database-enabled dynamic web pages is well established.

PHP offers inline connection functionality with a host of mysql_ and mysqli_

functions for connecting, querying and getting meta-data from MySQL databases.

Direct connections are fast and easy to code.

PHP/MySQL is a lightweight and simple approach to data access for web

applications. MySQL offers limited functionality in terms of features such as stored

procedures, but in return offers fast response times. LAMP’s performance in terms of

speed of connection was impressive and, in the tests executed, out-performed that of

.NET convincingly.

PHP/MySQL is an adequate platform for high performance data connectivity.

However, larger applications suffer from the lack of support for stored procedures and

advanced database features in MySQL (prior to version 5). The lack of effective

connection pooling features adds complexity and security vulnerabilities to web

applications because database connection details can be vulnerable if not properly

gaurded.

3.4. Data Access With .NET

Data access with .NET is easy, slick and powerful. .NET offers two major means of

data connectivity: the DataReader and the DataSet . The DataReader is a super-fast,

read-only, forward-only cursor [Plourde, 2005]. The DataSet is a powerful in-

memory data-object which is able both to read from, and update to the database. Both

DataReaders and DataSets build on top of the SQLDataAdaptor object. This is

.NET’s data abstraction layer, and effectivly decouples the application layer from the

persistent data source.

Chapter 3 – Database Connectivity

 22

A major decision at the

outset of the project was

whether to use the

DataSet or DataReader

as the corner-stone of

the DAL. Traditionally

the DataReader has

been considered the

faster option in terms of

performance, while the

DataSet is preferrable

because of benefits in

terms of flexibility and

functionality. Figure 7

suggests there is a slight

performance advantage

to using the

DataReader over the

DataSet . Figure 7

illustrates the results of

running increasingly

larger queries against

the database. Starting at 0 the number of rows returned was increased until 3000 rows

were being returned from the database. These results were returned from a GUI

application.

Interestingly Figure 8 paints an entrirely different picture. Figure 8 is an illustration of

the same test, returning increasing numbers of rows from the database. However, this

time output is bound to and displayed in a DataList on a web page. This suggests

that in web applications the DataSet actually outperforms the DataReader . It is also

interesting to note that the performance of the DataReader drops drastically and

becomes erratic when the queries start to return more than 1900 rows. The improved

performance of the DataSet with regards to web-based queries is probably a result of

DataSet vs. DataReader

0

20

40

60

80

100

120

140

250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Queries

M
ill

is
ec

on
ds

DataReader

DataSet

Figure 8 - Dataset vs. DataReader in a GUI application

Figure 7 - Dataset vs. DataReader in a Web Application

DataSet vs. DataReader in a Web Application

0

1000

2000

3000

4000

5000

6000

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00

Rows returned

M
ill

is
ec

on
ds

DataSet

DataReader

Chapter 3 – Database Connectivity

 23

the efficient caching mechanisms utilized by the object, and more effieicent

databinding to presentation layer controls, such as the DataList .

Performance aside, the DataSet offers far greater flexibility and functionality as well

as greater ease of use. Creating a DAL using the DataReader requires the developer

to create a series of what .NET terms “business objects” – essentially classes similar

to the Data Objects created in the previous section (3.3. Data Access with PHP).

Creating these classes is time-consuming, tedious and prone to error. Alternatively,

the visual toolkits in Visual Studio enable the developer quickly to create complex

and powerful DataSets from the persistent layer. DataSets can handle complex

relationships, and multi-table queries as well as updates, insertions and deletetions

from the database. DataSets are a useful tool for quickly creating a DAL which is

both high performance and flexible.

The DataSet object for our application is illustrated in Figure 9. Typed DataSets as

shown above are a safe option for applications. Typed DataSets provide improved

security because the integrity of queries or parameters passed to them are checked

against the database structure so as to ensure data integrity and improve security

through more accurate input validation [Plourde, 2005].

Chapter 3 – Database Connectivity

 24

Figure 9 – DataSet

DataSets use the Query Analyser (illustrated in Figure 10) to create SQL queries or

stored procedures, this eases the process of creating complex SQL queries or stored

procedures. For this application we used stored procedures for all queries to the SQL

Server database.

Chapter 3 – Database Connectivity

 25

Figure 10 - Query Analyzer

Stored procedures offer improved performance and security compared to inline

dynamic SQL code. They also serve to push data access issues down into the actual

database server, decreasing the amount of code that needs to be written in the physical

application, and improving separation of logic. An example of a stored procedure

created by the query analyser is listed in Listing 4.

CREATE PROCEDURE dbo.DoLogin

(

 @username nvarchar(25),

 @password nvarchar(32)

)

AS

 SET NOCOUNT ON;

SELECT user_id, user_active, username, user_pas sword

FROM phpbb_users

WHERE (username = @username) AND (user_password = @password)

Listing 4 - Stored procedures created by SQL Query Analyser

Chapter 3 – Database Connectivity

 26

The combination of DataSets and a fully featured database server such as SQL

Server provide a platform for the development of secure, powerful and high

performance solutions. Unlike MySQL, SQL Server offers mature support for stored

procedures. The visual development environment simplifies creation of the DAL in

.NET. The query analyzer (Figure 10) makes it easy to create complicated queries in

minutes, while the visual dataset builder (Figure 9) enables us to quickly and easily

bind stored procedures to datatables in the DataSet .

Using .NET we created the entire DAL without writing a single line of code. In fact,

even binding the data to controls in the presentation layer is managed visually. Not

only is code not written, but code is also not even visible. .NET use a feature called

partial classes to remove all auto-generated script from the user’s code-behind files.

This provides an un-cluttered working environment for the developer, as well as

protecting auto-generated code from being broken. Unfortunately this approach also

has its problems as the developer now has less control over the application, as we can

not be certain as to how data is accessed behind the scenes by Visual Studio. Partial

classes and the visual programming environment will be analyzed in more detail in

chapter 4 – “Security”.

.NET also provides for impressive connection pooling facilities. A connection pool

provides a global connection string for accessing the database. A connection pool

manages efficient use of connections to the database, decreasing the load on the

database and the web server. Connection pools are also more secure as they are

typically handled by the system and stored in a relatively secure configuration file.

With .NET connection pools are stored in the web.Config file. For additional security

.NET can handle storing this information in an encrypted format. .NET is even able to

store connectionString information as a key in the registry on the operating system.

This is the most secure option.

3.4.1. Conclusion on Data Access with .NET

Data access is a critical part of any web application. The Visual Studio environment,

and .NET 2.0, makes it easy to work with databases. Complex and powerful data

Chapter 3 – Database Connectivity

 27

layers can be quickly created and managed. The process of creating stored procedures,

queries and DataSets which make up the DAL can be completed without even

writing a line of code. Even binding data or DataSets /Objects to controls, such as the

DataList , or DataGrid , in the presentation tier can be completed without writing any

code. This has made the process of data access in .NET extremely accessible and user

friendly, although, as we will discuss later there are issues in particular with regards to

security with this visual environment.

Data access with ASP.NET 2 has developed on top of ASP.NET 1.x, making data

access easier and more flexible through improved databinding features and

performance of the DataSet . The entire process, from creating the database structure,

to creating an in-memory object representation of the data store using DataSets , and

even binding data results to the presentation layer is user-friendly and manageable.

3.5. Conclusion

Developing the DAL in LAMP was a major task. Conversely, developing a more

complex and powerful DAL in .NET was achieved in a fraction of the time. The

power and large feature-set of SQL Server meant that we were able to push a great

deal of Data Layer logic into the actual database server. Security is also better in the

.NET application because data access logic is pushed further down the application

layer and is thus harder to access, and connection data can be stored in more efficient

ways, such as in the registry of the operating system.

Although a solid DAL was created for the LAMP application, it was a very time-

consuming process. By comparison, the DAL could be created quickly in .NET. The

final .NET product was more powerful and flexible largely as a result of the

functionality of the DataSet, and the preferable feature-set offered by SQL Server

over MySQL.

Chapter 4 – Security

 28

Chapter 4 – Security

4.1. Introduction

Web applications, due to their accessible public nature are natural targets for hacking.

As such it is critical that applications are designed securely, and that the platforms on

which they are run are locked down and secure. This chapter examines the security

features and issues concerning the LAMP and .NET architectures.

This chapter provides a brief overview of common security exploits; in particular

those relevant to web applications. This follows with some general methods of

prevention. Thereafter details are provided as to how the respective applications were

secured and any strengths and short-comings are mentioned.

4.2. Security Vulnerabilities on the Internet

Online internet-facing applications are vulnerable to security exploits at both the

application and the server level. To secure a web application it is critical both to write

secure code and to run this code on a secure server.

4.2.1. Common Web-based security exploits

4.2.1.1. SQL Injection

Almost all web applications use databases as a means of persistent data storage. SQL

injection refers to the art of exploiting vulnerable SQL queries by ‘injecting’ custom

SQL into SQL statements used by the application to make these queries act other than

their intention, and typically to reveal sensitive data such as passwords, or to obtain

unauthorized access to restricted areas.

Chapter 4 – Security

 29

For example, a query such as:

“select * from phpbb_users where username = ‘” + na me + “’”;

When injected with a name value such as Molly’ or 1=1

Will run the following SQL statement:

“select * from phpbb_users where username = ‘Molly’ or 1=1”;

Thus, instead of returning only the details for Molly, this statement will return the

user details for all users (since 1=1 is always true).

Some measures for combating SQL injection include:

• Escaping input

• Using stored procedures

• Strong input validation

• Running on least privileges

• Building SQL statements securely using parameterized commands

• Building SQL stored procedures securely by using the Transact-SQL

quotename function and the sp_executesql command to execute SQL

statements (these are features of SQL Server)

• Store connection strings and data connectivity details securely

[Howard, M and LeBlanc, D. 2005. pp: 397-411]

4.2.1.2. Session Fixation or Session Hijacking

HTTP is a stateless protocol. This can be problematic when it comes to creating

stateful applications as there is no way to identify the client between page requests.

This causes complexities when it comes to tracking a user’s interactions as they

browse a site using, for example, a shopping cart or a system with user authentication.

Cookies provide one means of applying state management to the HTTP protocol.

Originally developed by Netscape, cookies are an extension to the HTTP protocol

enabling session tracking thought the set-cookie response header and consequent

Cookie request header. Therefore, cookies or sessions are a standardized means of

managing state in over the stateless HTTP protocol. [Shiflett, C. 2005a. pp 40-41]

Chapter 4 – Security

 30

Session fixation refers to the process whereby a malicious user is able to impersonate

a valid user by ‘hijacking’ a session which identifies the user. The example below

illustrates how a malicious user can use the PHPSESSIONID to gain access to another

user’s identity [Shiflett, C. 2005a. pp 41]

.

Consider a php page called fixation.php.

<?php

session_start();

$_SESSION['username'] = 'chris';

?>

When we call this page with the PHPSESSID set to 1234 as such:
http://example.org/fixation.php?PHPSESSID=1234

A session is stored containing the username. This session is stored with a session ID

of 1234 as specified in the querystring. This ID is used to access the session

throughout the user’s session. Traditionally session variables are set to last 20 minutes

or until the user closes the browser. Using session fixation, another user is able to

hijack the session ID for a valid user, and use it to gain access to this user’s

information. [Shiflett, C. 2005a. pp 41-43]

For example, consider a second page responsible for outputting the information stored

in the session variable:

<?php

session_start();

if (isset($_SESSION['username']))

{

echo $_SESSION['username'];

}

?>

By accessing this page and passing the session ID above, a malicious user is able to

obtain access to the session data of our valid user. Entering:

http://example.org/test.php?PHPSESSID=1234 into any new browser page will

present output form the initial session variable. [Shiflett, C. 2005a. pp 43-4]

Chapter 4 – Security

 31

Therefore, an attacker can simply link to your website, appending a session ID to the

url. This sets up a vulnerable session ID on another server which can be used to hijack

sessions from valid users who have followed this link, therefore giving the malicious

user access to information stored in user’s cookies [Shiflett, C. 2005a. pp 44].

4.2.1.3. XSS (Cross Site Scripting)

XXS refers to the act of a malicious user who is able to inject malicious JavaScript

code into a vulnerable webpage which renders input variables to the screen without

properly validating them. [Shiflett, C. 2005b. pp 14]

Similarly to session hijacking XXS attacks can lead to leaking of sensitive data, but

can also lead to far more serious attacks as the hacker is essentially free to execute

JavaScript code on vulnerable pages.

The following example explains a vulnerable site and its exploitation:

Consider a page which gets information from a form and renders this information to

the screen as HTML:

if(isset($_GET[‘message’])){

 echo $_GET[‘message’];

}

Since the GET variable is not being validated at all, whatever the user submits via

GET will be rendered to the screen. Thus a user could run inject a value such as:

<script language=’JavaScript’>document.location = ‘ http://evil.empire.org?cokkies=’ +

document.cookies </script>

This would send all the user’s cookies to another page where this potentially private

data could be stored [Shiflett, C. 2005b. pp 15-6]. In a page as used in this example,

with no validation, the seriousness of the attack is limited only by the attacker’s

imagination and JavaScript skills.

Chapter 4 – Security

 32

XXS attacks are one of the more common exploits of web applications, and are

potentially extremely harmful.

4.3. Technology Neutral Security Policy

Apart from technology-specific security details (which are outlined below), there are a

number of technology-neutral security principals which where applied to the

application to improve overall security, and decrease the seriousness of possible

security violations.

4.3.1. Matching Input Data to a Pattern

Input validation forms the basis of much secure coding practice. To ease the process

of strict validation an attempt was made to limit input text where possible. Therefore

numeric IDs were selected to represent key values for data queries. These keys are

typically passed from page to page in the URL and accessed using GET, making it

easy for a malicious user to change their values and achieve unexpected results. By

forcing these values to be numeric we are able to validate data ensuring that it is both

numeric and of limited length.

4.3.2. Running on least privileges

The principle of running an application as a user with minimal privileges was applied

to the database server. The website requires data access. However, it does not require

unlimited data access. At the very most, a user may run SELECT, INSERT,

UPDATE, and DELETE queries. A user was created with only SELECT, UPDATE

and INSERT privileges. Deleting of data was handled by creating a field called

‘deleted’ and setting this value to 1 (true) on deletion by a user. A separate process,

with only SELECT and DELETE privileges then periodically searches the database

deleting rows where the field ‘deleted’ is set to true.

Chapter 4 – Security

 33

 4.3.3. Storage of Private Data

Although no particularly sensitive data is stored in the system (such as credit card

details), details such as passwords are hashed using a one-way md5 hash algorithm.

Thus, should a malicious user gain unauthorized access to information, sensitive data

is stored in a format which is of no use to the hacker.

4.4. Implementing a secure system with LAMP

4.4.1. Writing secure PHP

The golden rule of securing an application revolves around input validation. Because

of PHP’s lower level nature (by comparison to ASP.NET) the developer is well aware

of all input data and can deal with it accordingly. The class PEAR::Validate provides

a useful class for validation of data in PHP [Freuksa. pp: 159-63]. PHP also provides

useful functions such as strip_tags() (which strips HTML tags from data), and

addslashes() . Addslashes() can be used to escape input data for database queries

and help guard against SQL injection. Furthermore, the prepare() and execute()

functions of the PEAR::DB library, which was used throughout, provide a secure

means of writing SQL which is resilient to injection.

A major vulnerability which is still present is the ‘ register_globals ’ setting in

PHP.ini (the configuration file for the PHP interpreter). Register globals enables all

request variables to be accessed transparently as normal variables. Thus, assume we

use POST to send a variable named $authorized ; with register globals on. This

variable can be accessed transparently in code as $authorized . On the contrary, with

register globals off, this variable needs to be accessed explicitly as:

$_POST[‘authorized’]. Because, in PHP, variables do not have to be initialized, a

malicious user can inject values into the $authorized variable by passing an

appropriately named request header to the page. The following code snippet illustrates

the vulnerability:

Chapter 4 – Security

 34

<?php
// define $authorized = true only if user is authen ticated
if (authenticated_user()) {
 $authorized = true;
}

// Because we didn't first initialize $authorized a s false, this might be
// defined through register_globals, like from GET auth.php?authorized=1
// So, anyone can be seen as authenticated!
if ($authorized) {
 include "/highly/sensitive/data.php";
}
?>

 Listing 5 - register globals exploit [PHP manual. 2005]

By passing a header response such as authorized=1 (in this example done by passing

the GET header via a URL such as: auth.php?authorized=1), the malicious user is

able to set $authorized to true, and therefore gain unauthorized access to the

restricted area.

This vulnerability can be avoided by initializing variables correctly. However, with

register globals on, it becomes very easy inadvertently to write insecure code. This

vulnerability highlights a security issue with PHP code. The PHP scripting language

is written to be an easy to use, flexible and convenient language. Features like the fact

that variables do not need to be explicitly declared, and that the language is not

strongly typed make writing insecure code easier. Potential vulnerabilities (such as

above), may go by undetected by the human eye, and will not be picked up by the

compiler or interpreter as they would be in more formal, strongly typed languages

such as C# or Java.

A major short-coming of the PHP engine is the lack of an adequate connection

pooling mechanism. As a result connections are typically stored in a central

configuration file. This is a severe vulnerability as all database connection details:

username, password, database and host are typically contained in this file in plain text.

Very insecure systems store configuration details in .inc text files. Since these are not

parsed by the PHP interpreter, browsing to the file will display the file in a browser as

a text file. A simple Google search such as: config filetype:inc can reveal some very

interesting results.

Chapter 4 – Security

 35

The steps taken to limit this vulnerability are to store configuration data in a parsed

file such as a .php file. Thus a user browsing to the files location will only see a blank

file. In our applications the configuration file is stored above the web root so that it is

not accessible from the internet. However, should a user compromise the server they

could obtain the database connectivity data from accessing the unencrypted

configuration file.

As an extra layer of security, the data in the configuration file could be encrypted, but

this is not a standard method, and was not implemented in the application.

4.4.2. Security with Apache

Secure access to the remote Apache server was facilitated via SSH (Secure Shell).

FTP (File Transfer Protocol) is a useful, yet infamously insecure tool used for the

transfer of files. As a result, as far as possible SFTP/SCP (Secure FTP) or HTTPS was

utilized to manage file uploading to the remote server. These protocols are used by the

Web Developer to upload code files to the website. However, due to the nature of the

website it is necessary that photographers are also able to upload photos to the website

so that they can be added to the gallery by the administrator. A tool was developed

which enables users to add their own galleries to the user submissions transparently.

This tool uses FTP to transfer the files, introducing potential security vulnerabilities –

a user could sniff the access details for the FTP used by this client and use these

details to obtain unlimited FTP access to the server. Using this they could upload an

executable file and run this file on the remote server, thus compromising the server.

However, using Apache mime-types we were able to eliminate this vulnerability. The

FTP account used by the upload client was given access to a single folder. This folder

was placed above the web root and as such is not directly available from the internet.

Further, by editing the .htaccess file for the folder we are able to limit the accepted

mime-types for this folder to accept only the jpg/jpeg extension, thereby eliminating

the threat of users uploading executable files via FTP and running these on the server

to compromise the server.

Chapter 4 – Security

 36

A good feature of Apache is its modular design. Two modules which add a further

layer of security to the application are mod_security and mod_rewrite .

Mod_rewrite is a very popular tool for re-writing URLs. A major use of

Mod_rewrite is to produce ‘search-engine-friendly urls’. Therefore, using

Mod_rewrite the developer can re-write urls from the form:

www.38.co.za/galleries.php?catName=Recent&catID=23 to

www.38.co.za/galleries/Recent/23. As may be seen, the latter form is far friendlier to

the human eye, but more importantly it adds a layer of security by hiding

implementation details from the user. In the example above, information revealing the

language in which the applications is written is hidden by removing the .php

extension from the URL. Furthermore, the names of the GET variables (catNam e and

catID), are also removed from the URL. Although these are minor issues, they do add

another layer of security to the application.

A more important security gain as a result of Mod_rewrite is that it uses regular

expressions to rewrite urls, and as so adds an extra level of validation to url and GET

input.

For example, the following rule:

RewriteRule ^galleries/([0-9])/$ galleries.php?c=$1

will force the value of c to be a single numeric value between 0 and 9. A value not

matching this pattern will return a 404 page not

found error. Using regular expressions with

Mod_rewrite ensures that urls match suitable

patterns, and hence adds another layer of security

to our application.

 Mod_security is an Apache module which acts

Figure 11 - Mod Security

Chapter 4 – Security

 37

as an “intrusion detection and prevention engine for applications (or a web application

firewall)” [modsecurity. 2005].

Mod_security was used to add yet another layer of security to the application. Rules

where defined to help prevent attacks such as XXS, path traversal, SQL injection, as

well as limiting potentially dangerous privileges assigned to the web server – such as

limiting HTTP file uploads to only valid image files.

In addition to the general rules mentioned above, Mod_security also played a useful

role in securing our Web Services from attack. Since HTTP/HTTPS (the protocols on

top of which Web Services are usually conveyed) typically are able to pass

unobstructed through a firewall, Mod_security , as an applications firewall, plays an

important role in securing Web Services running on Apache, in particular against

attacks such as variable-length buffer injection, meta-character injection, SQL

injection and SOAP fault code disclosure. [Shah, S. 2005]

4.4.3. Securing MySQL

A number of MySQL accounts were created, all accounts with least privileges

enabled. A web user account was also created. This is the main account used for

drawing the required data for basic user browsing of the website and some

interactions as well as tracking. This account was enabled with only SELECT,

UPDATE and INSERT privileges. Although deletions are necessary, these are

handled by the front-end initially simply by setting a flag which marks a row as

deleted. An automated process is executed periodically using a cron script which

searches the database and physically deletes all files from the database. Cron is a

linux tool for performing chronological scheduled tasks. This script utilizes a different

database user account which has SELECT and DELETE privileges only.

Another inherent advantage of the PHP/MySQL combination is that only a single

SQL command can be executed per statement. This further decreases the likelihood of

successful SQL injection.

Chapter 4 – Security

 38

For example, a common SQL injection exploit such as the following:

SELECT * from phpbb_users where username = ‘$userna me’ and password =

‘$password’

Injected with $password = a’;drop table galleries / *

$username = a;

To produce:

SELECT * from phpbb_users where username = ‘a’ and password =

‘a’;drop table galleries /*

Would not be successful as the malicious second statement would not be executed by

the PHP mysql_query() command.

4.5. Implementing a secure system with .NET

4.5.1. Security in the Visual Environment

The ASP.NET, and indeed the entire .NET programming environment is largely

visual and as such, the typical user relies fairly heavily on the Microsoft programming

environment to implement security checks against common exploits. With Visual

Studio 2005 and ASP.NET 2.0 this has been taken one step further with the

introduction of the partial class. Partial classes are classes which are hidden away in

the assembly and are not accessible to the developer. All auto-generated code is stored

in these partial classes. This has the advantage that the development environment is

less cluttered, and that the developer is unable to break auto-generated code.

However, the obvious disadvantage is that developers do not know what they are

actually doing! Furthermore, there is no way even to see what is being done as all this

code is locked away in a partial class.

4.5.2. Database Security

Chapter 4 – Security

 39

Database security is particularly important in relation to databinding and SQL

injection. As mentioned in the chapter on data connectivity (chapter 3 – “Database

Connectivity”), with .NET 2.0 it is possible to perform multi-tiered data-connectivity

without writing a single line of code. Since all this code is stored in partial classes,

should the user employ the visual tools to connect to the database, no clue whatsoever

is given as to how data in sanitized prior to insertion into a SQL statement or stored

procedure.

While it is possible to add validation logic to variables and pass these sanitized

variables to the SQL statements or stored procedures, given the visual nature of the

ASP.NET environment, this is an unlikely step for most developers using Visual

Studio.

To understand how pages were sanitized in the Visual Studio environment prior to

insertion into stored procedures or SQL queries, a series of typical SQL injections

attacks were launched against a page which was created to be as vulnerable as the

automated databinding tools would allow.

The page, vulnerable.aspx , runs a query against the database which accepts a

String input in the WHERE clause:

“select * from t_img where (img_keywords = @input)” .

The basic SQL injection tactics outlined in Table 6 were run against the page. The

first attempt is to alter the SQL so that all rows of the table are returned. The second

injection attempts to execute a malicious SQL query by injecting it into the

querystring.

Table 6 - SQL injection

Input Injected SQL

a’ or a=a’ select * from t_img where (img_keywords = ‘a’ or

‘a’=’a’)

‘);drop table

t_img--

select * from t_img where (img_keywords = ‘’);drop

table t_img--)

[Howard. and LeBlanc, 2002]

Chapter 4 – Security

 40

All attempts at injection returned an empty resultset . To further check the

robustness of query validation the single quote in the injected string was replaced by

its hex value (char(0x27)). This substitution can foil attempts by the validator to

escape dangerous characters such as the single quote. The attempts were, again,

unsuccessful.

It would appear that Visual Studio performs basic sanitization of data such as

escaping potentially dangerous characters like the single quote. Some form of type

checking is also performed against the types defined in the database structure. It is

evident that input data is checked to conform to the appropriate type (int32, int64,

decimal, string etc.) expected by that column in the database. It is also possible that

checking is performed against the database for the length of input variables according

to restraints placed on them within the database.

It is evident from the examples above that with regards to data-access Visual Studio

performs both security checks against input data and integrity checks against the

database structure. It appears that solid base-line validation and security is

implemented inherently by the application.

One criticism of the visual data-access approach is that pattern matching of input data

(for example matching an expected email or code (such as a student number) input

against a regular expression) is obviously not performed by Visual Studio. This is

often the most secure means of input validation.

Furthermore, since the vast majority of development, if not all, of ASP.NET web

applications are likely to be created in Visual Studio or Visual Web Developer (a

smaller, limited version of Visual Studio for ASP.NET development) should a

vulnerability be spotted in the auto-generated code, it is safe to say that the vast

majority of ASP.NET applications will be vulnerable to such exploits. Fixing these

vulnerabilities in web applications would be no small task, especially since developers

do not have access to all the code.

Chapter 4 – Security

 41

The visual development environment makes it harder for inexperienced users to write

vulnerable code. However it limits the level of control that more experienced

developers have over the application. More importantly, it limits the clarity of

knowing exactly what is being input into the application, which could lead to a more

lax approach to input validation.

Most security exploits attack logical vulnerabilities in badly written code by injecting

unexpected values. In contrast to PHP, C#, a fully fledged strongly typed and

properly object oriented language, improves the robustness of code written because

insecurities arising from improperly instantiated variables and irregular type checking

are picked up at compile time by the compiler.

4.5.3. Validation Controls

The .NET validation controls are a popular feature of the Visual .NET environment.

The controls enable easy client and server side validation of form input data.

However, vulnerability also arises out of common misconceptions of the workings of

these controls. This is also a good example of how assumptions made in the visual

environment can lead to insecurities in code.

To illustrate this example, consider a textbox with a RequiredFieldValidator

attached to it, as illustrated in Figure 12.

Figure 12 - Vulnerable Textbox

The following code is attached to the button

protected void Button1_Click(object sender, EventArgs e)
 {
 if (TextBox1.Text == "")
 {
 Label1.Text = "should NEVER get here" ;
 }
 }

Chapter 4 – Security

 42

Because the textbox is theoretically protected by a RequiredFieldValidator it is

expected that the label’s text should never be set to: “should NEVER get here”.

However, by turning off JavaScript in the browser the code is executed on the on

the server-side without proper validation taking place, as illustrated in Figure 13(note

that the label’s text is now set to “should NEVER be here”.

Figure 13 - Exploited Validation Control

This exploit is not really a weakness in .NET framework, but rather a result of poor

coding due to assumptions made by the developer as to what the visual environment

will do behind our backs. Fixing this validation is simple, as illustrated by the code

below:

if (Page.IsValid)
 {
 Label1.Text = "should NEVER get here" ;
 }

Although not explicitly a weakness of the .NET framework, this does show how

reliance on the visual environment to produce secure code may be a misconception

and lead to insecure code.

4.6. Conclusion

Security is critically important for web applications due to their public nature. While

many security features are technology-neutral, some technology-specific features can

strengthen security. Apache in particular is renowned as having a good security record

and is a secure base on which the LAMP infrastructure is built. PHP, due to

implementation being at a lower level than the more abstracted ASP.NET

environment, helps the developer to write secure code as little happens behind the

developer's back, and he is able to keep track of inputs and outputs fairly closely.

However, the flexibility of PHP, the fact, for example, that it is not strongly typed and

Chapter 4 – Security

 43

that variables do not need to be instantiated, enables the inexperienced or un-

conscientious developer to produce looser, more insecure code. By contrast, the more

formal constraints of a language such as C#, help produce tighter, more secure code.

The visual environment manages a good deal of security for the developer, and in

many respects the developer can rely on the development environment to oversee

many of the security issues. However, this can lead to developers making assumptions

as to what the environment will handle for them, which can lead to vulnerabilities.

Ultimately, .NET provides built-in solid base-line security, while security with LAMP

is more the responsibility of the developer. An experienced developer using the

LAMP platform has greater flexibility and control over the environment and thus is

more aware of security issues. However an inexperienced developer has far less

protection from creating vulnerable applications.

Chapter 5 – Web Services and XML

 44

Chapter 5 – Web Services and XML

5.1. Introduction

XML and Web Services offer a means for standardized communication between

machines and applications over a network. This chapter discusses the general need for

Web Services in the modern web development environment as well as within the

problem domain of this application. Thereafter we expand on the process of

implementing Web Services within our application.

5.2. The Use of Web Services

Web Services offer an excellent means of producing a public API for an application.

Web Services empower the user to produce a public API which can be used by others

to extend and add functionality on top of the basic service architecture provided by

the core application.

Web Services offer an excellent means of producing a public interface for an

application. Influential companies such as Amazon, Google, Yahoo and e-Bay all

offer a web service interface to their applications. This enables developers to interact

with code made accessible by the vendor (Amazon, Google, Yahoo or e-Bay).

Developers can build useful applications on top of the core functionality provided by

the vendor. For example, developers can create applications which can search Google

or Yahoo, or get the best offers on Amazon or e-Bay. Web Services contain highly

abstracted business logic. With Web Services, because interaction is controlled by

standards such as SOAP and XML, implementation details are not important to a

client trying to consume the service. All a client needs to know is the location of the

service and the methods which the service makes available [Trenary 2002: p. 370].

In the project we dealt with both creating the core Service architecture, and creating

clients which were able to consume these services. Web Services were used to

Chapter 5 – Web Services and XML

 45

provide an interface for possible future development by users as well as to enable

remote administration.

Because the website is heavily image based, there are a number of sandbox issues

associated with development using a purely server-side language such as PHP. For

example, for security reasons, PHP running on a remote host cannot save files to the

user’s hard-drive. However, a client-side GUI has the appropriate privileges to

perform these tasks. Therefore, by combining the power of a GUI application, with

Web Services we where able to produce a useful tool which is able to browse the

website and download entire galleries to the user’s computer with the click of a button

(see Figure 14).

Figure 14 - Screenshot of the .NET GUI

This illustrates how useful Web Services and XML are when it comes to

interoperability and remote syndication. The GUI uses web services and XML to

interact with a remote site (www.38.co.za), and provide extra functionality to the user.

The GUI above was developed in C# .NET 2005, and runs on the windows platform.

Chapter 5 – Web Services and XML

 46

Using Web Services and XML it is able to interact with code written in PHP running

on a remote Linux server.

5.3. Implementing Web Services with LAMP

Support for Web Services is relatively new in PHP. Although the PEAR::NuSOAP

classes enabled the creation of XML-RPC style Web Services in previous versions of

PHP; It is the SoapServer and SoapClient functions (see Listing 7), new to

PHP 5, which seriously deal with SOAP Web Services in PHP.

The code below (Listing 7) provides an illustration of the use of these functions both

to create and to consume web services with PHP.

Listing 7 - using the SoapServer and SoapClient classes

CODE:

Server.php

function HelloWorld(){

 return "Hello World";

}

ini_set("soap.wsdl_cache_enabled", "0"); // disabli ng WSDL cache

$server = new SoapServer("test.wsdl");

$server->addFunction("HelloWorld");

$server->handle();

Client.php

$client = new SoapClient("test.wsdl");

$return = $client->HelloWorld();

echo $return;

Despite the simplicity of this code, creating SOAP web services in PHP is not so

straightforward.

A major short-coming in terms of web service support in PHP is the lack of a WSDL

generator – requiring developers to create their WSDLs by hand – which is tedious,

frustrating and non-trivial. There are a number of attempts at WSDL generators for

Chapter 5 – Web Services and XML

 47

PHP; however, those that where tried out for this project were found to be incomplete

and/or buggy.

A major reason for the lack of a suitable generator is: “PHPs lack of function

parameter prototyping” and the fact that PHP is not a strongly typed language (a fact

which can make consuming Web Services a much simpler task) – hence generators

are unable to extract sufficient META-information to create WSDL on-the-fly

[Schlossnagle, G. 2005]. The problem springs from the structure of the language and

finding a solution is not a trivial task.

The need for the manual creation of WSDL documents is a hindrance to successful

production of SOAP Web Services, and led to many complications in attempting to

create and debug PHP web services. Once a successful server had been created, the

service was consumable using only a PHP client. Attempts to consume the service

using .NET simply returned nothing instead of the desired results. Attempts to

consume services in Java failed.

As a result of the complexities of creating web services with PHP, an alternative

method of implementing the SOA (Service Oriented Architecture) was researched.

This alternative is REST (Representational State Transfer).

REST is described by Roy Fielding, who coined the term in his doctoral dissertation,

as “an architecture style for networked systems” [Costello. 2005]. Unlike those web

services which are RPC-style with remote method calls, REST is an extension of the

normal use of the HTTP protocol. REST services deal with web requests and

responses just as normal HTML web pages do. However, instead of rendering

responses in HTML, responses are rendered in XML, and are thus accessible and

consumable by remote clients. Figure 15 illustrates the REST architecture.

Chapter 5 – Web Services and XML

 48

Figure 15 - REST architecture [Hinchcliff. 2005]

REST web services define a ‘resource’ (instead of an object). A resource is a page, for

example: http://www.38.co.za/services/REST/getGallery.php. These resources are

accessed via a URI (Uniform Resource Identifier). Parameters can be sent to the page

using HTTP verbs such as GET or POST. For example, a web service equivalent to a

SOAP call such as getGallery(int id) may be called using REST simply by

sending a web request to a URI such as:

http://www.38.co.za/services/REST/getGallery.php?id=5. Here the parameter is sent

using GET and is simply appended to the URL. Using mod_rewrite this can be further

simplified to: http://www.38.co.za/services/REST/getGallery/5.

REST is the architectural style of the internet; REST web services use this

architectural style of HTTP requests and responses to provide distributed remote

access to networked resources. REST web services typically use XML as a transport

medium for returning responses to the user. Therefore, a typical response to a Web

Service call to the above URL might be an XML document like that below:

<gallery id=5>

 <name>The Union Fri 5 Feb 2004</name>

 <desc>Friday night at the Rhodes Union</desc>

 <keywords>Rhodes Union </keywords>

 <hits>10232</hit>

</gallery>

There are a number of benefits to using REST Web Services, namely: scalability,

performance, security, reliability, and extensibility [He. H. 2004]. Unlike SOAP,

REST profits from a lower meta-data overhead in message passing, making it faster

Chapter 5 – Web Services and XML

 49

and more scalable. Furthermore, since REST has been termed merely a specification

of the architecture of the internet [Fielding. 2000], all the security features and

concerns of the HTTP and HTTPS protocols also apply to REST. REST is growing in

popularity and has been adopted as an alternative platform for web services by

influential companies such as Amazon [He. 2004], Yahoo, e-Bay and Flickr [Frietag,

2005].

New features native to PHP 5 offer improved support for dealing with XML which is

critical for development of REST web services. The DomDocument object offers good

support for both creating, reading and validating XML.

The following code (Listing 8) illustrates the creation and consumption of a simple

REST Web Service with PHP. The service simply returns a list of all the networks in

the database as an XML documents; or a specific network should the user specify this

using GET:NetName=Name.

<?php

/*

 * Service.php

 * Returns XML output of all the networks or a sing le network if specified with

$_GET['NetName']

 * Example URLS: http://www.38.co.za/services/REST/ Network -> Shows all Networks

 * http://www.38.co.za/services/REST/Network?NetNam e=Schools -> Shows only the

selected Network

*/

. . .

/*

 * Perform any necessary business logic here…

*/

//Set the content-type to render XML

header("Content-Type: application/xml; charset=utf-8");

if(Validate::string($_GET['NetName'],$NameCheck_opt ions)) // chosen single network

{

 $n = new netDO(); //create a network Data Object

 $n->getNetworkByName($_GET['NetName']); //Get the specified name

 $dom = new Networks(); //declare the DOM

 $dom->load("Networks.xml"); //load the dummy netwo rks XML file

 $dom->addNetwork($n->getName(),$n->getID()); //add a network node to the XML

}

else //show all nets

Chapter 5 – Web Services and XML

 50

{

 $site = new siteDO();

 $site->getAllNets();

 $dom = new Networks();

 $dom->load("Networks.xml");

 while($site->nextNet())

 { //add all networks as nodes to the xml document

 $dom->addNetwork($site->getNetName(),$site->getNe tID());

 }

}

//print results to the HTTP response

print $dom->saveXML();

?>

Listing 8 - Creating a REST Web Service

This code renders the following XML output:

<Networks>

<network>

 <title>Universities</title>

 <ID>1</ID>

</network>

 <network>

 <title>Schools</title>

 <ID>2</ID>

</network>

</Networks>

This XML can be consumed in PHP with the following code:

<?php

/*

* Client.php

* Create a network Data Object, populate it and lis t all its child franchises

*/

//Galleries:

$dom = new DomDocument();

//Call the web service

$dom->load("http://localhost:3000/38_2005_ii/public_html/services/REST/Network");

$titles = $dom->getElementsByTagName("title");

foreach($titles as $node) { //read the titles of al l nodes in the XML document

 print $node->textContent . "
";

}

?>

Listing 9 - A PHP client

Chapter 5 – Web Services and XML

 51

Or in C#.NET with the following code:

string lcUrl = "http://localhost:3000/38_2005_ii/public_html/servi ces/REST/Network" ;

//request the page (necessary to perform server-sid e logic)
WebRequest r = WebRequest .Create(lcUrl);
//read in the XML stream
XmlReader xReader = XmlReader .Create(lcUrl);
while (xReader.Read())
{
 responseTxtBx.Text += xReader.Value; //add the text from the nodes to a textbox
}

Listing 10 - A .NET client

Furthermore, any code included in service.php will be executed on the server-side,

and thus code can be executed remotely from a client script such as the one above. In

fact, PHP offers the ability to execute web service calls like the above in the

background, without affecting the load-time of pages. The method, used in

applications such as pseudo-cron (www.bitfolge.com), uses a simple HTML image

tag to call the web service. By passing the web service URI as the ‘src ’ attribute for

the image, we cause the browser to spawn a new process to fetch the URL (see

Listing 9). The service is effectively executed in a separate thread, and does not effect

the loading time of the current HTML page. This method can of course only be used

for services which do not return values which we wish to use in the current page.

<img src = “ http://localhost:3000/38_2005_ii/public_html/servic es/REST/Network”

height=0 width=0 />

Listing 9 - Calling a Web Service using the HTML image tag

5.3.1. Conclusion on LAMP Web Services

Support for XML and web services is fairly new to PHP with most support being new

or rewritten for PHP 5 [Stocker, C. 2005]. As such the technologies are new and in

many case simplistic.

The tools provided by PHP for consumption of XML and web services, such as

SoapClient , SimpleXML and DomDocument are easy to use and work well. In fact, the

SoapClient excelled as the only client able successfully to consume PHP SOAP web

services as well as .NET services. In the interests of this project it was deemed

preferable to keep web services simple, and the features provided by PHP were well

Chapter 5 – Web Services and XML

 52

suited as they were both non-complex and functional. It is highly possible that PHP

web service consumption would suffer with more complex web services dealing with

complex types and arrays.

Creating web services in PHP was a difficult task: attempts with SoapServer were

unsuccessful and, because no useful WSDL generator was available, creating SOAP

Web Services in PHP was tedious.

Support for SOAP web services in PHP is new and at present is not well

implemented. REST web services seem far better suited to PHP. Using the new

improved XML support offered in PHP 5 by DomDocument we were able to

successfully implement a REST service architecture which could be consumed with

relative ease and transparency by multiple clients in multiple languages.

5.4. Implementing Web Services with .NET

By contrast to the support for web services in the LAMP platform, support for both

consuming and creating web services is built into the .NET framework. Web services

are an important component of the .NET framework as they improve interoperability

and cross-platform integration between applications, lessening the impact of the

platform lock-in characteristic of Microsoft applications. WSDL creation and

deployment are all handled within the Visual Studio environment.

The .NET environment uses reflection to manage the intricacies of deploying and

creating web services. The [WebMethod] attribute is used to describe to the .NET

CLR (Common Language Runtime) the function which follows. The WebMethod

attribute has properties which enable even more control over the service environment,

properties such as: BufferResponse , CacheDuration , Description ,

EnableSession , MessageName and TransactionOption These simple directives

enable the developer to perform tasks such as caching, buffering, session-state

management and transactions, which would typically be extremely difficult to

program manually. The MessageName and Description properties can be used to

Chapter 5 – Web Services and XML

 53

provide further information to the end user of a service [Ferrera and MacDonald. 39-

44].

.NET provides extensive support for creating both simple and complex web services.

The .NET framework has abstracted many of the complex tasks associated with web

service development enabling the developer to concentrate on code rather than on

internal intricacies.

Consumption of web services with .NET is also handled by the environment. Services

can be added to a project as a “web reference”. After a web reference has been added

to the project it is accessible from the project in the same way as a normal namespace.

Web service consumption of .NET services is, as one would expect, well supported

with the ability to easily pass and return arrays and complex data-types between the

client and the service.

XML support in the .NET framework is also well established, and REST services can

be created using the XmlWriter object of the System.XML namespace. REST services

may be consumed using the XmlReader .

Succesful implementation of both SOAP and REST Web Services were easily

developed using .NET and were used to test the performance of REST and SOAP

Web Services. Although Amazon’s Jeff Barr claims that REST Web Services are six

times faster than SOAP Services [Trachtenburg] our tests (illustrated by Figure 16)

seemed to suggest the opposite. Figure 16 illustrates the results from a load test

performed in the Visual Studio testing suite. The orange line represents a REST

service, the green line represents the SOAP service, the red line represents the user

load. The user load was incremented by 20 users every 10 seconds and reached a

maximum of 400 concurrent users. The respective average response times (average

time to last byte) for the SOAP and REST service over the four minute test period

were 1.42 seconds and 1.60 seconds respectively.

The faster response times of the SOAP implementation by comparison to the REST

services is probibly due to poor implementation of the REST web services. Both the

Chapter 5 – Web Services and XML

 54

XmlWriter object in .NET and the DomDocument object in LAMP require that

responses are written to files on the file-system. This extra read-write time, as well as

the use of DOM instead of the more efficient SAX implementation, may well have

costed the REST services in terms of response time.

Figure 16 - REST Services vs. SOAP Services (.NET), Orange is REST, Green is SOAP, the red
line represents user load

After testing the .NET implementations of REST and SOAP, the LAMP REST

service was added to the test. The results from this test are illustrated in Figure 17

below. From Figure 17 it is clear that the both the .NET services far out-perform the

LAMP service. The LAMP service (depicted in green) returned an average of 35

seconds response time, by comparison to the .NET REST and SOAP services which

returned 0.27 and 0.30 seconds respectively. Furthermore once the load hit 360

Chapter 5 – Web Services and XML

 55

concurrent users, the LAMP service started failing. The average times for this test are

anotated inTable 10.

Figure 17 - .NET SOAP and REST services and LAMP REST Service

Table 10 - Average response times for Web Services

PHP REST Service .NET SOAP Service .NET REST Service

35 seconds 0.27 seconds 0.30 seconds

Chapter 5 – Web Services and XML

 56

5.5. Conclusion

Web service support in the LAMP platform is fairly new. By comparison, web

services are a mature technology within the .NET framework. The .NET environment

far out-performs LAMP in terms of both capability and performance.

New features such as SoapServer and SoapClient , and particularly the new XML

support offered by the simpleXML and improved DomDocument objects in LAMP

show a step in the right direction by the LAMP platform in terms of XML and web

services; but these implementations are far behind the mature web service

development environment plumbed into Visual Studio 2005 and the .NET framework.

The .NET environment for web wervices was shown to be far superior to that offered

by LAMP in all cases which were tested for this project.

Chapter 7 – Conclusion

 57

Chapter 6 – Performance

6.1. Introduction

This chapter evaluates the optimization techniques offered by the technologies. In

particular we evaluate the caching mechanisms offered by the relative technologies.

The effectiveness of optimization attempts is gauged by the relative speed-up

achieved by the mechanisms as well as by the flexibility with which the techniques

can be applied.

Some benchmarking tests are also performed so as to gauge the relative efficiency of

the technologies against each other. In particular we test performance in the important

fields of data access and rendering, and for both SOAP and REST Web Services. The

Apache and IIS web servers are also benchmarked.

The section on LAMP examines the PEAR Cache::Lite caching tool as well as

taking a look at other optimization mechanisms such as ‘pseudo-cron’. The section on

.NET looks at the caching options offered by this technology. The section on .NET

takes a look at the various caching mechanisms available in ASP.NET. Caching in

SQL Server stored procedures is also investigated.

6.2. What is caching?

With modern web applications much content is dynamic, and is pulled from a

persistent data store such as a database. While this adds manageability, flexibility and

functionality to an application, it does have performance implications. Dynamic pages

utilizing server-side technologies like ASP.NET or PHP typically have longer

response times than simple HTML pages because a page is required to repeatedly

fetch and parse data from the persistent data tier as well as to perform business logic.

This results in extra processing as queries are run against the database, business logic

carried out, results returned and in turn rendered to HTML. For data which changes

infrequently, all this extra processing is unnecessary. Output caching provides a

mechanism to store the response either to memory or the hard-drive for optimized

Chapter 7 – Conclusion

 58

retrieval, thus by-passing unnecessary processing and improving the raw response

time of the page.

There are two typical mechanisms for caching page output. The first, which is the

type predominately used by ASP.NET, is memory caching. Memory caching refers to

the process whereby output is stored in memory for quick retrieval at a later stage.

File-based caching uses the file system to store output as text on the hard-disk for

quick retrieval. The intricacies of memory-based caching are discussed in the section

on .NET with specific relevance to the Cache object, while file-based caching is

discussed in the section on LAMP.

6.3. Optimization with LAMP

The LAMP system offers support for both memory-based output caching and file-

based output caching. This section gives a brief overview of memory-based caching

options, but concentrates on the file-based memory-caching options made available

by the PEAR Cache_Lite .

The PEAR class, Cache_Lite provides a user-friendly interface to implement file-

based output caching. Cache_Lite also supports memory caching if the

memoryCaching parameter is set to true - although this is not the default. With this

option, every time a file is cached it is stored in an array within the Cache_Lite

object; this memory cache can be accessed through the saveMemoryCachingState

and getMemoryCachingState methods of Cache_Lite . The advantage of such

memory caching is that the complete set of cache files can be stored in a single file,

thus decreasing disk read/writes by reconstructing the cache files into an array to

which code has access. Memory-based caching is best suited to larger sites [Fuecks,

H2., 2004]. The following section, ‘6.3.1. Using Cache_Lite for Chunked, File-

Based Output Caching’, illustrates and analyzes the process of using file-based

caching with Cache_Lite.

6.3.1. Using Cache_Lite for Chunked, File-Based Output Caching

Chapter 7 – Conclusion

 59

Cache_Lite provides a mechanism for saving the HTML output from a response to a

file on the storage system. The following code illustrates how caching may be

performed using Cache_Lite:

//include Cache_Lite

require_once('Cache/Lite/Output.php');

//set the parameters for the cache object

$options = array(

 'cacheDir' => './.cache/',//directory where resp onses are stored

 'fileNameProtection' => fals e,//do not md5 hash name

 'writeControl' => TRUE,//checks file is successf ully written

 'readControl' => TRUE,//checks files being read for corruption

 'readControlType' => 'strlen'//how files are che cked for

corruption

);

//instantiate cache object

$cache = new Cache_Lite_Output($options);

echo time(); //output the uncached time

$lifetime = 60;

//set the lifetime of the cache to last 2 minutes b efore updating the cache

$cache->setLifeTime($lifetime);

//start caching a chunk

if(!$cache->start('content','Static')){

 echo time(); //cached time value

 /* perform logic and render HTML for cachin g */

 //stop caching this block

 $cache->end();

}

The first time the above code is called, it will write a chunk of output code, generated

from code starting at the $cache->start('content','Static') command and ending at

the $cache->end() command, to the file system. This code is stored in the specified

cacheDir directory (.cache), and will be named ‘cache_Static_content ’ as specified

by the arguments passed to $cache->start . Thereafter, every time it is called within its

specified lifetime, in this case every two minutes, the cached output file will be served

to the browser instead of the code physically generating the output as would normally

be the case. Once the page is called after the lifetime has expired, the

“cache_Static_content ” file is regenerated with fresh content.

Chapter 7 – Conclusion

 60

Output caching is generally accepted as one of the best means of improving the

performance of a page. To test the effectiveness of Cache_Lite , and file-based

caching, tests where run against a page with considerable overhead. The page in

question runs a query against the MySQL database. 1000 rows are returned and these

are output to the browser in a table.

Two version of this page were created, one which supports caching, and another

which doesn’t. Profiling the pages using the Zend Profiler revealed some interesting

results as shown below, Figures, 17, 18, and 19. The figures illustrate a breakdown of

the core time-distributions associated to files loaded when a single url is called. This

tool is useful for establishing bottlenecks, and understanding the execution process of

a PHP script which includes a number of other scripts. The red portion of the pie

illustrates the file with the longest execution time; blue is second longest and finally

green is the file with the lowest proportion of execution time.

Figure 18 illustrates the process of serving a cached file to the browser. As this figure

illustrates, execution time is dominated by the Output.php file which is responsible

for fetching and displaying the cached output file. Only a small proportion of time is

dedicated to the main MySQLi_withCache.php file because the code normally

executed within this file has been cached, and thus is not executed. Figure 19

illustrates a page where the cache is being renewed; you can see here that a far greater

proportion of processing time is dedicated to MySQLi_withCache.php . This is

because the logic contained in this file needs to be executed so that the output can be

created and cached. Notice the impressive difference in execution time between the

major component in Figure 19 (MySQLi_withCache.php , executing in 247.98 ms),

and the major component in Figure 18 (Outout.php , executing in 6.52 ms). Finally

Figure 20 illustrates a page with no output caching. This page reported the longest

response time.

Chapter 7 – Conclusion

 61

Figure 18 – A cached page

Figure 19 – Creating the cache

Figure 20 - A page with no
output caching

While the above illustrations provide useful information as to how the cache object

works, response times are the results of a single request, and do not provide a suitable

illustration of the overall improvement in response time. To establish this, the average

response time of 100 requests was recorded. For two pages, one with caching, one

without. The results are illustrated in Table 11. This test shows a 39.67%

improvement in response time from the cached page.

Table 11 - Average response times for a cached and un-cached page

Average response time over 100 web requests

MySQLi_withCache.php (cached) 146 ms

MySQLi.php (not cached) 242 ms

While the above example serves to illustrate the advantages of output caching, there

are a number of considerations which need to be understood when using output

caching. Firstly, it is important to bear in mind that there is some overhead incurred in

using the cache object because the object has to write the files to the file directory.

Thus, while in the example above caching provides for great speedup, this may not

always be the case, in particular if caching is used too frequently and for short

lifetimes as in the following example:

Chapter 7 – Conclusion

 62

$cache->setLifeTime(60);

if(!$cache->start('content','Static')){

 echo time(); //cached time value

 //stop caching this block

 $cache->end();

}

A breakdown of this page’s execution is illustrated in Figure 21. (Figure 21in this

example is equivalent to Figure 19 in the previous example). This image represents a

situation in which a page is being cached for the first time. As is illustrated by the

example, the page Output.php , responsible for creating the cached text-file actually

requires more execution time than the BadCache.php file itself. Thus caching actually

increases the average response time for the document.

Another consideration when using caching for

dynamic pages is that dynamic pages often vary

according to parameters passed to them. For

example, in the application, the gallery page will

display images in a gallery dynamically selected

according to the gallery ID and page number

passed to it in the querystring. Using a simplistic

example of caching as above, this would be

problematic, since the gallery page would be

cached, and no new pages would be loaded until

the time-limit exceeds.

For example, with caching such as illustrated

above, the url:

http://localhost:3000/38_2005_ii/public_html/ga
Figure 21 - A bad use of cache

Chapter 7 – Conclusion

 63

llery.php?g=278

would be synonymous to the another url such as

http://localhost:3000/38_2005_ii/public_html/gallery.php?g=231, because both would

load the same cached file.

This is easily be averted by naming the cache files appropriately, for example:

$cache->start('gallery_'.$_GET[‘g’],'Static')

Finally, when using text-file caching as with Cache_Lite , there are some security

implications which must be taken into account. The example above reveals a

potentially insecure use of output caching. Since output is stored in plain-text, care

needs to be taken so as to store cached output safely. In particular, personal details

must be cached safely. Typically, the cache folder should be stored above the web-

root on the server, and thus not be accessible directly from the internet.

6.3.2. Caching with ASP.NET

ASP.NET offers caching at a page level, using page directives, and with the Cache

object. Page directive caching enables blanket caching of an entire page, or fragment

caching of specific user controls within a page. The ASP.NET Cache object is similar

to PHP's Cache_Lite used in the examples above. Cache allows for application level

caching. Although using the Cache object is slightly more complex, it provides the

developer with improved flexibility and control. A new feature offered in .NET 2.0 is

SQL cache invalidation. This option caches data pulled from a table in a SQL Server

2005 database until changes are made to the table, at which stage the cache is

renewed. SQL cache invalidation is a simplification and improvement on SQL cache

dependency which was available in older versions of the .NET framework.

The simplest form of caching in .NET is by use of the @OutputCache page directive.

Placing:

<%@ OutputCache Duration ="120" VaryByParam ="None" %>

This will cache the page for a duration of 120 seconds. This example was used to test

caching performance improvements under the .NET framework. A file similar to that

in the previous example was run. Results from the test are listed in Table 13 –

Chapter 7 – Conclusion

 64

“Caching with .NET”. The pages, DataSetCache and DataSetNoCache are similar to

the pages used in the LAMP example above. The .NET pages collect 1000 rows from

the SQL Server 2005 database using a DataSet, and render these pages to the browser.

As illustrated in Table 13, an impressive 45.31% improvement in performance is

achieved through using memory caching with .NET. However, the size of the file

created by Visual Studio was a massive 2.44 MB by comparison to the skimpy

424KB file-size served by LAMP. The reason for the bloated filesize in the .NET

page was two-fold, firstly, the view-state feature (a state management feature unique

to ASP.NET which maintains state by passing variables between pages using an

encrypted hidden form field), and bloated HTML code.

Setting the page level attribute EnableViewState to false enabled us to remove the

hidden viewstate field and so decrease the file-size to 1.9 MB. Setting

EnableViewState to false does not completely remove the viewstate hidden field,

although it considerably shortens it.

From the HTML code generated by Visual Studio it is evident that there is substantial

bloat added to the HTML code by the ASP.NET templating engine. For example, a

label control in Visual Studio will be converted to the following HTML code by the

templating engine:

IM000795.jpg

The only information that the user needs, and indeed which is relevent in the HTML

is the text contained within the tag. The tag itself is completely

irrelevent in normal HTML. However, the Visual Studio templating engine requires

that all ASP.NET controls be form elements – this is how the templating engine and

server-side code are able interact to achieve a seemingly event-driven programming

environment on top of the stateless HTML protocol. For a label to be accessible using

code ,such as Label1.Text = “Some Text” , in the code-behind file, it must be

served in HTML as a valid form element (such as the tag above). The

ASP.NET templating engine facilitates the conversion from ASP control to rendered

Chapter 7 – Conclusion

 65

HTML (Listing 12) while the CLR (Common Language Runtime), manages the

application code behind our backs.

<asp : Label ID ="Label1" runat ="server" Text ="Label"></ asp : Label >

To

Label

listing 12 - How the ASP.NET templating engine converts an ASP:label control to HTML

However, even with the bloated HTML removed the .NET pages were still almost

twice the size of the LAMP equivalent.

To improve the performance of the page we removed the labels from the DataList

control and instead just left the plain HTML text. This further decreased the filesize to

811KB, and response times impoved from 642 to 269 ms and from 1117 to 493 ms

for the cached and non-cache pages respectively.

Table 13 - Caching with .NET

Average response time over 100 web requests

Name of File Response

Time

File size Relative

improvement from

caching

DataSetCache.aspx (cached) 823 ms

DataSetNoCache.aspx (not cached) 1505 ms

2.44MB 45.31%

improvement

DataSetCache.aspx (cached)(no

viewstate)

642 ms

DataSetNoCache.aspx (not cached)(no

viewstate)

1117 ms

1.90MB 42% improvement

DataSetCacheStripped.aspx (cached)(no

View State)(Stripped of bloated HTML)

269 ms

DataSetNoCacheStripped.aspx (not

cached)(no View State)(Stripped of

bloated HTML)

493 ms

811KB 45% improvement

Chapter 7 – Conclusion

 66

The caching mechanism in .NET can handle the problem described in the section on

caching with LAMP, where different variables are passed in the URL, as in

http://localhost:3000/38_2005_ii/public_html/gallery.php?g=278 and

http://localhost:3000/38_2005_ii/public_html/gallery.php?g=231 by setting the

VaryByParam attribute to true. This ensures that pages are refreshed when the

specified parameters are passed to the page using either GET or POST. The

OutputCache directive also supports attributes such as VaryByControl ,

VaryByCustom and VaryByHeader . These help the developer to produce cached pages

which are sensitive to events, and to state.

For example, consider a web form which accepts variables via POST. By setting

VaryByParam to the name of the POST variable we will be accepting we can ensure

that the various different responses to the form are successfully cached.

The OutputCache directive can also be applied to user controls within a Web Form.

This is called fragment caching [Webb, 2003.], and is similar to the chunked caching

method explained in the LAMP section of this chapter. By specifying

PartialCaching in the definition of a web control, caching can be applied to

individual user controls throughout an application. Chunked caching, or fragment

caching, can also be applied at the page level by setting the VaryByControl

parameter to the ID of a specific control on the page to cache various different

versions of a page control [Webb. J. 2003].

Caching is also available through the Cache object of the System.Web.Caching

namespace. This offers improved flexibility because caching can be performed

explicity in code as opposed to the blanket manner in which it is applied using page

directives. With the Cache object application logic as well as simple output responses

can be cached. Data can be added to the cache object using the Add and Insert

methods, or on assignment. As mentioned earlier, use of the Cache object is similar

to that of Cache_Lite as Listing 14 illustrates.

Chapter 7 – Conclusion

 67

if(Cache[“NewItem”] == null){

 Label1.Text = “No Cache, lest add some”;

 Cache.Add(“NewItem”,”Some String data”);

}else{

 Label1.Text = Cache[“NewItem”].ToString();

}

[MSDN. 2005]

Listing 14 - Caching with the .NET Cache object

Finally, ASP.NET 2 offers “SQL Server 2005 notification based cache invalidation”

[MSDN, 2005]. This is an impressive and useful feature which “uses the query

change notification mechanism of SQL Server 2005 to detect changes to the results of

queries” [MSDN. 2005]. When a command is executed, ASP.NET and ADO.NET

automatically create a cache dependency. This listens to change notifications sent

from SQL Server. When data is changed in the SQL server, the web server is

informed and invalidates the appropriate caches [MSDN. 2005].

Notification-based invalidation can be applied using the

SqlDependency="CommandNotification", attribute of the OutputCache page

directive. Notification can also easily be added to a databound control using the code

in Listing 15.

<asp:SqlDataSource EnableCaching="true"
SqlCacheDependency="CommandNotification" CacheDurat ion="Infinite" ...
/>

Listing 15 - Applying Sql Server 2005 Notification-based Cache Invalidation to a
SQLDataSource

This is one of the more useful and practical caching features available. It is extremely

useful for caching objects such as look-up tables which draw rarely changing data,

such as lists of categories, from the database.

6.4. Conclusions

Both LAMP and .NET offer effective mechanisms for caching. Both platforms also

offer the option to cache to disk or to memory, although in LAMP disk caching is the

default while in .NET memory caching is the default.

Chapter 7 – Conclusion

 68

Both platforms offer impressive responses to caching, although ASP.NET produced a

slightly greater improvement at 45.31% over the 39.67% improvement experienced

by LAMP. However, it must be noted that the size of the data cache by ASP.NET was

considerably larger, and therefore, the advantages to caching would be expected to be

greater as more data is retrieved directly from the cache.

The .NET caching mechanism offers useful tools to enable the developer to easily

manage most of the intricacies of data caching such as dynamic pages with varying

responses according to the variables passed to them. Features such as these must be

handled in code by the Cache_Lite object in LAMP. Particularly important is the

tight integration between SQL Server 2005 and ASP.NET which enables SQL

notification caching. This is an impressive and unique feature to ASP.NET. The

LAMP platform does not have the tight integration necessary to enable lower level

synchronisation to the same extent. Although similar capabilities would be possible

using the LAMP system, these would be complex to implement, would rely on some

kind of polling mechanism using cron and would be unlikely to be as efficient a

solution to the problem.

Although optimization through caching for ASP.NET slightly outperforms the

equivalent in LAMP in terms of both capability and improved performance, in terms

of overall performance there is considerable bloat added to ASP.NET code through

both the visual environment and the templating engine. It is important to note too that

much of the bloat experienced in ASP.NET pages is necessary for the ASP.NET

framework to operate as intended. ASP.NET controls, the cornerstone of ASP.NET

web applications, need to add extra formatting to web pages so that they can function

properly. Viewstate too adds a great deal of bloat to a web page, but is necessary for

many ASP.NET applications as it is a useful and relatively secure means of

maintaining state throughout a user's session. The example above is an excellent

example of the bloated output created by the default configuration in Visual Studio.

By simply removing viewstate and using text instead of the ASP label server control,

the page-size was decreased from 2.44 MB to 811KB. Response times decreased from

823 to 269 ms on cached pages and 1505 to 493 ms on non-cached pages. Even the

Chapter 7 – Conclusion

 69

optimized ASP.NET code was still considerably slower than comparative LAMP

code.

Although LAMP code may not execute as fast as compiled ASP.NET code, its

generated HTML is typically tighter. This leads to smaller HTML files and ultimately

better response times. Extra functionality which is plumbed in to the ASP.NET Visual

environment, such as viewstate and controls, although useful in producing high

quality solutions, and powering the ASP.NET event-driven web programming

environment, do incur a certain performance overhead due to added bloat to pages.

Although often necessary in ASP.NET applications, unnecessary HTML code is often

generated to enable these features, even when not in use.

Even though ASP.NET slightly out-performs LAMP in terms of caching capabilities,

LAMP excels in creating neat and optimized HTML code compared to the bloated

HTML code necessary to drive the ASP.NET model of server-side programming. As

such, the average page created with LAMP is likely to be of a smaller file-size than its

.NET counterpart, and thus we can expect faster response times.

Chapter 7 – Conclusion

 70

Chapter 7 – Conclusion

7.1. Outcomes and Conclusion

The recent releases of PHP 5 and MySQL 5 within the LAMP platform signify a large

push into the enterprise web development domain space by this framework. Similarly,

the release of ASP.NET 2.0, the first major release to the .NET framework since its

initial release in 2000, also represents major development to this platform. These new

releases all signify a significant drive towards maturity of these already well

established platforms.

ASP.NET 2.0, and the .NET framework 2.0 offer a complete and powerful

environment for developing robust large-scale web applications quickly and easily.

Visual tools, new controls and new features such as the login controls for role

management, as well as masterpages, themes, over 40 new controls and efficient

Object re-use allow for straightforward rapid development of robust applications with

the .NET framework.

In addition to the new features mentioned above, mature and solid support for features

such as Web Services and robust data access is also offered.

The .NET environment is scaled for top-end enterprise level development, .NET

emphasises power and flexibility at small cost to performance due to bloated file-sizes

- although compiled .NET files are optimized and run extremely efficiently. .NET is

aimed at the high-end market and targets high-performance hardware, assuming that

scalability and performance can be improved through hardware upgrades.

On the other hand, LAMP is still better suited to smaller applications; although it is

capable of handling large-scale enterprise level problems. The LAMP framework

affords the developer better flexibility, but does not have the power features of .NET,

such as DataSets and ASP.NET controls. Furthermore, support for XML and Web

Services is new and limited by comparison to the mature Web Service suite offered by

.NET. The LAMP stack is a scalable and efficient, yet lightweight solution, which is

capable of producing high quality web-based applications - but is better suited to

Chapter 7 – Conclusion

 71

smaller projects because of the longer development time requirements of the

framework.

The LAMP platform, hosted on the robust Apache web server is scalable and high-

performance enough to serve large web applications under high-demand or load.

Furthermore, the PHP scripting language and MySQL database server are capable of

producing high-quality high-performance and secure applications equivalent to .NET

applications. However, the development of such solutions with the LAMP framework

is more difficult and likely to take longer.

In conclusion, .NET is better suited to larger-scale application development, however,

LAMP is capable of creating comparable and even better solutions to large problems,

and is well suited as an alternative to ASP.NET for large-scale development where

cost or operating platform is an issue.

7.2. Future Work

7.2.1. Extension of the core application

This project developed the core functionality and architecture of a refactored version

of the www.38.co.za website. Future development could extend the core application,

using either LAMP or ASP.NET to encapsulate the full functionality of the existing

application. This could be performed using either the .NET or LAMP environment

and could facilitate a more in depth analysis of the specific framework.

7.2.2. Further analysis

ASP.NET 2.0 reflects a major release and much development on top of ASP.NET 1.x.

Work done in this project to evaluate the ASP.NET 2.0 platform could be used to

compare ASP.NET 2.0 with ASP.NET 1.x in terms of performance and capability.

Similarly, analyses could be performed on PHP 4.x and PHP 5 or MySQL 4.x and

MySQL 5.

References

 72

References

Note: Most technologies being tested are relatively new. ASP.NET 2.0, SQL Server 2005, PHP 5 and

MySQL 5 where only released out of the BETA testing phase during the course of the year. As a result,

there is little literature published on the topics, and this accounts for the high proportion of web

references below.

1. [Alur et al. 2003] Alur, D., Crupi, J., Malks, D. 2003. Core J2EE Patterns:

Data Access Object. Prentice Hall/Sun Microsystems. Available at:

http://corej2eepatterns.com/Patterns2ndEd/DataAccessObject.htm. Accessed:

9 August 2005

2. [Costello. 2005]. Costello, R.L. Building Web Services the REST Way.

Available at: http://www.xfront.com/REST-Web-Services.html Accessed: 19

Oct. 2005.

3. [Ferrara, A., and MacDonald, M. 2002] Ferrara, A., and MacDonald, M.

Programming .NET Web Services. O’Reilly Press, United States of

America, 2002

4. [Fielding, R. T. 2000]. Architectural Styles and the Design of Network-

based Software Architectures. Doctoral dissertation, University of

California, Irvine, 2000

5. [Fleet Berry, D. 2005] Fleet Berry, D 15 Seconds: Writing a Custom

Membership Provider fo the Login Control in ASP.NET 2.0. 15

Seconds.com. Available at: http://www.15seconds.com/issue/050216.htm .

Accessed 17 Aug 2005

6. [Frietag, P. 2005] REST vs SOAP Web Services. Available Online:

http://www.petefreitag.com/item/431.cfm. Accessed: 19 Oct 2005.

7. [Fuecks, Ha. 2004] The PHP Anthology Volume I: Applications. Sitepoint

press.

8. [Fuecks, Hb. 2004] The PHP Anthology Volume II: Applications. Sitepoint

press.

9. [Greant, Z. and Richter, G. 2004] Using ext/mysqli: Part I - Overview and

Prepared Statements. www.zend.com. Accessed: 2 Nov 2005 Available

online: http://www.zend.com/php5/articles/php5-mysqli.php?article=php5-

mysqli&kind=php5&id=4524&open=0&anc=0&view=1

References

 73

10. [Gulutzan, P. 2005] MySQL 5.0 Stored Procedures. Accessed: 2 Noc 2005.

Available online: http://dev.mysql.com/tech-resources/articles/mysql-

storedprocedures.pdf

11. [He, H. 2004]. Implementing REST Web Services: Best Practices and

Guidelines. XML.com. Available online:

http://www.xml.com/lpt/a/2004/08/11/rest.html Accessed: 10 Oct. 2005.

12. [Hinchcliffe, D. 2005] The Hidden Battle Between Web Services: REST

and SOAP. Available online:

http://hinchcliffe.org/archive/2005/02/12/171.aspx. Accessed: 6 Nov 2005.

13. [Howard, M. and LeBlanc D. 2002] Writing Secure Code. 2 ed. Microsoft

Press, Redmond, 2002

14. [Modsecurity. 2005]. Open Source Application Firewall. Thinking Stone.

Available at: www.modsecurity.org Accessed: Mon 17 Oct. 2005.

15. [Moroney, L. 2005] SOAP’s Alive: Try the New Native SOAP Extensions

for PHP. DevX. Available online:

http://www.devx.com/webdav/Article/22338. Accessed: 28 Aug 2005.

16. [MSDN. 2005] SQL Cache Invalidation. Available online:

http://beta.asp.net/QUICKSTART/aspnet/doc/caching/SQLInvalidation.aspx.

Accessed: 3 Nov 2005.

17. [Patterson, D. 2004] Simplify Business Logic with PHP DataObjects.

Onlamp.com. Available at:

http://www.onlamp.com/pub/a/php/2004/08/05/dataobjects.html Accessed: 9

Aug 2005

18. [Plourde, W. 2005] Creating a Data Access Layer in .NET. Available

online: http://www.15seconds.com/issue/030317.htm. Accessed: 27 Oct. 05.

19. [Schlossnagle, G. 2005] WSDL Generation. George’s Blog. Available

Online: http://www.schlossnagle.org/~george/blog/index.php?/archives/234-

WSDL-Generation.html Accessed: 28 Aug 2005.

20. [Shah, S. 2005] Securing Web Services with mod_security. Available

online: http://www.onlamp.com/pub/a/onlamp/2005/06/09/wws_security.html.

Accessed: Fri 14 Oct. 2005. www.ONLamp.com

21. [Shiflett, C. 2005a]. Essential PHP Security. O’Reilly Press. United States of

America

References

 74

22. [Shiflett, C. 2005b]. PHP Security Guide. ApacheCon. Available at:

http://phpsec.org/php-security-guide.pdf. Accessed: 2 Nov 2005 .

23. [Stocker, C. 2005]. XML in PHP 5 – What’s New? Available online:

http://www.zend.com/php5/articles/php5-xmlphp.php. Accessed 25 October

2005. Zend

24. [Trachtenburg, A. 2005]. PHP Web Services Without SOAP. OnLamp.com.

Available online:

http://www.onlamp.com/pub/a/php/2003/10/30/amazon_rest.html accessed: 6

Nov 2005.

25. [Trenary, J. 2002] Developing XML Web Services and Server Components

with Microsoft Visual Basic .NET and Visual C#.NET. Microsoft

Corporation. Redmond, Washington, USA.

26. [Troels, A. 2005] A Comparison of different SQL implementations.

Available at: http://troels,arvin.dk/db/rdbms/ Accessed 25 May 2005.

Appendix

 I

Appendix I – Screenshots

Figure 22 - LAMP Home page

Appendix

 II

Figure 23 – LAMP Franchise page

Figure 24 – LAMP Galleries page

Appendix

 III

Figure 25 - LAMP Gallery page

Figure 26 – LAMP Picture page

Appendix

 IV

Figure 27 - .NET Home page

Figure 28 - .NET Franchise page

Appendix

 V

Figure 29 - .NET galleries page

Figure 30 - Gallery page

Appendix

 VI

Figure 31 - Picture page

Appendix

 I

Appendix II – UML and Design

PEAR::DB

+countCols()

+countRows()

+doConnect()

+doDisconnect()

+next()

+reset()

-db

-rs

-db_name

-db_host

-db_pass

-user

-db_row

DBHelpe

«uses»+getAllNets()

+getAllNetsAndFranchises()

+getNetID()

+getNetName()

+nextNet()

-allNetsRS

siteDO

+getNetworkByID()

+getNetworkByName()

+loadNets()

+nextNet()

+getAllNetworks()

+getFranchises()

+getFranID()

+getFranName()

+add()

+update()

+delete()

-dbTable

-ID

-name

-netRS

NetDO

+getFranchiseByID()

+loadFranchise()

+add()

+update()

+delete()

+getCategories()

+getCatDesc()

+getcatID()

+getCatKwords()

+getCatName()

-dbTable

-ID

-name

-netID

FranchiseDO

+getCategoryByID()

+loadCategory()

+add()

+update()

+delete()

+addGalleryToCategory()

+removeGalleryFromCategory()

+getGalDate()

+getGalDesc()

+getGalHits()

+getGalID()

+getGalKeywords()

+getGalleries()

+getGalName()

+getNumGals()

-dbTable

-description

-OD

-keywords

-name

-numGals

categoriesDO

+getGalleryByID()

+getCategories()

+getPictures()

+getGalleryByID()

+loadGallery()

+nextCat()

+nextPic()

+add()

+addAndLoad()

+update()

+delete()

+removeGalleryFromCategory()

+addGalleryToCategory()

+getCatID()

+getCatName()

+getImgID()

+getImgHits()

+getImgNumVotes()

+getImgName()

+getImgRating()

+getImgUrl()

+()

-catID

-catRS

-count

-dbTable

-description

-fid

-hits

-ID

-keywords

-name

-picRS

-status

-timestamp

-url

-username

-userSubs

galleryDO

+getPicByID()

+loadPicByID()

+getApprovedComments()

+getComments()

+getCats()

+nextComment()

+nextCat()

+add()

+update()

+delete()

+getCommentID()

+getCommentDay()

+getCommentMonth()

+getCommentYear()

+getCatID()

+getCatName()

-catRS

-commentRS

-dailyHits

-dbTable

-emailHits

-galid

-galName

-Height

-Width

-hits

-ID

-keywords

-monthlyHits

-name

-number

-numVotes

-tnHeight

-tnWidth

-totalRating

-url

PictureDO

+getCommentByID()

+loadComment()

+add()

+update()

+delete()

-by

-day

-dbTable

-ID

-imgID

-month

-status

-year

commentDO

Figure 32 - LAMP Data Access Layer

Appendix

 II

Guest

User

Browse

Email

Add Keywords

Bookmark

Add to Download

queue

Add Comment

«uses»

«extends»

«uses»

System

Franchise Admin

Track User

«uses»

Remove Picture
«uses»

Edit Comments

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Get Related

Draw Navigation

«uses»

«uses»

GetFranchiseByDomai

n

getCategoriesByFran

chise

getGalleriesByDate

getGalleriesByCat

getPhotosByGallery

getCommentsByPhoto

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»
«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Manage Categories

Manage Pictures

Manage Galleries

«uses»

«uses»

«uses»

Domain Administrator

«extends»

Manage Franchises

«uses»

Photographer

uploadPhotos

Claim Gallery

«uses»

«uses»

Moderator

«uses»

«uses»

Manage Roles

«uses»

Figure 33 - Complete use case diagram

Appendix

 III

Figure 34 - Site Map

