
Literature Review

Bruce Alcock

A Procedural, Minimal Input, Natural Terrain Plug-in for Blender

Supervisors: Kevin Glass and Shaun Bangay

Abstract

This review examines methods of terrain representation, creation and realism described
in literature. In particular a combination of terrain synthesis using Fractional Brownian Mo-
tion, and erosion procedures is examined, as well as the procedural formation of rivers. Other
techniques as examined, such as Triangulated Irregular Networks and ridges generation and
discarded in terms of this project for reasons detailed. In conclusion it is decided that a com-
bination of Fractional Brownian Motion, procedural formation of rivers via squig curves and
a physically based model of river formation will be used as initial terrain, and then eroded to
achieve the goals of this project.

1



1 Introduction
To create natural terrain procedurally there are three areas that need to be examined. The first is
the data representation: how to represent terrain on a computer in an efficient form. Secondly the
initial terrain synthesis method: whether to use some form of pseudo-random noise or a model
based on some physical method. And lastly the method of increasing realism, since the initial
terrain methods available all have flaws which make them unsatisfactory. This literature review
summarizes the methods currently proposed in the field of terrain generation on these topics.

2 Overview
We define three categories of techniques useful for terrain generation: data representation (see
Section 3), that is, how to represent terrain on a computer in a manageable form; the initial terrain
synthesis method (see Section 4) that describes how initial terrain-like geometry is generated;
realism (see Section 5), which improves upon the coarse initial terrain synthesis methods.

3 Representation
The data structures used to represent the terrain affects both the realism of the produced ter-
rain, as well as the complexity of the terrain synthesis algorithms. Popular approaches in-
clude: heightmaps which are a two-dimensional representation; and voxels which are three-
dimensional, as well as TINs which represent the model as a set of non uniform triangles.

3.1 Heightmaps
A heightmap is a two dimensional matrix of coordinates in which the height of the terrain is
represented as a number at each coordinate. Each may be associated with information such as
the height above the base level (hence the name height fields), as well as auxiliary informa-
tion such as the amount of water at that point and the sediment contained in the water [4, 13].
Other information stored includes squig curves to represent river paths and river paths created by
simulations [1, 16].

Multi-layer heightmaps are an extension to the idea of heightmaps, based on real world geo-
logical core samples. They encompass more than one layer of material, each of which can have
different hardness and erosion constants for instance [2].

This method of representation has the shortcoming that terrain features such as overhangs and
caves cannot be represented [2]. However it is often used because of the regular interval spacing,
which makes erosion calculations quicker for example, because the distances are constant; as
well as the easy storage into two dimensional arrays [2, 4, 13].

2



3.2 Voxels
Voxels divide an object (in this case terrain) into three dimensional cubes of a set size. Although
this gives more control over the terrain and provides a mechanism for creating caves and other
features, it requires substantially more memory than a heightfield, because the space requirement
is now n × gridsize3 rather than n × gridsize2, where n represents the space requirement for
each element [2]. It is also computationally expensive to visit each element, and to render since
surfaces need to be created for each voxel to its neighbours[14]. For these reasons voxels have
not been used to model terrains much and algorithms such as erosion would have to be entirely
re-thought to work with this representation.

3.3 TINs
Another representation is a Triangular Irregular Network (TIN), which represents a surface as
a set of irregular size, non-overlapping, yet contiguous triangles [8]. The reason this is not
considered is because it is a method to speed up rendering in realtime, as demonstrated in [6].
TINs therefore offer no benefits to realism.

3.4 Summary
The method chosen is heightmaps since they provide a regular method of representing terrain,
useful for erosion and similar algorithms, with a possible extension of multi-layer heightmaps to
make an attempt at caves and overhangs. TINs are a method to increase rendering speeds and
as such offer no benefit to this project, and voxels complicate calculations, increase time and
complexity and would need intense rewrites of algorithms.

4 Synthesis
Generating the initial values for heightmaps may be done using various different schemes, in-
cluding subdivision, noise sampling, and feature generation, including rivers and ridges.

4.1 Subdivision
The original purpose of subdivision was to divide a surface into small enough regions so as to
be displayable as a pixel on screen [5]. It works by finding the midpoint of a curve segment
and creating new curves between the originals, therefore enhancing its definition by creating
seven vertices where previously only three existed, or more importantly: four surfaces where
previously one existed [5]. A recent method called

√
3 subdivision has been created where faces

are divided into three, and new vertices adaptively adjusted to apply more subdivision to areas
that have bigger curvature, thereby smoothing rough edges [10]. Via usage of weights, sharp
edges can still be produced at specifiable locations on models [10].

√
3 subdivision is now a

popular choice to use for subdivision.

3



A use for this in creating terrain, is that at each stage of subdivision the new vertices are
adjusted on the vertical axis by random amounts, forming context sensitive initial terrain [16].
Context sensitivity refers to the fact that two adjacent triangles share a common edge, and when
subdivision occurs the new vertex in the center of that edge for each triangle is really only one
vertex and must be treated as common and only adjusted once. Two older methods and a pro-
posed one for creating terrain via recursive subdivision are discussed in [12]. These methods of
creating terrain seem to have lost popularity to noise sampling (see Section 4.2) because of their
reproducibility and the infinite detail of fractals.

Subdivision is usually used for smoothing models and increasing resolution when approxi-
mating surfaces, where a regular subdivision hierarchy is used to update a mesh dependent on
view [11]. Another example is to adaptively subdivide recursively: subdivide to increase resolu-
tion where the model dictates it is necessary [9].

4.2 Noise Sampling
Perlin Noise is used as a function to create pseudo-random values. Perlin noise works by cal-
culating values for [x, y, z] points by assigning pseudo-random, uncorrelated gradients [a, b, c]
to them and a value d which forms a linear equation for [x, y, z] and can be retrieved using
pre-calculated hash tables [15].

A sampled form of Perlin Noise: Fractional Brownian Motion (fBm), is presented to create
an initial heightmap for the terrain, generated by sampling Perlin Noise at multiple frequencies
and applying translation and scaling onto the values [13]. Because the basis (Perlin) function
is seeded, the entire fBm generation process is entirely reproducible. The base frequency is
calculated using the equation:

a0 = (N (p0) + ct) cs + c0

where a is the heightmap point, N is the noise generating function, p is the initial grid point,
ct is a constant translation transformation, cs is a constant scaling transformation. Successive
frequencies are calculated by:

ai = ai−1 + ai−1 (N (pi) + ct) csw
i

where wi is a frequency increment constant. Since the underlying noise function can be two
dimensional, the generated points are continuous and produce a fractal terrain, which is useful for
its endless level-of-detail and reproducibility, but even with the same seed for the noise function,
the end terrain can appear very different due to the scaling and translation constants [13].

Work has been done since to improve the resolution of fBm and stochastic models in general.
Due to sampling problems the model produced by sampling fBm is very crude, and by path
generation a better approximation can be attained [7].

Another method is using random displacements: generating random numbers and using this
as the heightmap [7]. An extension to this being random successive additions: generating many
random numbers for each grid location and successively summing them to form the heightmap
[17].

4



(a) (b) (c)

(d) (e) (f)

Figure 1: Squig Curves

4.3 Feature Generation
A method of terrain generation suggested, entails generating ridges and rivers and then interpo-
lating between them using an extension to the midpoint-displacement method to fill in the rest of
the terrain [1]. Another method is to create rivers via the use of squig curves and interpolating it
into the base terrain [16]. A new method using a sketchpad has also been developed [18].

4.3.1 Ridge Generation

Ridges are constructed by randomly scattering pairs of “ridge particles” over the map. Each pair
of ridge particles initially has the same position and altitude, but opposite orientations. At each
iteration and step the particle is impacted by Fractional Brownian Motion on the horizontal plane
to make the ridges non linear, and altitude is decreased according to distance from the original
location in a Gaussian distribution centered at the original location with a standard deviation
of σ = 1

4
× width (heightmap). Each point modifies the heightmap’s altitudes between the

previous point and the current one, and then each successive point also has a Gaussian curve(
σ′ = 1

4
× σ

)
drawn perpendicular to it [1].

4.3.2 River Generation

One method of river creation is via squig curves, which are an L-system of sorts and a subdivision
scheme, involving each triangle having an entry, exit and neutral edge [16]. Referring to Figure

5



1(a) as the original triangle, with the left side assigned to be an entry entry, right side an exit and
bottom a neutral edge. When subdivided the original edges are divided randomly into two (entry
edges becoming entry and neutral, exit becoming exit and neutral, and neutral becoming two
neutrals), and the three new edges between them (see Figure 1(b)) being assigned accordingly.
This process is repeated recursively (see the last four images in Figure 1(c,d,e,f)). This gives a
fairly reasonable representation of a winding river, and this is then plotted onto the main terrain
heightmap and vertices simply lowered to a base level where the rivers occur [16].

Another method is via river particles, which are randomly dispatched over the map to create
rivers. They are mobile spheres with a mass (which determines the resulting river’s width and
depth), and are subject to gravity. The river particles are placed at top top of ridge lines where a
physically based model is used to describe the particle’s motion, where negative y-axis acceler-
ation is more weighted and frictional forces are added. The process stops when all particles are
static or have exited the grid. The only case worth noting is when a river particle (ri) intersects
another’s (rj) path: then rj is backtracked until the intersection points and its properties modified
as follows [1]:

position (rj) = position (ri)

−−−−−−−−→
velocity (rj) =

−−−−−−−−→
velocity (ri) +

−−−−−−−−→
velocity (rj)

mass (rj) = mass (ri) + mass (rj)

4.3.3 Other Areas

The final stage of the process is to fill in the areas that are not marked as river or ridge tops
[1]. This cannot be done with subdivision schemes alone, because with little data they produce
artifacts and discontinuities. Instead, the non-computed grid is filled using a subdivision scheme
(either triangle-edge or diamond-square subdivision) using pre-fill data, calculated by processing
the grid in scan-line order in increasingly big squares: each square looks at the four corners and
if at least one corner has a value, the others are filled by interpolating with the other available
corners. If at least one corner of the square has a value, the subdivision method is called for the
square which fills in more coordinates [1].

4.3.4 Sketch Pad

A recent method involves drawing the main terrain features on a sketchpad. The system then
accesses stored digital elevation map data and tries to match features to the drawn terrain and
builds a terrain model from the matchings. This method will not be used due to it relying on a
database and not being entirely procedural [18].

4.4 Summary
The chosen methods for this project are a combination of noise synthesis (Fractional Brownian
Motion) to create the base terrain due to the results looking visually better than other methods,

6



Algorithm 1 Water change
if4w ≤ 0
av

t+1 = av
t + Kds

v
t

sv
t+1 = (1−Kd) sv

t

else
wv

t+1 = wv
t −4w

wu
t+1 = wu

t −4w
cs = Kc 4 w

and river generation and interpolation with the initial terrain using squig curves due to their ease
of construction and effectiveness [13, 16].

5 Realism
Initial terrain synthesis alone is not sufficient for realistic terrain generation. The combination of
midpoint displacement and squig curves generate unrealistic artifacts as a result of rivers cutting
into high areas of the heightmaps [16]. Fractional Brownian Motion does not include mountains
and rivers as they would exist naturally, because the landscape is statistically identical about
the horizontal axis [13]. Ridge and river creation is insufficient because all areas between the
ridge and river lines are only interpolated, producing unrealistic artifacts [1]. More needs to be
done to pursue realistic terrain generation, and this is achieved using simulations of real world
phenomena such as wind and water erosion [4, 13]. In addition, the use of multi-layer heightmaps
may also be exploited.

5.1 Erosion
To give the raw heightfield a more natural looking appearance with proper mountains and riverbeds,
two approximations of natural processes are suggested for eroding the terrain [13]:

5.1.1 Hydraulic Erosion

Hydraulic erosion involves dripping water onto the heightfield and distributing the water and
sediment accumulated to neighbouring vertices. The erosive power at the current position is
calculated based on the volume of water at that point as well as the sediment already in the water.
This works by assigning each vertex v at time t an altitude av

t , a volume of water wv
t and an

amount of sediment sv
t . Iterating through time each vertex v passes excess water and sediment to

each neighbouring vertex u where the amount of water passed is defined as:

4w = min (wv
t , (w

v
t + av

t )− (wu
t + au

t ))

Based on the amount of water passed, it is determined which direction the water is flowing (see
Algorithm 1). If water is being passed to neighbours, the water at the current and neighbour

7



Algorithm 2 Sediment Movement
if sv

t ≥ cs

su
t+1 = su

t + cs

av
t+1 = av

t + Kd (sv
t − cs)

sv
t+1 = (1−Kd) (sv

t − cs)
else
su

t+1 = su
t + sv

t + Ks (cs − sv
t )

av
t+1 = av

t −Ks (cs − sv
t )

sv
t+1 = 0

vertices are calculated as well as the sediment capacity cs to calculate sediment transfers with
(see Algorithm 1), then sediment movement is calculated (see Algorithm 2). Kc is the sediment
capacity which specifies the max sediment that may be suspended in a unit of water, Kd is the
deposition constant which specifies the rate at which sediment settles out of a unit of water and is
added to a vertex, and Ks is the soil softness constant, which specifies the softness of the soil and
is used to control the rate at which soil is converted to sediment. What this does is to erode the
terrain to an approximation of what happens in reality when rain falls on ground and redistributes
soil [13].

5.1.2 Thermal Erosion

Thermal weathering encompasses any natural process that knocks material off ridges and de-
posits them at the feet of the mountain. If the slope of a vertex exceeds a talus angle T , material
is simply distributed to the neighbours, which softens ridges and valleys alike. So if the differ-
ence in slope exceeds the talus angle: av

t − au
t > T then au

t+1 = au
t + ct (av

t − au
t − T ), where ct

is a constant percentage of the difference to move [13].

5.2 Multi-layer Heightmaps
Multi-layer heightmaps are a tool for realism, because they afford the mechanism to have differ-
ent layers having different attributes. When combined with a method like erosion they can help
to strive toward realism due to different layers having different hardnesses and as such eroding
at different rates, as happens in nature [2]. The only usage of multi-layer heightmaps so far has
been by the same authors that created it, to simulate erosion on the surface of Mars is parallel
[3].

5.3 Summary
In an effort to create as realistic a terrain as possible, both hydraulic and thermal erosion will be
tried and perhaps used in combination with multi-layer heightmaps [2, 4, 13].

8



6 Conclusion
In conclusion, the techniques that will be used in this project will be to generate Fractional Brow-
nian Motion as a base terrain [13]. This will then use a method based on the Squig curves and
ridges and rivers approaches to add in specific river regions [1, 16]. Finally erosion procedures
will be applied onto the terrain, with reference to whether the vertex is part of a river or not
[4, 13].

The literature is lacking a realistic method of creating a terrain, relying on post-creation meth-
ods to fix the terrain in an effort toward realism. Using the combination of methods mentioned,
this should produce satisfactory renderings of natural looking terrain, with the only user input
being a translation from the origin so as to allow for reproducible, yet movable and different
terrain. However, there is still work to be done in the field of terrain before terrain is realistic
enough to pass human standards on observation.

References
[1] Fares Belhadj and Pierre Audibert. Modeling landscapes with ridges and rivers: bottom up

approach. In GRAPHITE ’05: Proceedings of the 3rd international conference on Com-
puter graphics and interactive techniques in Australasia and South East Asia, pages 447–
450, New York, NY, USA, 2005. ACM Press.

[2] Bedrich Benes and Rafael Forsbach. Layered data representation for visual simulation of
terrain erosion. In SCCG ’01: Proceedings of the 17th Spring conference on Computer
graphics, page 80, Washington, DC, USA, 2001. IEEE Computer Society.

[3] Bedrich Benes and Rafael Forsbach. Parallel implementation of terrain erosion applied to
the surface of mars. In AFRIGRAPH ’01: Proceedings of the 1st international conference
on Computer graphics, virtual reality and visualisation, pages 53–57, New York, NY, USA,
2001. ACM Press.

[4] Bedrich Benes and Rafael Forsbach. Visual simulation of hydraulic erosion. In Journal
of WSCG 2002: Proceedings of the 10th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision 2002, page 79. WSCG, 2002.

[5] Edwin E. Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, Department of Computer Science, University of Utah, December 1974.

[6] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles Aldrich, and
Mark B. Mineev-Weinstein. Roaming terrain: real-time optimally adapting meshes. In VIS
’97: Proceedings of the 8th conference on Visualization ’97, pages 81–88, Los Alamitos,
CA, USA, 1997. IEEE Computer Society Press.

[7] Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of stochastic mod-
els. Commun. ACM, 25(6):371–384, 1982.

9



[8] Robert J. Fowler and James J. Little. Automatic extraction of irregular network digital
terrain models. In SIGGRAPH ’79: Proceedings of the 6th annual conference on Computer
graphics and interactive techniques, pages 199–207, New York, NY, USA, 1979. ACM
Press.

[9] James T. Kajiya. New techniques for ray tracing procedurally defined objects. In SIG-
GRAPH ’83: Proceedings of the 10th annual conference on Computer graphics and inter-
active techniques, pages 91–102, New York, NY, USA, 1983. ACM Press.

[10] Leif Kobbelt. sqrt3-subdivision. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 103–112. ACM Press/Addison-Wesley
Publishing Co., 2000.

[11] Peter Lindstrom and Valerio Pascucci. Visualization of large terrains made easy. In VIS
’01: Proceedings of the conference on Visualization ’01, pages 363–371, Washington, DC,
USA, 2001. IEEE Computer Society.

[12] Gavin S P Miller. The definition and rendering of terrain maps. In SIGGRAPH ’86: Pro-
ceedings of the 13th annual conference on Computer graphics and interactive techniques,
pages 39–48, New York, NY, USA, 1986. ACM Press.

[13] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of eroded fractal
terrains. In Proceedings of the 16th annual conference on Computer graphics and interac-
tive techniques, pages 41–50. ACM Press, 1989.

[14] Eric Parker and Tushar Udeshi. Exploiting self-similarity in geometry for voxel based solid
modeling. In SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and
applications, pages 157–166, New York, NY, USA, 2003. ACM Press.

[15] Ken Perlin. An image synthesizer. In SIGGRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pages 287–296, New York,
NY, USA, 1985. ACM Press.

[16] Przemyslaw Prusinkiewicz and Mark Hammel. A fractal model of mountains with rivers.
In Proceeding of Graphics Interface ’93, pages 174–180, Toronto, Ontario, May 1993.

[17] Dietmar Saupe. Algorithms for random fractals. pages 71–113, 1988.

[18] Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. Terrain synthesis from digital
elevation models. IEEE Transactions on Visualization and Computer Graphics, 13(4):to
appear, July/August 2007.

10


