
Applying reinforcement learning to Tetris

Donald Carr∗

Department of Computer Science
Rhodes University

Grahamstown 6139,South Africa
g02c0108@campus.ru.ac.za

May 30, 2005

Abstract

This paper investigates the possible application of reinforcement learn-
ing to Tetris. The author investigates the background of Tetris, and qual-
ifies it in a mathematical context. The author discusses reinforcement
learning, and considers historically successful applications of it. Finally
the author discusses considerations surrounding implementation.

1 Introduction

Tetris is a very popular game that was created in 1985 by Alexey Pajitnov and
has been ported to nearly every operating system and hardware platform in
existence. The incredible popularity and non-trivial nature of the game have
led to a large amount of research, both into the maths surrounding the game and
into the training of AI entities to play it skillfully. The simplicity of specifying
Tetris, along with its ubiquitous existence across systems, lends it to AI research.

Reinforcement learning is a well established1 branch of artificial learning that
distinguishes itself from other varieties of artificial intelligence in its focus on
trial and error learning, and is an incredibly active area of research. It promises
an unprejudiced agent capable of developing its own tactics and realising trends
that are implicit in its interactions with the environment.

This literature review investigates the applicability of reinforcement learning
to Tetris. A formal definition of Tetris is presented, along with some of its intri-
cacies. Existing artificial intelligence Tetris players are also investigated, along
with the successful applications and deeper qualities of reinforcement learning.

∗Sponsored by Microsoft, Telkom, Thrip, Comverse, Verso and Business Connexion
1For a broad history see [Sutton and Barto, 2002]

1



2 Tetris

Figure 1: Tetris game in progress

Tetris is so well established that it’s name has basically lent itself to any
entire genre of puzzle games. It has been implemented across such a variety
of platforms and over such a span of years, that variations have flourished and
”Tetris” refers to a wealth of subtly different games. All variations have a range
of different tetrominoes (see Figure 2 for examples), which are fixed geometric
forms comprised of regular square blocks. These tetrominoes can be rotated
and translated in the absence of obstructions. A single tetromino is selected by
the game and appears in the top centre block of a fixed sized discrete well. The
tetromino descends at a discrete fixed rate, that is determined by the current
difficultly level, until it meets an obstruction. The tetromino is fixed in place
if the contact still exists in the descent step following initial contact with an
obstruction. If in being fixed it completes a row, the row is completely removed
and the entire well contents above the deleted row are shifted downwards one
row.

Many different artificial intelligence approaches have been applied to Tetris,
and in order to remove implementation discrepancies in gauging the success of
the relative algorithms, at least one set of formal guidelines has be specified
for generic Tetris. The agent, given the successful application of reinforcement
learning, will therefore achieve results which will be directly comparable with
those attained by other implementations following the same specifications. The
standards set forth by Fahey [2003] were selected as there is a fair amount
of existing Tetris AI research associated with them and they seem reasonable,
intuitive and comprehensive.

2.1 Formal Tetris Specification [Fahey, 2003]

• Tetris has a board with dimensions 10 x 20

• Tetris has seven distinct pieces (See Figure 2)

2



• The current game piece is drawn from a uniform distribution of these seven
pieces

• Points are awarded for each block that is landed (not for completing rows)

• The player scores the most points possible for each piece by executing a
drop before one or more free-fall iterations transpire

• The game has ten different difficultly settings, which determine the period
of free-fall iterations, and are applied as row completion passes certain
thresholds

Figure 2: The range of complete Tetris pieces

2.2 Further investigation

It will certainly be interesting to benchmark the agent against existing AI meth-
ods, however the limitations imposed by the above specifications will be waivered
in separate investigations into the complete RL agent. The formal specification
of Tetris greatly reduces the complexity of the game away from the modern man-
ifestation commonly encountered by human players, and it will be interesting
to see the agent being extended to cope with a human level challenge.

2.2.1 Possible extensions

• Points awarded for completion of lines, not number of blocks dropped

• Points associated with line completion increment as the square of the
number of lines completed (i.e. Higher risk higher reward)

• The episode can be terminated by exceeding a time limit(i.e.. Limited
time to score points)

2.3 Mathematical foundations

It has been mathematically proven [Brzustowski, 1992, Burgiel, July 1997] that
it is possible to generate a sequence of tetrominoes that will guarantee the
eventual termination of any game of Tetris played in a well of width 2(2n+1),
with n being any integer. This is most readily achieved by sending alternating Z
and S pieces to the player, which lead to the gradual accumulation of persistent
blocks and eventually the termination of the game [Brzustowski, 1992, Chpt.
5]. The implication of this is that even were the agent to play a flawless game

3



of Tetris, over a long enough duration of play (infinite period), the series of
tetrominoes guaranteeing termination of the game is statistically inevitable.

Tetris has been proven to be NP-complete [Breukelaar et al., 2004]. The
implication of this is that it is computationally impossible to linearly search
the entire policy space, and select an ideal action. This justifies the use of
approximating techniques like reinforcement learning, in trying to determine
the optimal policy.

One of the assumptions reinforcement learning requires is that the environ-
ment has the Markov property[Sutton and Barto, 2002]. Tetris satisfies this
requirement, as all the relevant information required to make an optimal deci-
sion is represented in the state at any instant in time. Rephrased, there is no
historical momentum to the current state of the system, and any future occur-
rence is therefore entirely dependent on the current state of the system. If you
are handed control of a Tetris games at any point, you are as equipped to play
from that point as you would be had you played up until that point.

3 Competing methods

In the sixties there was a thrust towards mimicking biologically occurring pro-
cesses[McLean, 2001, pg. 7] in order to efficiently generate attractive solutions
to problems outside of the computational range of linear search methods. Com-
putational limitations stifled the general applicability of this approach, until
the relatively recent surge in processing power sparked a major rekindling of
interest. Genetic algorithms search directly in the solution (policy) space of a
problem, breeding solutions amongst the fittest individuals in order to approach
an optimal solution. Reinforcement learning yields an environment to an entity
which is subsequently left to explore for itself, getting feedback directly from
the environment in the form of rewards or penalties, and continuously updating
its value function towards the optimal policy. Both methods ideally converge
on the best policy[McLean, 2001], although their different routes gear them to-
wards distinct problems. Reinforcement learning offers a higher resolution than
genetic algorithms. While genetic algorithms select optimal candidates at the
population level, reinforcement learning selects optimal actions at an individual
level[McLean, 2001]. Every action taken under a reinforcement learning policy is
judged and driven towards the optimal action in that state, whereas in contrast
genetic algorithms reward complete genetic strains, regardless of the behaviour
of individual genes within the previous episode. Reinforcement learning also
differs from genetic algorithms by indirectly adjusting it’s policy through the
updating of it’s value function. A great deal of information is conveyed in the
course of a Tetris game, and reinforcement learning would enable the agent to
capture this information and adapt within the context of the game itself. This
would also enable a directed real-time adjustment of the agents policy, rather
then a global adjustment at the end of the game. These traits seem to argue in
favour of adopting a reinforcement learning approach to Tetris, and the rest of
the paper investigates this possibility.

4



4 Reinforcement learning

4.1 Fundamental points

Reinforcement learning defines an approach to solving problems rather than
specifying all the intricacies involved in solving the problem through to imple-
mentation. It is defined in terms of an agent interacting with an environment.
The agent’s perception of the environment is encapsulated in a value function,
which spetans the different states the environment can exist in, and associates
an accumulative value with each state. This value function is updated upon
receiving feedback, defined by the reward function, from the environment. This
reward function is statically declared at the outset of a problem and is outside
of the influence of the agent, and therefore steers the development of the value
function. It is important to note that rewards can be either negative or pos-
itive, discouraging or encouraging the agent accordingly. The agent follows a
policy that maps states to actions, and collaborates with the value function in
dictating the behaviour of the agent[Sutton and Barto, 2002].

The goal of the agent is to maximise long term cumulative reward. Its ini-
tial behaviour is purely trial and error driven, but as the agent starts to form
an impression about the states, and their relative merits, it becomes increas-
ingly important for it to strike a balance between the exploration of new states
which may provide maximum reward, and the exploitation of existing knowl-
edge[Sutton and Barto, 2002].

Reinforcement learning can be applied in non-deterministic environments,
where taking a certain action within the context of a state does not necessary
lead to the same reward or same state transition. It does, however, require that
the environment be stationary and that the probabilities of getting a certain
reward or transitioning to a certain state remain the same[Kaelbling et al.,
1996].

4.2 Considerations

At the core of every reinforcement learning problem is the value function. In its
most simple form this would be a table containing a value associated with every
state. These values are an indication of the long term reward associated with a
particular state. When we leave a state we adjust its current value towards the
value of the state we are entering.

V (s)← V (s) + α(V (s′)− V (s))

The α factor determines the extent to which future rewards affect the cur-
rent value estimation. This approach of ”backing up” the values is an example
of temporal-difference learning[Sutton and Barto, 2002] and is a way of propa-
gating information about future rewards backwards through the value function.
The agent can have many different policies. With a purely greedy policy, the
agent will always select the state transition believed to offer the greatest long-
term reward. Although this will immediately benefit the agent, it may well fail
to find the ideal policy in the long run. With an ε-greedy method the agent will
select the best state transition the majority of the time and take exploratory
moves on all the other state transitions. The frequency of these exploratory

5



moves is determined by the value of ε utilised by the policy. It is possible to
vary ε, in order to have an initially open minded agent that gains confidence in
its value function as its experience increases over time. One problem inherent
in the ε-greedy approach, is that the agent explores indiscriminately and is as
likely to explore an obviously unattractive avenue as it is to explore a promising
one. The softmax policy associates a probability of selection with every state
transition that increases with the predicted value of the destination state. This
is represented by :

P = eQt(a)/τ

Σn
b=1eQt(b)/τ

The degree to which the estimated value effects the probability of selection
is varied by the τ term, which is referred to as the temperature. For large
temperatures the state transitions become almost equiprobable, while at low
temperatures the probabilities spread out according to the strength of the value
function. In the limit as temperature goes to zero, the policy converges to the
greedy policy.

When a goal has been reached the reward function yields a reward to the
agent. The value associated with the originating state is incremented accord-
ingly and is backed up throughout the table over the following iterations through
the value function[Sutton and Barto, 2002].

The value function does not necessarily have to take the form of a table. The
value function can be seen as a mathematical function that takes the originating
state as input and outputs the state with the highest predicted value. Rather
then storing the values in a table, the information is stored in the behaviour of
the function.

4.3 Track record

Reinforcement learning performs very well in small domains and by using the
insight offered by Sutton and Barto [2002] it is fairly simple to create an agent
that plays simple games like Tic-Tac-Toe or Blackjack successfully. It has been
successfully applied to many sophisticated problems such as :

• Packet routing in dynamically changing networks [Boyan and Littman,
1994]

• Robotic control [Kimura et al., 1997]

• Acrobot [Sutton and Barto, 2002]

• chess [Baxter et al., 1998]

Reinforcement learning suffers from the ”curse of dimensionality” (Bellman).
This refers to the exponential increase in the complexity of the system, as the
number of elements in it increase linearly. This tendency has resulted in rela-
tively few commonly cited successes in large state domains[Sutton et al., 2005].
These include :

• Robo-Cup Keep-Away [Sutton et al., 2005]

• backgammon [Tesauro, 1995]

6



• elevator control [Crites and Barto, 1996]

• helicopter control

A few of the above mentioned successes are explored in some depth below.

4.3.1 RoboCup-Soccer Keep-Away

Sutton et al. [2005] managed to successfully train reinforcement learning agents
to complete a subtask of full soccer which involved a team of agents, who were
all learning independently, keeping a ball away from their opponents. This
implementation overcame many difficulties, such as having multiple independent
agents functioning with delayed rewards and most importantly, functioning in
a large state space. The state space problem was resolved by using linear tile-
coding (CMAC) function approximation to reduce the state space to a more
feasible size[Sutton et al., 2005].

4.3.2 TD-Gammon

Tesauro [1995] used reinforcement learning to train a neural network in play-
ing Backgammon. The program was so successful that its first implementa-
tion (Version 0.0) had abilities equal to Tesauro’s well established Neurogam-
mon [Tesauro, 1995]. (Neurogammon was a neural network backgammon player
which had been trained on a database of recorded expert games and had convinc-
ingly won the backgammon championship at the 1989 International Computer
Olympiad.) More noteworthy is that by Version 2.1 TD-Gammon was regarded
as playing at a level extremely close to equalling that of the worlds best human
players, and had even started to influence the way expert backgammon players
played[Tesauro, 1995]. The unbiased exploration of possible moves, and reliance
on performance rather then established wisdom led, in some circumstances, to
TD-gammon adopting non-intuitive policies superior to those utilised by hu-
mans[Tesauro, 1995].

Backgammon is estimated to have a state space larger then 1020. This state
space was reduced by the use of a neural network organised in a multilayer
perception architecture. Temporal difference learning, with eligibility traces,
was responsible for updating the weighting functions on the neural network at
the game progressed. Another perk associated with using reinforcement learning
methods rather then pure supervised learning methods, was that TD-gammon
could be (and was) trained against itself[Tesauro, 1995].

4.3.3 KnightCap

Baxter et al. [1998] managed to produce a chess player that was apparently
graded as a master after playing 308 games against online opponents. This
interaction was facilitated by the Free Internet Chess Server and enabled the
agent to develop its policy against a wide variety of opponents that grew in
competence as the agent’s ranking rose. Since chess is non-stochastic, playing
the agent against itself would have impaired its training and led to the strength-
ening of a policy exposed to its tactics alone. The agent would most probably
find its own weaknesses and exploit these, and even with the aid of an explo-
rative policy, development of its tactics would be stunted. This prediction was

7



experimentally verified by training a separate agent against itself over 600 games
and then pitting the agents against each other for 100 games. The agent with
exposure to a wider variety of opponents won 89 % of the games[Baxter et al.,
1998].

The state space representation of the chess implementation isn’t covered in
any depth. The authors introduced TDLeaf(λ) which enables the use of TD(λ)
with game-tree search. A tree is built using a minimax search to a declared
depth, and TD(λ) is applied to the leaf nodes of this tree.

5 Existing Tetris AI implementations

5.1 Record Holders

5.1.1 Fixed Policy

Solutions can be separated into one-piece algorithms, which only consider the
existing tetromino formation within the well and the active tetromino at any
single time, and two-piece algorithms which also factor the following tetromino
into their considerations.

The most successful AI algorithms2 are both hand coded methods. The AI
players still exhibit signs of intelligence, even though they have no ability to
alter their own policy or change their own behaviour.

The best one-piece algorithm in the world was hand coded by Pierre Del-
lacherie, and averaged about 650 000 completed rows per game, with occasional
games scoring over 2 million completed rows. The best two-piece algorithm in
the world was hand coded by Colin P. Fahey, and scored 7,216,290 completed
rows.

Dellacherie gave his AI player a static policy using his understanding of
the game, and tuned his player further by observing and refining its behaviour
and tactics. (He also adds that he believes that ”human’s understanding and
intuition cannot be algorithmic”, which directly clashes with our aim of having
the reinforcement agent develop its own intuition and strategies. )

The drawback associated with this method of devising an AI player is that
the programmer is assuming that he already knows the optimal policy to ap-
ply to Tetris, a mindset that is possibly naive in light of the success of the
non-conventional TD-gammon. The hand coded AI Tetris player may play in-
credibly well, but it will never develop its own tactics and will therefore be
incapable of shedding any new light on Tetris (other then possibly by exam-
ple). A further consideration is that these hard coded AI players have very
little flexibility and are incapable of adjusting their policies if the defining traits
of the existing implementation are altered. Minor changes could quite possible
require a complete reconsideration and reimplementation of the tactics followed
by the player. Once reinforcement learning has been successfully achieved, it
would be incredibly interesting to adjust the shape and size of the tetrominoes,
or the dimensions of the well, and see how the adjustments effected the nature
of the game. As long as the state space representation was left untouched, the
agent should be capable of achieving some degree of learning, although it would
obviously have to begin training from square one. This makes further research

2Within the results collected by Fahey [2003]

8



into the intricacies of Tetris relatively simple, and shifts the weight of retrain-
ing the agent’s policies from the programmer to the agent itself. For example,
the mathematical proofs cited earlier in the text ventured that any game of
Tetris was fated to end, given that strict specification of a well width of 2n,
with n being an odd number. It has been stated, without proof[Fahey, 2003],
that having a well width which is a multiple of four alternatively guarantees the
possibility of eternal play. It would be interesting to observe and compare the
agents response to these different well widths, and see how closely its responses
followed theory.

5.1.2 Dynamic Policy

There was one successful AI player mentioned by Fahey [2003], that clearly
incorporated dynamic learning into its repertoire. Roger Espel Llima, with the
assistance of Laurent Bercot and Sebastien Blondeel, used genetic algorithms
to train weights in a one-piece algorithm. The AI player[Llima, 2005] required
training prior to benchmarking and managed to clear an average of 42,000 rows
over 150 games, with each game taking less then 60 seconds to run. This sets
the bar for subsequent dynamic methods, and since it is a one-piece algorithm,
it directly sets the bar for a reinforcement learning based AI player implemented
around the specifications ventured by Fahey [2003].

5.2 Reinforcement learning implementations of Tetris

5.2.1 Reduced Tetris

Melax [1998] managed to successfully apply reinforcement learning to Tetris.
He achieved this at the cost of drastically reducing the complexity of the game,
although his success showed the general applicability of reinforcement learning
to the problem. Figures 3 & 4 show the components of reduced Tetris.

Figure 3: Melax’s reduced set of pieces

Figure 4: Melax’s reduced environment

Pieces fall from an infinite height. When the working height, which is defined
as 2 for this implementation, is exceeded the lowest visible row is dropped and
the height incremented by 1. The agent is penalised -100 for each level it goes

9



above the working height, otherwise it is awarded nothing. Since there was no
terminating height, Melax limited his investigations to 10000 pieces per game.

Game Height
1 1485
2 1166
4 1032
8 902

16 837
32 644
64 395

128 303
256 289

Table 1: Melax’s results for reduced tetris

Table 1 shows Melax’s results for his implementation of reduced Tetris. As
the number of games increased, the agent learnt how to minimise the total
height of the pieces in the well and therefore maximised its long term reward.

One possible problem with this implementation, is that by defining rewards
for sub-goals such as increasing the working height, we are effectively steering
the development of the agent’s policy. We have trained the agent to minimise
the working height in the well, rather than maximising either the number of
completed rows or the number of pieces entering the game. This might actually
be the ideal policy for the agent to adopt, especially in the context of our
adopted Tetris specifications [Fahey, 2003], but our agent has just lost one
potential avenue of exploration.

Melax’s approach was later adopted by Bdolah and Livnat [2000] and ex-
tended to include further state space optimisations. These optimisations in-
cluded regarding only the contours(Figure 6), and therefore neglecting all the
information beneath the top most row, and the use of symmetry(Figure 5) to
reduce the state space. Melax’s [Melax, 1998] previous results were confirmed,
and the further approximations improved the learning results drastically, vindi-
cating their inclusion[Bdolah and Livnat, 2000].

Figure 5: Bdolah and Livnat [2000] symmetry optimisation

5.2.2 Full Tetris

Relational reinforcement learning has been applied to the full Tetris problem
by Driessens [2004]. Relational reinforcement learning differs from traditional

10



Figure 6: Bdolah and Livnat [2000]contour optimisation

methods in the structuring of the value function. Rather then storing every pos-
sible state in a table, the relationship between the elements in the environment
is utilised in developing a reduced state space. This state information is then
stored in a decision tree structure. He approached the problem with three sepa-
rate relational regressions methods [Driessens, 2004] he had developed over the
course of his thesis. The first of these regression methods had already proven
itself in the course of the thesis with the successful extension of reinforcement
learning to Digger3.

Driessens [2004] did not use a straight-forward attribute vector to represent
the Tetris state space4.

He used the following features in developing his decision tree based learner :

• blockwidth, blockheight which specify the width and height of the falling
block respectively.

• topBlock which returns the height of the wall at a given column.

• holeCovered: whether there is a hole in the wall at a given column.

• holeDepth which returns the depth of the topmost hole in the wall at a
given column.

• fits: whether the falling block fits at a given location with a given orien-
tation.

• increasesHeight: whether dropping the falling block at a given location
with a given orientation increases the overall height of the wall.

• fillsRow and fillsDouble: whether the falling block completes a line (or
two lines) at a given location with a given orientation.

He used the following features in developing his instance based learner :

3Another game with a large state space
4This information regarding state representation was kindly supplied by the author via

email, and is taken directly from the correspondence

11



• The height of individual columns.

• The maximum, average and minimum height of the wall and the differences
between the extremes and the average.

• The height differences between adjacent columns.

• The number of holes and canyons of width 1.

• The average depth of holes.

Regression method Learning games Completed rows
RRL-TG 5000 10
RRL-RIB 50 12

RRL-KBR 10-20 30-40

Table 2: Relational regression results [Driessens, 2004]

The RRL-RIB reached its optimal policy within 50 training games. In
450 subsequent training games this policy was not improved upon. RRL-KBR
reached a better policy, earlier then the other regression methods. It then rather
unexpectedly unlearnt its policy after a further 20-30 learning games.

Since this is actually a full implementation of Tetris it can be compared
against other AI results, where the best (comparable) methods score in the
region of 650 000 completed rows[Fahey, 2003]. These results are not impres-
sive in the light of the competition, and very poor even by human standards.
Driessens attributes the poor functionality to Q-learning, stipulating that Q-
learning requires a good estimate of the future rewards in order to function
properly and that the stochastic nature of Tetris severely limits the accuracy
of these estimates. Since his regressions methods were derived from Q-learning,
this inadequacy impacted on all of his methods. Q-learning in known to be
unstable[Sutton et al., 2005, Thrun and Schwartz, 1993, pg. 4] when incorpo-
rated in function approximation, and this could certainly have contributed to
the poor performance witnessed in the above results.

5.2.3 Work in progress

There is ongoing research into possible methods of solving Tetris using reinforce-
ment learning. An approach known as CB-Mineral that is similar to that used
by Tesauro [Tesauro, 1995] is being generalised and has Tetris as its first line
of application[Veksler and Gray, 2005]. This involves utilising reinforcement
learning in training the weights of a neural network, rather then engaging in
supervised learning, and effectively uses neural networks as a form of function
approximation.

6 Possible implementation

The first step will be to try repeat the achievements of Melax [1998] and Bdolah
and Livnat [2000]. If learning is achieved, then extending the agent will require
a complete redefinition of the environment and the value function, but will show
the successful implementation of basic reinforcement learning.

12



The Tetris well is 20 blocks high and 10 blocks wide, and therefore has 200
blocks that can either be empty or occupied, resulting in 2200 possible states.
This number is huge and any linear value function spanning the complete state
space of Tetris is computationally infeasible[Farias and Roy, 2005].

Before considering a reduction in the state space of the game we ought to
clarify that the original state space is capable of storing all the information
required to successfully solve the problem.

There is an ideal action in every state, depending on the current state and
the current tetromino. Since the next tetromino is stochastically selected after
the state transition, the next state is not considered in the context of the next
tetromino. Implementing Tetris with one piece look ahead would lead to an
array of 2200 states for each tetromino, but would guarantee the possibility of
the agent following optimal policy. Without the one piece look ahead, the agent
may well select a state with a high value and then be dealt a tetromino that is
useless in the current state. The implication of this is that the agent will always
be at the mercy of the stochastic process selecting tetrominoes, and may well
change its policy off the optimal policy as a result of this. With no look ahead,
only one value need be associated with each state and an array of 2200 values
contains all the information required to achieve an optimal policy.

This representation contains a large amount of redundant information, and it
is a non-trivial task to reduce the state space without impairing the performance
of the agent or losing pertinent information.

The same configuration of tetrominoes can be shifted up or down in the
well, and would require the same tetromino placement in each case. This lack
of generality leads to slower learning, as the same tactics have to be learnt at
different heights and this also increases the state space drastically. As a human,
one does not look at the exact height at which a pattern occurs. An example of a
simple reduction would be to reduce the height of the well into coarser discrete
areas. This would enable the agent to factor height into its considerations,
without drastically increasing the state space of the game.

Calculating the possible transition states is made fairly straightforward by
considering afterstates[Driessens, 2004]. This involves varying the tetromino
through its complete range of orientations and translations, and dropping each
variation in the well. This will return a value for every possible translation/rotation
combination and the policy can select within these values with ease.

The most intuitive policy to use would be the softmax policy since there
will be a large state space to explore, regardless of state space reduction. Us-
ing an ε-greedy method would effectively blindfold the agent in its selection of
exploratory routes, and lead to a great deal of wasted exploration. The more
attractive a state appears to be, the more it will be explored.

Over-extending the reward function can prejudice the development of the
value function, and therefore the policy of the agent. Placing pieces over open-
ings is an obvious candidate for punishment, as it could be argued that this
could never be utilised to advance the abilities of the player. Punishing the
player for increasing the working height would result in an agent that completes
rows, but would steer the agent away from effective stacking in circumstances
where repeated Z or S pieces are received. Rewarding an agent for complet-
ing rows leaves the agent’s activities up to itself, although states that lead to
completion will be selected more often, and explored more thoroughly.

13



7 Conclusion

Reinforcement learning has been successfully applied to many problems, and
is broad enough in it’s scope that historical failures to successfully apply it to
a problem could be due to implementation faults. Previous failed attempts
have indicated the complexities associated with tackling Tetris, but have not
revealed the whole field of reinforcement learning to be unsuitable or ill qualified
to learn Tetris. Tetris is an interesting game that has inspired a lot of academic
research, and could benefit from the existence of an uninhibited potentially
non-conventional player.

References

Jonathan Baxter, Andrew Trigdell, and Lex Weaver. Knightcap:
a chess program that learns by combining TD(λ) with game-tree
search. In Proc. 15th International Conf. on Machine Learning,
pages 28–36. Morgan Kaufmann, San Francisco, CA, 1998. URL
citeseer.ist.psu.edu/baxter98knightcap.html.

Yael Bdolah and Dror Livnat. Reinforcement learning playing tetris. 2000. URL
http://www.math.tau.ac.il/ mansour/rl-course/student proj/livnat/tetris.html.

Justin A. Boyan and Michael L. Littman. Packet routing in dynamically chang-
ing networks: A reinforcement learning approach. In Jack D. Cowan, Ger-
ald Tesauro, and Joshua Alspector, editors, Advances in Neural Information
Processing Systems, volume 6, pages 671–678. Morgan Kaufmann Publishers,
Inc., 1994. URL citeseer.ist.psu.edu/boyan94packet.html.

Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan
Hoogeboom, Walter A. Kosters, and David Liben-Nowell. Tetris
is hard, even to approximate. International Journal of Com-
putational Geometry & Applications, 14:1-2:41, 2004. URL
http://theory.csail.mit.edu/ dln/papers/tetris/tetris.pdf.

John Brzustowski. Can you win at tetris? Master’s thesis, University of British
Columbia, 1992.

Heidi Burgiel. How to lose at tetris. Mathe-
matical Gazette, 81:491:194–200, July 1997. URL
http://www.findarticles.com/p/articles/mi qa3773/is 199803/ai n8785130.

R. H. Crites and A. G. Barto. Improving elevator performance using reinforce-
ment learning. In D. S. Touretzky, M. C. Mozer, and M. E. H., editors,
Advances in Neural Information Processing Systems: Proceedings of the 1995
Conference, pages 1017–1023, Cambridge, MA, 1996. MIT Press.

Kurt Driessens. Relational Reinforcement Learning. PhD
thesis, Catholic University of Leuven, 2004. URL
http://www.cs.kuleuven.ac.be/ kurtd/PhD/.

Colin P. Fahey. Tetris specifications & world records, 2003. URL
http://www.colinfahey.com/2003jan tetris/2003jan tetris.htm.

14



Vivek F. Farias and Benjamin Van Roy. Tetris:a study of randomized constraint
sampling. In To appear in Probabilistic and Randomized Methods for Design
Under Uncertainty. Springer-Verlag, 2005.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996. URL citeseer.ist.psu.edu/kaelbling96reinforcement.html.

H. Kimura, K. Miyazaki, and S. Kobayashi. Reinforcement learning in pomdps
with function approximation. In Proc. 14th International Conf. on Machine
Learning, pages 152–160. Morgan Kaufmann, San Francisco, CA, 1997. URL
http://www.fe.dis.titech.ac.jp/ gen/robot/robodemo.html.

Roger Espel Llima. Xtris readme, 2005. URL
http://www.iagora.com/ espel/xtris/README.

Clinton Brett McLean. Design, evaluation and comparrison of evolution and
reinforcement learning models. Master’s thesis, Rhodes University, 2001.

Stan Melax. Reinforcement learning tetris example. 1998. URL
http://www.melax.com/tetris/.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. The MIT Press, Cambridge, MA, 2002. URL
www.cs.ualberta.ca/sutton/book/ebook/index.html.

Richard S. Sutton, Gregory Kuhlmann, and Peter Stone. Reinforement learning
for robocup-soccer keepaway, 2005.

Gerald Tesauro. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3), 1995. URL www.research.ibm.com/massive/tdl.html.

Sebastian Thrun and Anton Schwartz. Issues in Using Function Approxima-
tion for Reinforcement Learning. In M. Mozer, P. Smolensky, D. Touret-
zky, J. Elman, and A. Weigend, editors, Proceedings of the 1993 Connec-
tionist Models Summer School, Hillsdale, NJ, 1993. Lawrence Erlbaum. URL
citeseer.ist.psu.edu/thrun93issues.html.

V. Daniel Veksler and Wayne D. Gray. State definition in the
tetris task:designing a hybrid model of cognition, 2005. URL
http://www.cogsci.rpi.edu/cogworks/?view=modules.user.spec&id=24.

15


