
Creating a High-Level OpenCL Compiler: A

Literature Survey

Matthew Royle

June 18, 2009

1



Contents

1 Introduction 2

2 Parallel Computing 3

3 GPGPU Computing and Optimization 5

4 Heterogeneous Processing 8

5 Translators 10

6 Conclusion 11

References 13

1 Introduction

OpenCL (Open Compute Language) is a new low-language speci�cation

which is intended for use as a heterogeneous parallel programming tool.

Creating a high-level compiler for such a language will encompass di�er-

ent technologies related to computing. The technologies which this project

encompass include parallel computing, graphics computing, heterogeneous

processing and translators. While these are the main areas which constitute

creating a high level compiler for the OpenCL, this does not preclude any

other areas of research which may become relevant at a later stage from being

integral to the project.

There is a wide variety of research which is related to the topics of parallel

computing and general purpose computing using graphics processors. The

area of research involving programming heterogeneous clusters is growing

quite rapidly. This is the result of di�erent architectures which have become

available for use in everyday computing. Section 2 describes methods used

to convert serial programs into parallel programs. The focus is on the use

of the OpenMP API to create parallel constructs by enhancing normal serial

code through the use of special directives. Section 3 relates to the highly

2



parallel nature of graphics cards and optimization principles and targeting.

This area of research is mainly focused on the Compute Uni�ed Device Ar-

chitecture (CUDA) developed by NVIDIA [10] and Brook+[2] developed by

Advanced Micro Devices (AMD). Section 4 presents some architectures for

heterogeneous processing on multithreaded multi-core systems. These are

not necessarily in use today, but they do provide a foundation for under-

standing the model required to create a heterogeneous system. Section 5

deals with high level translators. This section provides two di�erent exam-

ples of translators which translate one language from one architecture to

another language on another di�erent architecture. Section 6 combines all

the di�erent areas of research and link them together to provide insight into

creating a High-Level OpenCL Compiler.

2 Parallel Computing

This section will deal with the writing of code optimized for parallel execution

and the certain methods involved. The relevance of this section related to

the creation of a high-level compiler for OpenCL is its parallel nature and

how it will implement this feature using the compiler.

For many years, compilers have been directed at improving the perfor-

mance of sequential programs . Due to the complex nature of modern archi-

tectures, processors have reached a point where the power they consume and

heat they generate is no longer feasible for their processing power. Nowa-

days the trend is to manufacture processors which have more cores on them,

rather than try and increase their clock speed. This has exposed parallelism

to the programmer, resulting in the need to convert code, which was origi-

nally written as sequential code, to parallel code. To overcome this problem

languages are being developed and new techniques are being used [1]. Some

examples are:

• APIs, such as OpenMP and Message Passing Interface (MPI), using

directives to explicitly de�ne parallel regions in code

• Languages such as High Performance FORTRAN (HPF)

3



• Using threads within an application

Threads allow for parts of an application to be run simultaneously on

a multi-core systems. Threads are common in most object orientated lan-

guages today, such as C/C++, Java and C#. Threads are implemented using

a shared memory model, where threads share memory and the data stored

in that memory. Another strategy is embodied in the Application Program-

ming Interface (API) called OpenMP (Open Multi-Processing) [3]. The API

consists of:

• Compiler directives

• Run time routines

• Environmental Variables

OpenMP works by using the compiler directives to specify code sections

which need to be separated into threads to run simultaneously. They also

allow environmental variables to be speci�ed which will a�ect how the code

will perform at runtime. Using this method, a shared memory model is

implemented using OpenMP. [3, 1]

Techniques which are used on graphics cards by languages such as CUDA[10]

and Brook+[2] involve the use of kernels. Kernels are written to perform a

task. Kernels are each assigned to a work group or thread-block, each with

an identity, work groups are then executed. Each kernel is a logical thread

in a thread block, each thread block can be executed on a processor [13].

Where the use of kernels di�er from approaches such as OpenMP is the way

in which they are executed. Each kernel is executed as a single thread, ex-

ecuting multiple kernels results in parallel processing of shared data. Code

speci�ed using an OpenMP directive is separated in a number of threads

using the fork-join method. This results in a block of code being used for

parallel processing.

This section reveals possible approaches which can be used to implement a

parallel compiler for OpenCL. The OpenCL execution model is based on the

use of kernels, which are executed in a data parallel fashion. To implement

4



this data parallel fashion, OpenMP directives can be used to specify parallel

areas of execution, for example: kernels, and what is considered to be shared

memory.

3 GPGPU Computing and Optimization

Graphics cards are being used increasingly often for executing highly parallel

code. However, just like CPUs, they have limitations when it comes to certain

types of applications. OpenCL is intended to overcome this problem by

creating a heterogeneous parallel programming environment which can make

the most use of both technologies. In order to create a working OpenCL high-

level compiler for the CPU, it is necessary to understand how code intended

for GPU processing functions and how they are best optimized.

Graphics cards were originally developed for electronic games and three-

dimensional (3D) graphics [5]. However according to Halfhill [5] there has

lately been a trend of using graphics cards for more than just graphics pro-

cessing due to their highly parallel nature. It is stated by Boggan and Pressel

[4] that the use of graphics cards pixel shaders as general-purpose processors

leads to massive parallel processing capabilities. Their design allows for par-

allel, computationally intensive applications which have regular memory ac-

cess operations. The ability of graphics cards to be used for more than just

graphics processing has led to them being referred to as General-Purpose

Graphics Processing Units (GPGPU). [4, 5]

The Compute Uni�ed Device Architecture (CUDA) was developed by

the NVIDIA Corporation to simplify the process of writing programs which

would run on their Graphics Processing Units (GPU). Before CUDA and

Brook+ were developed, programming GPUs was very di�cult due to their

complex nature. It required the programmer to have a very good understand-

ing of the underlying hardware. CUDA and Brook+ were developed to have

an easy learning curve for those who are familiar with standard programming

languages such as C. CUDA was developed as a parallel programming model

due to the parallel nature of GPUs as described by Halfhill [5]. Brook+ was

developed for stream programming using a SIMD execution model. [2, 10]

5



Since the release of NVIDIA's CUDA[10] and AMD's stream computing

language Brook+[2], these languages have provided improved programmabil-

ity on GPUs. Achieving a high level of performance using CUDA or Brook+

is still challenging. This is where optimization comes to the fore. [6]

As stated by Jang et al. [6], there are di�erences between graphics pro-

cessing and general processing on GPUs. Users of a stream programming

language like Brook+ require knowledge of the hardware to get good perfor-

mance gains. Similarly Ryoo et al. [12] believe that the e�ort and expertise

required to achieve maximum application performance is still quite high.

However, the advent of languages such as CUDA and Brook+ have made the

GPU platform available to more application developers than before, as well

as making it less specialized. This has resulted in an increasing number of

developers having access to this platform.

Graphic compilers are equipped with limited optimization techniques [6].

Similarly Ryoo et al. [12] indicate that the resource restrictions in such sys-

tems present di�culties to optimization. Conversely, Ryoo et al. [11] believes

that compilers such as CUDA and Brook+ increase the �exibility that de-

velopers have to tune application performance, but that they change the

assumptions that developers make about optimization.

Jang et al. [6] believe that to achieve the peak performance of a mul-

tithreaded GPGPU system, a large number of active threads need to be

generated to hide memory latency. Similarly Ryoo et al. [12] believe that

peak performance can be achieved in three ways: sequences of independent

instructions in a warp (a group of threads in a block of threads which are

executed in a Single Instruction Multiple Data (SIMD) fashion) so that it

can make forward progress when executing, placing many threads in a block

so that at least one warp can execute and lastly to assign a thread block

to each core. They describe three principles to consider when optimizing an

application for the CUDA platform. These are:

• �oating point throughput of an application will depend on the percent-

age of �oating point operations contained in the its instructions,

• managing global memory latency is a primary concern when trying to

6



achieve maximum performance and

• that global memory bandwidth can limit the system's throughput.

The study by Jang et al. [6] is based on three optimization spaces, namely:

Arithmetic Logic Unit (ALU) utilization, texture unit utilization and Thread

unit utilization. To achieve ALU utilization, they recommend using intrinsic

functions provided by the Brook+ programming model whenever possible

and merging subfunction calls whenever possible. To utilize texture units

more e�ectively, Jang et al. [6] propose using the built-in short vector types

in Brook+ which allows code to be explicitly tuned for an available SIMD

machine. Lastly they propose better utilization of threads. It is important to

have su�cient arithmetic operations versus fetch operations in each thread.

The study by Ryoo et al. [12] groups optimizations into �ve categories.

The goal of the �rst category is to provide enough warps to hide stalling

e�ects of memory latency and blocking operations. To achieve this Ryoo

et al. [12] recommend decreasing thread block size and increasing the num-

ber of threads. Secondly, the redistribution of work across threads and thread

blocks can lead to optimized code. Third is to reduce the number of dynamic

instructions per thread. Fourth Ryoo et al. [12] believes that intra-thread par-

allelism ensures the availability of independent instructions within a thread.

Lastly is to shift the use of resources, referred to as resource-balancing.

The study by Ryoo et al. [11] proposes using shared memory to reduce

the pressure on memory latency by bu�ering. This can improve the access

pattern for global memory. Also proposed is the use of on-chip cache, this

can be implemented by using texture memory to store read-only data which

can be accessed by multiple threads.

The study by Jang et al. [6] shows that applications will bene�t from

using the di�erent optimization spaces. They also show speci�c optimiza-

tions which need to be applied to the optimization spaces to obtain better

performance.

Ryoo et al. [12] developed metrics to judge the performance of the op-

timum con�guration. They plotted the optimal con�guration on a Pareto-

optimal curve. They found that this approach was able to reduce the search

7



space for the optimum con�guration by up to 98%.

Ryoo et al. [11] present an application suite, which includes their opti-

mizations. They show that applications which have a low global memory

access after optimization experience a substantial speedup over CPU exe-

cution. These results depend on applications not being limited by resource

availability.

This section reveals that peak performance of an application kernel can

best be achieved by optimizing the application. One general consensus is to

ensure that it is important to reduce the e�ects of memory latency by en-

suring that there are always threads executing. When creating an OpenCL

high-level compiler for the CPU, it is important to take this into consider-

ation. A CPU can execute far fewer threads than a GPU and thus these

points are even more important if it is going to be possible to achieve decent

performance when using a CPU.

4 Heterogeneous Processing

OpenCL is intended for use in multiple architectures. Creating an OpenCL

high-level compiler involves the challenge creating an abstraction of the hard-

ware so that a consistent interface is provided to the user. In this section,

literature which relates to this challenge is reviewed to provide insight into

di�erent heterogeneous programming environments.

Heterogeneous processing requires processing cores of di�erent architec-

tures to perform operations. With the possibility of chip manufacturers such

as Intel and AMD planning to integrate CPU and GPU cores into a single

processor package, heterogeneous processing could become more prevalent in

the near future [9, 14]. These cores can be of varying size, complexity and

performance [7].

According to Kumar et al. [7], the design of modern multi-core processors

must balance the competing objectives of a high throughput versus a good

single-thread performance. Kumar et al. [7] believes that processors designed

to have a heterogeneous set of processor cores which execute the same In-

struction Set Architecture (ISA) can deliver a great throughput and area

8



e�ciency versus a non-heterogeneous processor. Kumar et al. [7] argues that

the ability to match di�erent applications according to their performance de-

mands to the di�erent core types result in a better performance. Kumar et al.

[7] concludes that a heterogeneous processor using two cores types achieves

a performance gain of up to 63% over an equivalent homogeneous processor.

[7]

However, current heterogeneous systems have very di�erent Instruction

Set Architectures and functionality [14]. This results in a challenge when

trying to program a multi-core platform like this. Proposed by Wang et al.

[14] is an architecture, called the Exoskeleton Sequencer (EXO), which aims

to represent heterogeneous processors as ISA-based Multiple Input Multiple

Data (MIMD) resources and a shared virtual memory heterogeneous multi-

threaded program execution model. Added to the architecture is a C/C++

programming environment called C for Heterogeneous Integration (CHI). The

environment further extends OpenMP pragmas to allow for thread-level par-

allelism. Wang et al. [14] concludes by stating that their environment has

improved productivity over device-driver based development environments.

[14]

A framework called Merge proposed by Linderman et al. [9] is one which

has been created to take advantage of the EXOCHI architecture and pro-

gramming environment[14]. The framework includes a high-level parallel

programming model, compiler and runtime for heterogeneous multi-core plat-

forms. The framework works by mapping applications to a set of primitives

created with something like EXOCHI. Computations are expressed using

high-level language extensions which are architecture-independent. Linder-

man et al. [9] concludes that the framework has the potential to replace ad

hoc approaches to parallel programming on heterogeneous systems with a

library-based methodology. [9]

This section provides some ideas which can be applied to creating an

OpenCL high-level compiler. A common theme is the extension of a current

environment using a high-level language. Creating libraries which can be

used on a system of varying architectures will help to simplify the process of

creating a compiler.

9



5 Translators

The OpenCL high-level compiler is essential going to act as translator of

code. This process will involve converting OpenCL code to C code and then

compiling it using a C compiler. This section reviews translators which took

code for a certain architecture, for example: GPU, and then compiled it to

run on another architecture, for example: CPU. This section is relevant in

that OpenCL is intended for use on multiple environments, but the project

initially encompasses creating a compiler for the CPU architecture only.

Translators are used to convert a code from one language to make it

compile and run on other languages. These languages can be ones created

for a speci�c parallel architecture, for example CUDA[10]or Brook+[2] for

GPUs.

Lee et al. [8] proposes a compiler framework which will translate code

using OpenMP to code which will run on GPGPUs using NVIDIA's CUDA

language. According to Lee et al. [8] it is more complex and in some cases

more di�cult to create code for a GPGPU using CUDA. Thus the reason for

creating a compiler framework which converts code produced using OpenMP

to code which will run using CUDA for a GPGPU is that producing code

using OpenMP takes less e�ort. The framework works in phases; phase one

involves an OpenMP stream optimizer which makes code created for the CPU

more GPU friendly. The next phase involves converting OpenMP code to

GPGPU code using a translator. Even though OpenMP code is suitable to be

converted to run on GPUs, it was found that it does not always result in good

performance. This was the case for both regular and irregular applications.

However, Lee et al. [8] found that the performance achieved by the framework

came close to that of hand-coded CUDA programming.

Another proposed translator, which works in the opposite direction is

called MCUDA [13]. This was an attempt to e�ciently implement CUDA

kernels on multi-core CPUs. To achieve this, a thread block needs to be

transformed into a serial function. The threads used on GPUs are di�erent to

those used on CPUs. Another issue to deal with is memory spaces, memory

spaces are used di�erently on GPUs than compared to CPUs. GPUs use

10



di�erentiated memory space, while CPUs use uni�ed memory space. This

is another issue that needs to be dealt with to get CUDA kernels to run on

the CPU. Stratton et al. [13] achieves this by changing the nature of the

kernel from per-thread code speci�cation to a per-block code speci�cation.

The next step involves enforcing synchronization in the kernel code to ensure

that the kernel executes in order. Lastly the system is required to replicate

thread-local data, Stratton et al. [13] achieves this by creating private storage

for each instance of the thread's variable. Arrays are also created for local

variables when necessary to use less memory. Since CPUs and GPUs are

vastly di�erent, it is to be expected that this system would not achieve the

same performance than if the kernel were to be run on a GPU. Stratton et al.

[13] found that the performance of MCUDA was signi�cantly lower than that

of good hand-tuned CUDA code.

This section provides insight into the process of creating a translator.

There are techniques which are used here that would be relevant to the

process of creating an OpenCL high-level compiler. This section veri�es

that it is possible to translate code intended for one architecture to another

architecture.

6 Conclusion

In concluding, it is necessary to link all the above areas of research. There is

a common theme which can be found in all the sections and that is parallel

programming. Programming parallel applications is the future of program-

ming whether it is targeted for CPUs, GPUs or any other capable device.

Another important concept to realize is that with more than one general

processing device available on a computer today, it is possible to perform

heterogeneous programming using a single computer. OpenCL is a language

which was created for exactly this purpose. It is necessary to understand

how GPGPU processing is optimized using languages like CUDA NVIDIA

[10] and Brook+ AMD [2], the reason for this is that OpenCL has a very

similar structure when it comes to targeting the GPU as a processing device.

This will make the task of creating a working high-level compiler that much

11



easier. Finally, the translators which were reviewed in 5, have the potential

to be similar to creating a high-level OpenCL compiler for the CPU archi-

tecture and are thus very important pieces of literature. In closing, all of

these concepts are related to the project of creating a High-Level OpenCL

compiler and thus can add value to the project.

12



References

[1] Sarita V. Adve, Vikram S. Adve, Gul Agha, Matthew I. Frank,

María Jesús Garzarán, John C. Hart, Wen-mei W. Hwu, Ralph E. John-

son, Laxmikant V. Kale, Rakesh Kumar, Marinov Darko, Klara Nahrst-

edt, David Padua, Madhusudan Parthasarathy, Sanjay J. Patel, Rosu.

Grigore, Dan Roth, Marc Snir, Josep Torrellas, and Craig Zilles. Paral-

lel computing research at Illinois the UPCRC agenda. Technical report,

201 N Goodwin Ave, Urbana, IL 61801-2302, 2008.

[2] AMD. Brook+. Advanced Micro Devices, Novemeber 2007.

[3] OpenMP Architecture Review Board. OpenMP Application Program

Interface. OpenMP Architecture Review Board, May 2008.

[4] Sha'Kia Boggan and Daniel M. Pressel. GPUs an emerging platform

for general-purpose computation. Technical report, US Army Research

Laboratory, August 2007.

[5] Tom R. Halfhill. Parallel processing with CUDA. http://www.

MPRonline.com, January 2008.

[6] Byunghyun Jang, Synho Do, Homer Pien, and David Kaeli.

Architecture-aware optimization targeting multithreaded stream com-

puting. In GPGPU-2: Proceedings of 2nd Workshop on General Purpose

Processing on Graphics Processing Units, pages 62�70, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-517-8. doi: http://doi.acm.org/

10.1145/1513895.1513903.

[7] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Nor-

man P. Jouppi, and Keith I. Farkas. Single-isa heterogeneous multi-core

architectures for multithreaded workload performance. In ISCA '04:

Proceedings of the 31st annual international symposium on Computer

architecture, page 64, Washington, DC, USA, 2004. IEEE Computer

Society. ISBN 0-7695-2143-6.

13



[8] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to

GPGPU: a compiler framework for automatic translation and optimiza-

tion. In PPoPP '09: Proceedings of the 14th ACM SIGPLAN sym-

posium on Principles and practice of parallel programming, pages 101�

110, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-397-6. doi:

http://doi.acm.org/10.1145/1504176.1504194.

[9] Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H.

Meng. Merge: a programming model for heterogeneous multi-core sys-

tems. In ASPLOS XIII: Proceedings of the 13th international confer-

ence on Architectural support for programming languages and operating

systems, pages 287�296, New York, NY, USA, 2008. ACM. ISBN 978-

1-59593-958-6. doi: http://doi.acm.org/10.1145/1346281.1346318.

[10] NVIDIA. NVIDIA CUDA Programming Guide 2.0. NVIDIA Corpora-

tion, 2008.

[11] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.

Stone, David B. Kirk, and Wen-mei W. Hwu. Optimization princi-

ples and application performance evaluation of a multithreaded GPU

using CUDA. In PPoPP '08 Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming, pages

73�82, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-7. doi:

httpdoi.acm.org10.11451345206.1345220.

[12] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Bagh-

sorkhi, Sain-Zee Ueng, John A. Stratton, and Wen-mei W. Hwu. Pro-

gram optimization space pruning for a multithreaded gpu. In CGO '08:

Proceedings of the sixth annual IEEE/ACM international symposium on

Code generation and optimization, pages 195�204, New York, NY, USA,

2008. ACM. ISBN 978-1-59593-978-4. doi: http://doi.acm.org/10.1145/

1356058.1356084.

[13] John Stratton, Sam Stone, and Wen mei Hwu. MCUDA: An e�cient im-

plementation of CUDA kernels for multi-core cpus. In 21st Annual Work-

14



shop on Languages and Compilers for Parallel Computing (LCPC'2008),

July 2008. URL http://www.gigascale.org/pubs/1328.html.

[14] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang,

Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and

Hong Wang. Exochi: architecture and programming environment for

a heterogeneous multi-core multithreaded system. In PLDI '07: Pro-

ceedings of the 2007 ACM SIGPLAN conference on Programming lan-

guage design and implementation, pages 156�166, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-633-2. doi: http://doi.acm.org/10.1145/

1250734.1250753.

15


