
A Procedural, Minimal Input, Natural Terrain Plug-in for Blender
Bruce Alcock∗

Rhodes University

Abstract

This paper uses methods of terrain representation, creation and re-
alism described in literature. In particular a combination of terrain
synthesis using Fractional Brownian Motion, and erosion proce-
dures is examined, as well as the procedural formation of rivers via
squig curves. Other techniques are examined, such as Triangulated
Irregular Networks and ridges generation are discarded in terms of
this project for reasons detailed. We find that using a combina-
tion of Fractional Brownian Motion, procedural formation of rivers
via squig curves to form initial terrain, and hydraulic erosion for
post processing, we have full control over the style of terrain: from
jagged, mountainous regions to flat regions; and the phase of river
from tightly rock controlled to flood plain regions.

1 Introduction

1.1 Problem Statement

In an effort to increase the richness of virtual worlds, the goal of this
project is to create realistic, natural terrain with minimal input, but
yet to be as configurable as possible so as to allow for a multitude
of scenes to be created.

1.2 Background

A Text-to-Scene converter is being developed as another project in
this Computer Science department, which takes text from a book for
example as an input and can then derive a three dimensional world
from this, with the ultimate goal of being able to fully automate
movie production from scripts of text. This project aims to address
the needs of the Text-to-Scene converter for terrain, by being able
to configure areas for city placement and action areas while being
able to fill in the rest.

1.3 Overview

Procedural methods have been chosen for use with this project to fit
with the minimal input paradigm, which means that no pre-existing
data needs to exist for the terrain generation. The configurability
of the procedural methods lies in the control through parameters,
which will be expanded on in Section 4.

∗Supervised by Kevin Glass, Shaun Bangay and Hannah Slay

2 Related Work

2.1 Representation

2.1.1 Heightmaps

A heightmap is a two dimensional matrix of coordinates in which
the height of the terrain is represented as a number at each coordi-
nate. Each is associated with the height above the base level (hence
the name heightmaps). This method of representation has the short-
coming that terrain features such as overhangs and caves cannot be
represented [Benes and Forsbach 2001a]. However it is often used
because of the regular interval spacing, which makes erosion cal-
culations quicker for example, because the distances are constant;
as well as the easy storage into two dimensional arrays [Benes and
Forsbach 2001a; Benes and Forsbach 2002; Musgrave et al. 1989].

2.1.2 Digital Elevation Models (DEMs)

DEMs are grid-based measurements of real world data, and differ-
ent areas of the world are available in different gaps between the
grid locations [Zhou et al. 2007]. Since this method relies on pre-
defined data it is discarded for the purposes of this project.

2.1.3 Voxels

Voxels divide an object (in this case terrain) into three dimensional
cubes of a set size. Although this gives more control over the terrain
and provides a mechanism for creating caves and other features, it
requires substantially more memory than a heightfield [Benes and
Forsbach 2001a]. It is computationally expensive since it requires
surfaces to be created from each voxel to its neighbours [Parker and
Udeshi 2003]. It is discarded for this project because it would re-
quire many algorithms such as erosion to be completely re-thought
and has not been used much for terrain modelling.

2.1.4 Triangulated Irregular Nets (TINs)

Another representation is a TIN, which represents a surface as a set
of irregular size, non-overlapping, yet contiguous triangles [Fowler
and Little 1979]. The reason this is not considered is because it
is a method to speed up rendering in real-time, as demonstrated
in [Duchaineau et al. 1997]. TINs therefore offer no benefits to
realism.

2.2 Synthesis

2.2.1 Subdivision

The original purpose of subdivision was to divide a surface into
small enough regions so as to be displayable as a pixel on screen
[Catmull 1974]. It works by finding the midpoint of a curve seg-
ment and creating new curves between the originals, therefore en-
hancing its definition by creating seven vertices where previously



only three existed, or more importantly: four surfaces where pre-
viously one existed [Catmull 1974]. A recent method called

√
3

subdivision has been created where faces are divided into three,
and new vertices adaptively adjusted to apply more subdivision to
areas that have bigger curvature, thereby smoothing rough edges
[Kobbelt 2000]. Via usage of weights, sharp edges can still be
produced at specifiable locations on models [Kobbelt 2000].

√
3

subdivision is now a popular choice to use for subdivision.

A use for this in creating terrain, is that at each stage of subdi-
vision the new vertices are adjusted on the vertical axis by random
amounts, forming initial terrain [Prusinkiewicz and Hammel 1993].
Two older methods and a proposed one for creating terrain via re-
cursive subdivision are discussed in [Miller 1986]. These methods
of creating terrain seem to have lost popularity to noise sampling
(see Section 2.2.2) because of their reproducibility and the infinite
detail of fractals.

Subdivision is usually used for smoothing models and increasing
resolution when approximating surfaces, where a regular subdivi-
sion hierarchy is used to update a mesh dependent on view [Lind-
strom and Pascucci 2001]. Another example is to adaptively subdi-
vide recursively: subdivide to increase resolution where the model
dictates it is necessary [Kajiya 1983].

2.2.2 Noise Sampling

Noise sampling methods use a base noise function (like Perlin
Noise) to generate a terrain by sampling it in some way. Fractional
Brownian Motion, is presented to create an initial heightmap for
the terrain, generated by sampling Perlin Noise at multiple frequen-
cies and applying translation and scaling onto the values [Musgrave
et al. 1989]. Because the basis (Perlin) function is seeded, the entire
fBm generation process is entirely reproducible.

Work has been done since to improve the resolution of fBm and
stochastic models in general. Due to sampling problems the model
produced by sampling fBm is very crude, and by path generation
a better approximation can be attained [Fournier et al. 1982]. An-
other method is using random displacements: generating random
numbers and using this as the heightmap [Fournier et al. 1982].

2.2.3 Feature generation

A method of terrain generation suggested, entails generating ridges
and rivers and then interpolating between them using an extension
to the midpoint-displacement method to fill in the rest of the terrain
[Belhadj and Audibert 2005]. Another method is to create rivers
via the use of squig curves and interpolating it into the base terrain
[Prusinkiewicz and Hammel 1993]. A new method using a sketch-
pad has also been developed, which involves drawing the main fea-
tures on a sketchpad and accesses stored digital elevation maps to
match features to build a terrain model from the matchings [Zhou
et al. 2007].

2.3 Realism

2.3.1 Erosion: Hydraulic and thermal

Hydraulic erosion involves dripping water onto the heightfield and
distributing the water and sediment accumulated to neighbouring
vertices. The erosive power at the current position is calculated
based on the volume of water at that point as well as the sediment
already in the water [Musgrave et al. 1989].

Thermal weathering encompasses any natural process that knocks
material off ridges and deposits them at the feet of the mountain.
If the slope of a vertex exceeds a talus angle, material is simply
distributed to the neighbours, which softens ridges and valleys alike
[Musgrave et al. 1989].

2.3.2 Multilayer heightmaps

Multi-layer heightmaps are a tool for realism, because they afford
the mechanism to have different layers having different attributes.
When combined with a method like erosion they can help to strive
toward realism due to different layers having different hardnesses
and as such eroding at different rates, as happens in nature [Benes
and Forsbach 2001a]. The only usage of multi-layer heightmaps so
far has been by the same authors that created it, to simulate erosion
on the surface of Mars is parallel [Benes and Forsbach 2001b].

3 Procedural Methods for Terrain Gener-
ation

3.1 Representation and Synthesis

3.1.1 Heightmaps

This method of representation is used for this project due to the
simplicity. However it has been extended to include the three ero-
sion constants (see section 3.2.3) for each position for enhanced
configurability: it means each location can have its own set of ero-
sion constants and therefore regions can be harder than others, more
willing to take on sediment, and have the ability to hold more water
at that location.

3.1.2 Fractional Brownian Motion

Perlin Noise is used as a function to create pseudo-random values.
Perlin noise works by calculating values for[x,y,z] points by as-
signing pseudo-random, uncorrelated gradients[a,b,c] to them and
a value d which forms a linear equation for[x,y,z] and can be re-
trieved using pre-calculated hash tables [Perlin 1985].

Fractional Brownian Motion (fBm) uses a base noise function and
samples it at multiple frequencies. The base frequency is calculated
using the equation:

a0 = (N(p0)+ct)cs+c0

wherea is the heightmap point,N is the noise generating function,
p is the initial grid point,ct is a constant translation transformation,
cs is a constant scaling transformation. Successive frequencies are
calculated by:

ai = ai−1 +ai−1 (N(pi)+ct)csw
i

wherewi is a frequency increment constant. Since the underly-
ing noise function can be two dimensional, the generated points are
continuous and produce a fractal terrain, which is useful for its end-
less level-of-detail and reproducibility, but even with the same seed
for the noise function, the end terrain can appear very different due
to the scaling and translation constants [Musgrave et al. 1989].



3.2 Realism

3.2.1 Squig Curves

The chosen method of river creation is via squig curves, which
are an L-system of sorts and a subdivision scheme (see Figure
3), involving each triangle having an entry, exit and neutral edge
[Prusinkiewicz and Hammel 1993]. The technique works by ran-
domly assigning edges (entry, exit and neutral) to an initial trian-
gle. When subdivided the original edges are split into two (entry
edges becoming entry and neutral, exit becoming exit and neutral,
and neutral becoming two neutrals), and the three new edges be-
tween them being assigned accordingly. This process is repeated
recursively. By tracing from the midpoint of entry to exit edges,
it gives a fairly reasonable representation of a winding river (see
Figure 4), and this is then plotted onto the main terrain heightmap
and vertices simply lowered to a base level where the rivers occur
[Prusinkiewicz and Hammel 1993].

3.2.2 Flattening

In order to integrate with the Text-To-Scene and city creation
project, areas need to be flattened for city placement and action
areas in the scene (presumably activities in the script will not be
performed on hugely jagged terrain). If a point is within a specified
radius, a cosine function is used to create a flattened area:

value= 1−cos

(
d
D
× π

2

)

whered is the distance from the center andD is the desired radius
of the flattened area. The values produced are between zero and
one, which can then be used to smoothly interpolate flat areas with
the rest of the terrain.

3.2.3 Erosion

Hydraulic erosion works by assigning each vertexv at time t an
altitudeav

t , a volume of waterwv
t and an amount of sedimentsv

t . It-
erating through time each vertexvpasses excess water and sediment
to each neighbouring vertexu where the amount of water passed is
defined as:

∆w = min(wv
t ,(w

v
t +av

t )− (wu
t +au

t ))

Based on the amount of water passed, it is determined which direc-
tion the water is flowing (see Algorithm 1). If water is being passed
to neighbours, the water at the current and neighbour vertices are
calculated as well as the sediment capacitycs to calculate sediment
transfers with (see Algorithm 1), then sediment movement is calcu-
lated (see Algorithm 2).Kc is the sediment capacity which specifies
the max sediment that may be suspended in a unit of water,Kd is
the deposition constant which specifies the rate at which sediment
settles out of a unit of water and is added to a vertex, andKs is the
soil softness constant, which specifies the softness of the soil and
is used to control the rate at which soil is converted to sediment.
What this does is to erode the terrain to an approximation of what
happens in reality when rain falls on ground and redistributes soil
[Musgrave et al. 1989].

Algorithm 1 Water Change
if ∆w≤ 0
av

t+1 = av
t +Kdsv

t
sv
t+1 = (1−Kd)sv

t
else
wv

t+1 = wv
t −∆w

wu
t+1 = wu

t −∆w
cs = Kc∆w

Algorithm 2 Sediment Movement
if sv

t ≥ cs
su
t+1 = su

t +cs

av
t+1 = av

t +Kd (sv
t −cs)

sv
t+1 = (1−Kd)(sv

t −cs)
else
su
t+1 = su

t +sv
t +Ks(cs−sv

t )
av

t+1 = av
t −Ks(cs−sv

t )
sv
t+1 = 0

4 Implementation in Blender

The techniques are implemented as Python scripts for Blender.

4.1 Representation and Synthesis

4.1.1 Heightmaps

The heightmap is represented as a two dimensional array contain-
ing four values for each element: the height, and the three erosion
constants (see Section 3.2.3). Having each location have its own set
of erosion constants means that areas may be harder than others for
instance, which affords the possibility to model very tough rocks in
the middle of a hill and erode this for instance (see Figure 1).

Figure 1: Natural phenomena replication



Figure 2: Terrain formation control

4.1.2 Fractional Brownian Motion

Blender provides a method to generate fBm, with parameters for the
vertex position, the fractal increment, the lacunarity or gap between
successive frequencies, the number of octaves to use, and the base
noise function to use. We find that New Perlin noise is the most
appropriate type of noise for the base function. Two additional val-
ues that can be tweaked are: the input vertex position, which can
be scaled to create more rapidly or slowly changing terrain; and the
scaling on the output value, which can make for higher, more jagged
terrain with higher values. By altering parameters, we can control
the formation of the terrain, which means sections of the terrain can
be made to vary from others: having tightly rock controlled, jagged
areas to flood plains, as can be seen in Figure 2: the far area being
tightly rock controlled, the middle area a medium region and the
close area a low flood plain.

4.2 Realism

4.2.1 Squig Curves

As an observation on the method proposed, edges can be shared
rather than creating two separate edges and assigning one to be
an entrance and the other an exit. Also it is unnecessary to as-
sign a label of entrance and exit, rather we use a system where
an edge can be neutral, marked or unassigned (during subdivision
only) [Prusinkiewicz and Hammel 1993].

To thicken the river paths, as well as provide a gradual fade from
river to normal base terrain, we use a radius of influence calculation,
assigning heightmap values based on how far they are from a river
path, and this radius can be altered which can assist in interpolating
with the terrain to create jagged areas to flood plain areas as can be
seen in Figure 2 where the far area has narrow rivers and the close
area wider ones.

Another configurable option would be to select the recursive depth
of subdivision for each triangle so as to provide meandering sec-
tions of river and swiftly changing ones. This is still to be imple-
mented.

(a) n=0 (b) n=1 (c) n=2

Figure 3: Squig Curves: Grid aftern levels of subdivision

(a) n=1 (b) n=3 (c) n=5

Figure 4: Squig Curves: Path aftern levels of subdivision

4.2.2 Flattening

This is implemented as per the theory, using a cosine graph of con-
figurable radius and can be seen in Figure 2 shown as the circled
area. The method takes as input the center of the circle and the ra-
dius so as to be of use to the Text-To-Scene converter. If a more
rectangular region is needed to be flattened this can be achieved by
flattening a few smaller circles in a row.

4.2.3 Erosion

A first attempt to duplicate the results detailed in the paper failed,
with wave-like erosion images being formed [Musgrave et al.
1989]. This problem was diagnosed to be unfair distribution of wa-
ter and sediment: because the neighbours are checked in the same
order every time, the first few being checked were getting prefer-
ence. This problem is clearly visible in the two renders in Figure
5. The solution was to distribute the water proportionally looking
at each neighbour as one of the eight [Benes and Forsbach 2002].

The authors recommend two heightmaps: one from a previous step
and the currently worked on one which means that apart from the
memory usage being twice as much, calculations are being repeated
many times [Musgrave et al. 1989]. We find that using a pre-
calculation step to calculate the proportion each neighbour will re-
ceive, we can eliminate the need for a second array, replacing it

Figure 5: Wave erosion



Figure 6: Results

with a variable length array for neighbours that will receive sed-
iment and water and the proportions thereof. The erosion method
also implements evaporation with an exponential method to prevent
pools of stagnant water building up and creating jagged areas of ter-
rain due to skewed erosion calculations [Benes and Forsbach 2002].
The method will continue to run after the amount of timesteps spec-
ified, until all the water has evaporated, as this gives the sediment
contained in the water time to settle. The rain occurs every set num-
ber of timesteps and stops once the desired number of timesteps has
passed.

Since the erosion algorithm is a global procedure the implemented
method takes as input the desired number of timesteps to erode by,
and if certain areas need to be eroded more than others to mimic
softness or hardness of areas this can be achieved because each lo-
cation on the heightmap has its own set of erosion constants.

5 Results

The three renders in Figure 6 show common results produced by
this project, what can be emphasized here is that the only differ-
ence between the images is the squig river paths, other than that the
images have the same base terrain and it is the erosion procedure
that makes each image unique. The render in Figure 2 shows the
configurability of the methods, with differing radius of influence
for the river based on the section, as well as modified fBm output
scaling to create the jagged area to floodplain transition, as well as
the flattened region (refer to Section 4.1.2).

6 Conclusions

The project is capable of producing terrain with minimal input, and
is very configurable yet very simple as has been mentioned in each
relevant section. A multitude of scenes can be created by alter-
ing parameters, in particular offsetting the fBm would create com-
pletely different regions, but also the squig curve river generation
which is completely random within its ruleset. With erosion proce-
dures as well as configurable control of all parameters the project is
capable of producing realistic, natural terrain and has so achieved
the goals of the project.

References

BELHADJ, F., AND AUDIBERT, P. 2005. Modeling landscapes
with ridges and rivers: bottom up approach. InGRAPHITE ’05:
Proceedings of the 3rd international conference on Computer
graphics and interactive techniques in Australasia and South
East Asia, ACM Press, New York, NY, USA, 447–450.

BENES, B., AND FORSBACH, R. 2001. Layered data representa-
tion for visual simulation of terrain erosion. InSCCG ’01: Pro-
ceedings of the 17th Spring conference on Computer graphics,
IEEE Computer Society, Washington, DC, USA, 80.

BENES, B., AND FORSBACH, R. 2001. Parallel implementation of
terrain erosion applied to the surface of mars. InAFRIGRAPH
’01: Proceedings of the 1st international conference on Com-
puter graphics, virtual reality and visualisation, ACM Press,
New York, NY, USA, 53–57.

BENES, B., AND FORSBACH, R. 2002. Visual simulation of hy-
draulic erosion. InJournal of WSCG 2002: Proceedings of the
10th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2002, WSCG, 79.

CATMULL , E. E. 1974. A Subdivision Algorithm for Computer
Display of Curved Surfaces. PhD thesis, Department of Com-
puter Science, University of Utah.

DUCHAINEAU , M., WOLINSKY, M., SIGETI, D. E., MILLER ,
M. C., ALDRICH, C., AND M INEEV-WEINSTEIN, M. B. 1997.
Roaming terrain: real-time optimally adapting meshes. InVIS
’97: Proceedings of the 8th conference on Visualization ’97,
IEEE Computer Society Press, Los Alamitos, CA, USA, 81–88.

FOURNIER, A., FUSSELL, D., AND CARPENTER, L. 1982. Com-
puter rendering of stochastic models.Commun. ACM 25, 6, 371–
384.

FOWLER, R. J.,AND L ITTLE , J. J. 1979. Automatic extraction
of irregular network digital terrain models. InSIGGRAPH ’79:
Proceedings of the 6th annual conference on Computer graphics



and interactive techniques, ACM Press, New York, NY, USA,
199–207.

KAJIYA , J. T. 1983. New techniques for ray tracing procedurally
defined objects. InSIGGRAPH ’83: Proceedings of the 10th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 91–102.

KOBBELT, L. 2000.sqrt3-subdivision. InProceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 103–112.

L INDSTROM, P.,AND PASCUCCI, V. 2001. Visualization of large
terrains made easy. InVIS ’01: Proceedings of the conference
on Visualization ’01, IEEE Computer Society, Washington, DC,
USA, 363–371.

M ILLER , G. S. P. 1986. The definition and rendering of terrain
maps. InSIGGRAPH ’86: Proceedings of the 13th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 39–48.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989. The
synthesis and rendering of eroded fractal terrains. InProceed-
ings of the 16th annual conference on Computer graphics and
interactive techniques, ACM Press, 41–50.

PARKER, E., AND UDESHI, T. 2003. Exploiting self-similarity
in geometry for voxel based solid modeling. InSM ’03: Pro-
ceedings of the eighth ACM symposium on Solid modeling and
applications, ACM Press, New York, NY, USA, 157–166.

PERLIN, K. 1985. An image synthesizer. InSIGGRAPH ’85: Pro-
ceedings of the 12th annual conference on Computer graphics
and interactive techniques, ACM Press, New York, NY, USA,
287–296.

PRUSINKIEWICZ, P.,AND HAMMEL , M. 1993. A fractal model of
mountains with rivers. InProceeding of Graphics Interface ’93,
174–180.

ZHOU, H., SUN, J., TURK, G., AND REHG, J. M. 2007. Ter-
rain synthesis from digital elevation models.IEEE Transactions
on Visualization and Computer Graphics 13, 4 (July/August), to
appear.


