
 1

A comparative analysis of the LAMP (Linux,
Apache, MySQL and PHP) and Microsoft
.NET (Windows XP, IIS, Microsoft SQL
Server and ASP.NET) Frameworks

Abstract

This paper examines the Microsoft ASP.NET
framework version 2 and the LAMP (Linux
Apache MySQL and PHP 5) web development
platforms.

 Findings are drawn from practical experience
in developing a large-scale web-based
application using both platforms. In addition,
preliminary tests have been run across both
frameworks in order to establish tentative
performance benchmarks.

This paper suggests that although LAMP is a
good production environment, .NET 2 is better
suited to large-scale, critical enterprise
development, while LAMP is better suited to
smaller or medium-sized applications or
applications which are potentially cross-
platform.

1. Introduction

This paper broadly outlines a comparative
analysis of the two most popular web-
development frameworks; ASP.NET and LAMP
[Netcraft]. Section 2 discusses the methodology
used to compare the platforms. Section 3
provides an overview of the application, while
section 4 details the implementation of the
project, outlining experiences from development
in both applications, and some initial
benchmarking data. Finally section 5 draws
conclusions from results to date.

2. Methodology

In order to develop a deep understanding of the
strengths and weaknesses of these development
environments, large-scale applications were
developed using both the LAMP and ASP.NET

frameworks. Development experiences as well
as tests and analysis of the final products formed
the basis for comparative analysis of the two
frameworks.

3. Overview

www.38.co.za is an existing, live photo gallery
website which was developed by the author The
site generates over a million hits a month and to
date has over 17 000 photographs, over 200
galleries and a subscribed user-base of almost
6000 users. www.38.co.za serves as the perfect
test-bed for testing the strengths and weaknesses
of the frameworks because of both the
performance and feature requirements of the
site.

The application requires efficient and complex
data access to feed information from the
extensive database and to allow statistical
analysis of this data – this tests both large and
complex database queries. Security needs to be
leveraged to implement authentication and
personalization as well as to prevent malicious
activity such as SQL injection or XXS (Cross
Site Scripting) [Howard, H. et al]. RSS, XML
and Web Services are used for client side-
interaction between the website and various
client-side GUI components created to ease
administration and add value to user interaction.
Finally, because the site is image-centric, code-
optimization is required to deliver a high-
performance website able to deliver bandwidth-
intensive content to the browser quickly and
efficiently.

Thus the application presents a complicated
specification which provides a good basis for
testing the performance and quality of any web-
development platform across a variety of
important facets.

4. Implementation

The pre-existing application, created by the
author, was completely rewritten and refactored.

 2

From the existing, largely procedural 2-tier
PHP4/MySQL code: two new versions were
created; one using PHP5/MySQL 5 running on
Apache 2.0 and the other using ASP.NET
2/SQL Server 2005 running on IIS.

4.1. Architecture of the new system

The architecture of the new, refactored
application embraces an Object-Oriented (OO)
approach and provides much neater, more
elegant, maintainable and extensible code.

Table 1 - Performance comparison

Figure 1 -
Performance of the
old galleries page

Figure 2 -
Performance of the
new galleries page

Although a more complex architecture, the new
3-tiered application improved raw performance
of the PHP application by as much as 300% on
some pages. For example, the galleries page,
which handles browsing, searching and listing
of available galleries, improved from 1527.07
ms loading time to only 217.59 ms. The
diagrams in Table 1, show how the majority of
processing time (1442.46 ms) in the old page
(Figure 1) was occupied by database calls.

Much of the bloat in the old system was the
result of ad hoc additions or changes to code. As
a result code was inefficient and in many cases
there was unnecessary repetition of SQL queries
or logic layer code.

Refactoring the old system not only cut out
much of this spurious code - hence the much
improved performance - but the new 3-tier
architecture features better code separation,

object re-use and abstraction to ensure that
future ad-hoc maintenance will not result in the
inefficiency problems explained above.

By abstracting logic and database calls to the
BLL (Business Logic Layer) and DAL (Data
Access Layer) respectively, the developer was
able to simplify code and logic in the UI (user
interface), hence easing maintenance at the UI
level.

By abstracting internal logic (such as searching
logic) to the BLL, and data queries to the DAL,
the galleries UI page was reduced from 579
LOC (Lines Of Code) to only 73 LOC
containing the core logic required for that page.
This allows for easier-to-read code as well as
centralized design and object re-use.

4.2. Developing with LAMP

4.2.1. PHP 5

Unlike ASP.NET, the PHP 5 scripting
environment is a lightweight environment
encompassing a bottom-up approach to
development, providing a minimum of tools
within the default installation.

The advantages of this, over complicated
frameworks such as .NET are that it provides a
simple development platform. With PHP 5 there
is no need to learn a large library of objects but
it still provides the flexibility to add any
necessary objects to the project as and when
required [Fuerks]. This enables the developer to
get started in this environment quickly, using
whatever coding technique they are most
comfortable with, while enabling more
advanced programmers to use the advanced OO
features available as they require them.

PHP is an open-source project, so extensions to
the basic language typically come in the form of
third-party tools created by community
members or groups. A number of ‘frameworks’
have been built on top of the basic PHP engine.
The most commonly used one is the PEAR
(PHP Extension and Applications Repository)

 3

library – which is closely linked with core PHP
development. This is the framework which was
used for development of the new system.

An advantage of such a minimalist approach is
that it is possible to pool all the class libraries to
find exactly what is needed. PHP by default
provides a simple framework for development,
suited to ad hoc small scale development,
however, the language itself supports the OO
needs for large-scale development and, when
these are needed by the developer, the required
tools are available and easy to use and
incorporate. This is illustrated by the needs of
the target application, www.38.co.za. The initial
code was mostly procedural, with a few general-
purpose custom classes. As the application has
matured, a need for more mature code has
emerged and the new implementation takes
advantage of the PEAR libraries and advanced
Object-Oriented coding practices to produce
this.

While the community–based, bottom-up
development process is flexible in that it affords
the user the opportunity to pick and choose, it
has a number of detrimental consequences,
especially when large-scale applications are
being developed. These include:

4.2.1.1. Lack of uniformity across
applications.

The bottom-up approach means that across both
applications, and development projects there is a
lack of continuity and solidarity. For example:
during implementation, design time decisions
had to be made as to which framework to use
(PEAR, Eclipse, Prado, Smarty, or a
compilation) for development. These decisions
would greatly effect the future development of
the application.

While this afforded flexibility to the project in
terms of the ability to use frameworks with
which the developer was comfortable, it also led
to confusion as to which framework should be
used, and to potential future time wastage as
developers new to the project may need to learn
a new framework.

Every PHP project is unique. This makes it
more difficult for newcomers to a project to
understand its intricacies. The greater choice of
core components (be it class libraries,
templating engines or even patterns subscribed
to), and a lack of a standard core set of
components, means that there is a lack of
uniformity in applications developed using PHP.

Flexibility has been a great aid in promoting
PHP as the best platform for developing
smaller-scale applications [Berkes, D.], but
unfortunately the features responsible for the
flexibility also limit its entrance into the domain
of large-scale enterprise development.

4.2.2. Questionable quality of third-party
tools

Although certain tools and libraries are
generally accepted by the community, there is
still no guarantee of quality from third-party
classes.

Even using PEAR, the generally accepted
standard library, the developer had problems
with poor documentation and classes which
hadn’t been updated in a long time; or for which
production had ceased. This complicated the
process of development with this library, and
also raised questions as to the future stability of
packages used.

Although the core packages in the library (such
as DB or HTML::Quickform) were found useful
and well documented, the non-core packages
(such as DB_SLIDER) were undesirable due to
poor documentation and questionable quality.

Furthermore, the unintuitive structure of the
library also led to uncertainty. For example: the
DB_SLIDER class (which provides paging
functionality to query results) is packaged in the
Database package, instead of the HTML
package where the other PAGER objects are
packaged.

In addition, many classes in the PEAR
repository are very specific, and are carelessly

 4

implemented as stand-alone classes rather than
classes which inherit from a more generic base
class. This limits the flexibility of these classes.
A class such as PEAR_AUTH (which handles
user authentication) is an example of this. It was
deemed simpler to write a custom class to
handle authentication, rather than try to plumb
the PEAR_AUTH mechanisms into the existing
project.

Simple issues like this, when compared to the
careful structures of interface-driven
frameworks like .NET and Java, cause even the
best third-party PHP libraries to pale in terms of
functionality and usability. While a successful
framework (such as .NET) needs careful
planning and design, the PEAR ‘framework’ has
been developed in a largely ad hoc manner and
this is noticeable from its lack of structure,
documentation and its somewhat erratic nature.

As has been stated, the major barrier to PHP’s
entrance into the enterprise is its bottom-up
nature. Whereas monolithic frameworks such as
.NET or Java provide an entire framework for
core development, PHP has not yet established a
strong framework for development, possibly due
to the fact that it has only fairly recently
embraced Object Oriented (OO) coding
practises, and PHP 5 is arguably the first
properly OO implementation of PHP. This lack
of adequate and uniform design tools hampers
PHP’s entrance into the enterprise.
At the enterprise level of development, issues
such as team development, uniform design and
quality of components become of critical
importance – these are issues which PHP still
needs to improve in order to compete with the
major frameworks such as .NET and Java,
which have extensive native libraries as well as
strong documentation and established design
patterns of best use [Thilmany, C. pp: 35-39].

4.2.2. MySQL

Similar to PHP, MySQL is an open-source,
lightweight database engine, renowned for its
high speed [Troels].

Its high speed makes MySQL ideal for web
development where response-time is often of
critical importance. Another nice feature of
MySQL is its support of multiple table types.
This feature was useful for optimizing the
application. While the majority of tables in the
database were of type InnoDB (which enables
relationships and integrity checking of data),
there were performance advantages in changing
the table type to the faster MyISAM for stand-
alone or large tables such as the countries or
statistics tables. This trick however should be
used carefully as MyISAM tables are fairly
‘dumb’, and offer no integrity checks. As such
MyISAM tables were used sparingly in the
application.

The major short-coming of the MySQL database
server was its limited feature-set. In particular
the lack of support for stored procedures (only
available in the MySQL 5 BETA version),
meant that more PHP code needed to be written
at the DAL. For the .NET application, however,
most if not all SQL could be pushed into the
SQL Server DBMS (Database Management
System) in the form of stored procedures (which
are faster and more secure [Howard, H et al]),
this could not be deemed a best practise in the
LAMP implementation due to the new and
unstable nature of this feature in MySQL.

4.2.3. Apache

Apache is in many ways the strongest tool in the
LAMP toolkit. The major strength of Apache,
apart from its majority market share and strong
security record (which is discussed later) is that
it is a solid cross platform web server. This
means that LAMP applications can run along-
side Java applications on a UNIX server, as well
a alongside .NET applications on a Windows
machine.

Apache’s modular design makes it extensible
and also supports a rich feature-set. A major
advantage leveraged in the application was the
use of the MOD_REWRITE module to enable
search engine friendly urls using regular
expressions. Using MOD_REWRITE; urls

 5

could be changed from the complex
http://www.38.co.za/gallery.php?id=6&pic=456
to the more user-friendly
http://www.38.co.za/gallery/123/456. This ad
introduces a certain level of security through
obscurity to the application.

4.2.3. Conclusion

In conclusion the lightweight LAMP
environment seems typically better suited to
smaller problems. The lightweight package
affords simplicity to simple problems, but
ironically the inherent simplicity of the
framework adds complexity to solving larger
more complex problems.

In the hands of an experienced developer the
LAMP environment is a powerful and cheap
tool for development, and is capable of elegant
solutions to complex problems (such as the new
implementation of www.38.co.za). However,
the tool is not ideally suited to this type of
development, and works better at easing the
development of poor and hard-to-maintain
applications (such as the old implementation) in
the hands of a novice developer.

4.3. Developing with the .NET
framework

The .NET framework, now in version 2,
represents a mature development framework
which attempts, with high levels of success, to
provide the user with all the necessary tools for
development.

.NET provides an extensive component-based
system which encapsulates a great deal of the
standard requirements for a web–based
application, such as: data access and display;
user authentication and personalization; session
maintenance; and input validation. The built in
management of these fundamental requirements
means that the developer is able quickly and
easily to develop a skeleton application and
therefore is able to concentrate on application-
specific value-added tasks and logic. .NET
speeds the development process by reducing the

need to re-invent the wheel every time a new
application is developed.

For example: during development of the LAMP
application much time was dedicated towards
mundane tasks such as creating data objects
[Patterson, D.] for the DAL to represent an in-
memory representation of the database. Further
time was spent writing classes to perform
common BLL and presentation layer
functionality (such as authentication and
database paging), because such classes did not
exist or were of poor quality.

By contrast, the tools provided by ASP.NET
and the .NET framework made these tasks
simple and quick to perform: Datasets
[Thilmany, C. pp: 204-217] were used to
provide an efficient and flexible in-memory
persistent storage map; controls such as the
login and personalization controls, as well as
databound display controls, such as the datalist
and datagrid, enabled quick and easy
development of the skeleton of the application,
enabling the developer to concentrate on the
specific unique business logic required, such as
dealing with adding galleries, comments and
franchises.

A common difficulty with component-driven
architecture is that often by providing specific
functionality to components, it compromises
their flexibility. .NET however, using the
provider pattern, as described by [Howard, R.],
and an interface-driven framework has
successfully created a very extensive, powerful
yet very flexible development environment
which allows users to use controls either as they
come; slightly altered; or completely rewritten
as custom providers.

During implementation this flexibility was
leveraged to provide a custom
membershipProvider class for login controls on
the application [Ghosh, J.]. This enabled the use
of the .NET login controls using the existing
table structure containing the user information
from the initial application.

 6

By comparison, the authentication features
provided by the PEAR library are limited in
both functionality and flexibility. Ultimately for
the functionality offered by the PEAR_AUTH
package, it was more time-efficient to create
custom classes then to use those provided.

The ASP.NET environment is a complete and
polished development environment, providing
not only a solid framework with which to
develop, but also numerous useful tools, such as
the new test suite in Visual Studio 2005, which
ensure the development of quality software.

The major short-coming of ASP.NET is its
reliance on the Windows/IIS combination. In
particular dependence on IIS is very
undesirable. Not only is Apache deemed a more
secure server [Varner, P], but it also dominates
market share at 69.46 % compared to IIS’s
20.43% [Netcraft]. This makes finding a good
host for .NET applications slightly more
difficult and typically slightly more expensive
(this is also obviously due to the fact that the
LAMP stack is all open source and free
software).

Platform reliance also effects interoperability of
the application within an organization. While
LAMP can run on Apache opposite Java or Perl
applications as well as on IIS opposite .NET
applications, .NET is limited to the
Windows/IIS environment. This is a limiting
factor for Linux-house companies.

4.2.2.1. Conclusion

The .NET environment is a complete and
polished development environment. Providing
not only the framework, but also the tools
(Visual Studio, Visual Web Developer or Web
Matrix and Quality testing tools provided by the
test suite) to ease the production of high-quality
large-scale web applications. An extensive
framework of patterns and a carefully
implemented framework make the development
of high-performance elegant solutions with
.NET easier than ever.

Although the .NET environment is one of the
friendliest development environments existing,
its major short-coming is platform dependency.
Although through Web Services and the .NET
framework interoperability has been greatly
improved, the framework still ties the user to a
Window’s platform.

4.3. Performance

To date no formal testing has been performed as
implementations have not yet been deployed to
valid testing servers. Results discussed below
serve only to give a general impression of
performance.

Tests were conducted on the development
computer – a Pentium 4, with 1 gigabyte of
RAM. Tests were conducted in a Windows XP
environment, and this may have affected the
performance of the [L]AMP installations.

The WAMP (Windows, Apache, MySQL and
PHP) environment consisted of Apache 2.0
server (with Zend optimizer), MySQL 5 BETA
and PHP 5. The .NET environment entailed IIS,
SQL Server 2005 BETA April CTP, and .NET
framework 2.0 BETA.

Response time tests were collected using in-
code timing, the Zend Profiler tool, and Web
Tests writing in Visual Studio 2005. Load tests
where also performed using Visual Studio 2005.

Table 2 - Response times for ASP.NET and LAMP

Timing
tool

ASP.NET LAMP

In-code
timing

N/A 1.187

Zend
Profiler

N/A 2.458

Visual
Studio web
tests

0.45 0.95

• Times are an average of 10 timings
taken

• All times are in seconds

As can be seen, the results in Table 2 suggest
faster response times from the ASP.NET code.

 7

This can very likely be attributed to the
improved efficiency brought about by the use of
compiled code.

5. Conclusion

In conclusion, in all sections regarding pure
development ASP.NET proved to be a
favourable environment to the LAMP.
ASP.NET provides better, more elegant and
easier to implement solutions for handling data
access (datasets versus hand-coded php data
objects), XML and Web Services (Visual Studio
provides excellent tools to facilitate the entire
process from discovery to deployment simply
and elegantly), Security and Optimization.
Although the LAMP is capable of achieving all
that can be done with .NET, solutions of equal
or even inferior quality typically required more
effort, thought and time.

Where LAMP shines is in terms of
interoperability, and cross-platform solutions.
Whereas .NET can run only on Windows
machines with IIS, each of the LAMP
components (barring of course Linux) is able to
run on almost any platform: Linux can be
swapped for Windows; Apache can be swapped
for IIS; PHP can be swapped for Perl, Ruby or
Java; and MySQL can be swapped for
PostgreSQL, Oracle or SQL server. The strength
of LAMP lies in its flexibility – an application
produced in LAMP affords the enterprise
flexibility within their development
environment and does not tie the enterprise into
a Windows-centric development environment.

In the opinion of the author, .NET is the overall
better development environment. However, the
LAMP environment, in situations where the
enterprise adopts or is likely to adopt cross-
platform solutions, is the more practical and
flexible of the two.

As a result, .NET solutions should be adopted
where complicated large-scale applications are
required, and the target platform, and the
platform for future development within the
enterprise is known to be Microsoft. In

situations where there is doubt, however, LAMP
provides a capable, feasible and desirable
option.

6. References

1. Patterson, D. 2004. Simplify Business
Logic with PHP DataObjects.
Onlamp.com. Available at:
http://www.onlamp.com/pub/a/php/2004
/08/05/dataobjects.html Accessed: 9 Aug
2005

2. Thilmany, C. 2004. .NET Patterns.
Addison-Wesley. Boston USA.

3. Fuecks, H. 2004. The PHP Anthology
Volumes I & II. Sitepoint Press.
Australia.

4. Howard, M., LeBlanc, D. 2002 Writing
Secure Code. Microsoft Corporation
Press, USA.

5. Ghosh, J. 2004. Building Custom
Providers for ASP.NET 2.0
Membership. Online. Available at:
http://msdn.microsoft.com/library/en-
us/dnaspp/html/bucupro.asp Accessed:
04/09/05

6. Howard, R. 2004. Provider Design
Pattern. Online Available at:
http://msdn.microsoft.com/library/defaul
t.asp?url=/library/en-
us/dnaspnet/html/asp04212004.asp
Accessed: 02/09/05

7. Netcraft. 2005. Netcraft Web Server
Survey. Available at:
http://news.netcraft.com/archives/web_s
erver_survey.html. Accessed: 24/09/05.

8. Troels, A. Comparison of different
SQL implementation. Available at:
http://troels.arvin.dk/db/rdbms/
Accessed: 25/05/05.

9. Berkes, D. 2005, Survey says: PHP
passes Microsoft Active Server Pages.
Available at:
Accessed: 26/05/05

