
 1

Computer Science Honours Project Proposal

A Procedural, Minimal Input, Natural Terrain Plug-in for Blender
by Bruce Alcock <bruce.alcock@gmail.com>

Department of Computer Science, Rhodes University

Supervisors: Shaun Bangay <S.Bangay@ru.ac.za> Kevin Glass <K.Glass@ru.ac.za>

1. Problem to Be Addressed
Implement a procedural, minimal input, natural terrain plug-in for Blender (an opensource 3D

modelling program) which is capable of producing massive, realistic terrains. Currently no such

plug-in exists. Many techniques for rendering different types of terrain for different applications

such as simulators and games exist, and the plug-in will be based on techniques developed in those

fields.

2. Background and Relation to Previous Research
The context of this project is a Text-to-Scene (TTS) application, in which a piece of text is fed in as

input, and a realistic animation produced as output with the intention of fully automated movie

production. The TTS requires the generation of terrain as a basis for scenes, and due to the whole

process being as automated as possible, this requires that the plug-in have minimal specification or

manual intervention. Blender is being used as the tool for scripting and lacks any complex model

generation procedures.

3. Intended Approach
The project will be executed in the following steps:

1. Investigation into various techniques and decisions concerning requirements for terrain plug-in.

2. Implement terrain generation techniques in an OpenGL application:

This will have procedurally built in constraints, nothing user specifiable.

(an OpenGL application is being used at first to give results in real-time and allow for tweaking

and optimization of procedures)

3. Implement this algorithm in a python script for Blender

4. Implement a procedural interface for the Blender plug-in:

Where to place terrain features determined by the artist.

Size of the terrain specifiable at runtime by the modeller.

5. Implement Level Of Detail (LOD) factors into the plug-in

6. Time permitting: implement some of the extensions (see Section 7)

 2

First Semester:

Study material, and formulate method of creating terrain.

Start project website.

Implement terrain procedures and OpenGL rendering.

Create non-configurable Blender plug-in.

Start artist configurable plug-in.

Proposed Dates:

25 Feb – 5 Mar

5 Mar – 11 Mar

12 Mar – 8 Apr

9 Apr – 6 May

7 May

Second Semester:

Finish artist configurable plug-in.

Implement LOD calculations.

Testing, Refinements and Extensions

Write final paper

1 Jul

2 Jul – 29 Jul

30 Jul – 19 Aug

Due week 2, 4th term

4. Initial Survey of Resources and Literature
Several papers will be used to implement the Blender plug-in:

The terrain geometry will be sourced from two papers:

• Terrain Generation Using Genetic Algorithms (Ong, Saunders, Keyser, Legget, 2005): using

their idea of tracing out initial lines to represent mountains and then procedurally expanding

these to be more detailed and interesting. This seems a good candidate to implement the

procedural interface with too, as the user could trace out a rough diagram in Blender and then

select this to become terrain.

• Realtime Procedural Terrain Generation: Realtime Synthesis of Eroded Fractal Terrain for Use

in Computer Games (Olsen, 2004): which details eroding terrain to make flat areas and more

natural looking terrain.

LOD in texturing will be implemented using Texturing Techniques for Terrain Visualization

(Döllner, Baumann, Hinrichs, 2000) using the idea of multi-texture pyramid trees that correspond to

the geometry LOD tree, which will inspire LOD geometry too.

5. Preliminary Design Considerations
The terrain plug-in is being developed for Blender because it is open source and as such freely

available, highly scriptable and capable. It is also available for a variety of platforms. Since writing

plug-ins requires rebuilding source code, the platform to be used will be Fedora Linux as this is

probably the simplest and most stable environment to do this in.

 3

Deign considerations for actual script/plug-in:

• Procedural

• Conforming to constraints

• Types of terrain to focus on (hills, valleys, etc)

• Level of detail

• Level of realism

• Preliminary techniques to be investigated (placement, erosion, etc)

• Speed (optimization of procedures)

6. Expected Results
• A configurable natural terrain generation plug-in for Blender.

• Enhanced Python API (will probably need to extend it)

• Interaction with TTS as well as a city modelling Blender plug-in being developed

simultaneously.

7. Possible Extensions
• Generating the foliage and other items for the terrain: placing dynamic trees, grass, rocks, etc. on

the terrain, making it more of a landscape.

• Implementing world conditions such as clouds, fog, rain, river flow.

• Texturing.

• Investigation into generation at render-time.

 4

8. References
Ong, T.J., Saunders, R., Keyser & J., Legget, J.J. “Terrain Generation Using Genetic Algorithms”

from Proceedings of the conference on Genetic and evolutionary computation (2005). ACM Press.

25 February 2007.

<http://portal.acm.org/ft_gateway.cfm?id=1068241&type=pdf&coll=Portal&dl=ACM&CFID=156

81032&CFTOKEN=99776635>

Döllner, J., Baumann, K. & Hinrichs, K. “Texturing Techniques for Terrain Visualization” from

Proceedings of the conference on Visualization (2000). IEEE Computer Society Press. 25 February

2007.

<http://portal.acm.org/ft_gateway.cfm?id=375246&type=pdf&coll=Portal&dl=ACM&CFID=1568

1032&CFTOKEN=99776635>

Olsen, J. “Realtime Procedural Terrain Generation: Realtime Synthesis of Eroded Fractal Terrain

for Use in Computer Games” (31 October 2004). 25 February 2007.

<http://www.oddlabs.com/download/terrain_generation.pdf>

