
Redesigning the IDE
Submitted in partial fulfilment of the

requirements of the Bachelor of Science
Honours degree in Computer Science

Rhodes University

Matthew van Cittert

10th November 2009



1

Acknowledgements go to my supervisor, Shaun Bangay, the members of
my project workgroup (VRSIG) and the Computer Science Department of
Rhodes University.

I also acknowledge the financial and technical support of this project of
Telkom SA, Comverse SA, Stortech, Tellabs, Amatole, Mars Technologies,
Bright Ideas Projects 39 and THRIP through the Telkom Centre of Excel-
lence at Rhodes University.



Chapter 1

Abstract

The design of many existing Integrated development environments (IDEs)
has been based on a modified text editor. This project looked at redesigning
this interface, to make code easier to write, navigate and understand. Predic-
tive and heuristic evaluations support this hypothesis, but the current design
requires the programmer to adopt a specific style.

2



Chapter 2

Research Question

2.1 Problem Statement

2.1.1 Existing IDEs and the lack of change

Integrated development environments (IDEs) are important tools. Yet de-
spite the rich feature set and ongoing development of IDEs, their underlying
design has not changed from that of a text editor. This project redesigns the
IDE to provide an interactive representation of code that is more suited to
programming than the enhanced text editor currently offered by IDEs. The
aim of this interface is to provide mechanisms and representations that make
it possible to more efficiently write, navigate and understand object-oriented
code than is possible with any existing interface.

2.1.2 Problem statement definitions

To clarify what is meant by the three core aims of the project (writing,
navigating and understanding), their definitions as used in the project are
given below.

Write Generation of code that achieves the aim for which it was intended.

3



CHAPTER 2. RESEARCH QUESTION 4

This includes the change or extension of code to meet new specifications
or expectations, and updating the rest of the system to be compatible
with the change. In the context of this project, this means creating a
class or a class member, such as a field.

Navigate Find existing code and display it in the visible work area of the
screen. In the context of this project, navigation means showing the
code for a class on the screen in the case of a traditional IDE, or showing
a class GUI on the screen in the case of the project interface.

Understand Comprehension of what a program or segment of code does,
how it goes about achieving this goal, and what the results, significance
and consequences of the piece of code are, by anyone who wishes to
understand how the code functions. In the context of this project,
this means how classes are related - which classes are derived from a
common ancestor class, and which classes contain instances of which
other classes as fields.

2.1.3 The need for change

Text is a good medium for expressing code. It is compact, easy to read and
quick to type. But the text editors used by many IDEs impose restrictions
and hindrances upon the user.

• The spread of code across numerous files requires the user to jump
between pages of code.

• Bulky comments and error handling code, which are irrelevant to sol-
ving the problem, are interspersed among lines of code that do contri-
bute to the solution. These comments and error handling blocks are
important to the understanding, debugging and operation of the code,
but obscure the underlying algorithm.



CHAPTER 2. RESEARCH QUESTION 5

• Code is viewed at a single level of detail.

Effective workarounds have been developed for many such issues.

• Summaries of the classes and methods in a project give information
and allow navigation among many files, as though they were a single
file.

• Tools, such as FPDoc, allow the user to integrate comments from sepa-
rate files and display them as hints while viewing the associated code.

• The uniform level of code detail is offset by programming language
design, such as reducing a list of instructions into a single function
identifier, or by innovations such as code folding.

But these IDE extensions are not always enough, or otherwise have avenues
for improvement. This project looks at the way code is represented, with
the aim of lessening these issues by changing the format in which code is
presented, rather than only adding increasingly complex features to the text
editors traditionally used.

2.1.4 Existing solutions

Existing text-based IDEs commonly offer a number of services. To make
code easier to write they may offer

• code generation from templates,

• code auto-completion,

• and support for code refactoring.

To make code easier to understand, they may offer

• tools to generate formatted documents from comments,



CHAPTER 2. RESEARCH QUESTION 6

• highlight parts of syntax, syntax errors or potential semantic errors
(such as uninitialised variables),

• and provide summaries of types and routines accompanied by iconic
aids to give extra information, such as visibility.

To make code easier to navigate, they may

• provide means to show references to an identifier,

• provide different views and summaries of types, routines and files,

• provide hyperlinks, bookmark facilities and shortcut keys to jump bet-
ween definitions and declarations,

• provide search and replace facilities,

• and allow operations to take place over multiple files, simulating one
large file.

To make code easier to read, text editors commonly graphically decorate
text.

• In the past, capitalisation was commonly used to differentiate keywords
from identifiers.

• Font style (bold, italics, underlined), background colour and foreground
colour are used for the same purpose, and to emphasise breakpoints or
the currently selected line (Figure 2.1 on page 8, Figure 2.2 on page 8).

• Icons, boxes and coloured lines are used to show warnings, information,
highlight syntax errors and show which lines of code have been edited
since the last save (Figure 2.1 on page 8, Figure 2.2 on page 8).

• Whitespace is used to achieve a two dimensional layout of otherwise
serial text. Usually this is just for readability, but in languages such as
Python it has been included as part of the syntax.



CHAPTER 2. RESEARCH QUESTION 7

• Although not yet commonly (if at all) included in programming text
editors, differences in font type and size are commonly used to different
parts of text - such as ordinary information from programming language
code. General text editors also commonly use columns, tables and lists
to spatially group or separate parts of text.

• Floating windows are used to give hints and meta-information about
code, such as comments. These windows may also be used to give
auto-completion options.

These techniques are still effective when editing individual methods, as has
been shown by the number of unsuccessful attempts to edit methods using
other representations. And added to the above points, visual programming
has again begun to make a reappearance in modern IDEs.

• Microsoft Visual Studio includes graphical representations of the classes
in a project, known as a class diagram view (Figure 2.3 on page 9).

• The 3D modelling tool Blender also provides graphical representations
of Python scripts (Figure 2.4 on page 10).

• A number of UML-based modelling tools, such as Rational Rose, are
capable of generating code from UML diagrams.



CHAPTER 2. RESEARCH QUESTION 8

Figure 2.1: Use of graphical decoration by Netbeans version 6.5. (i) Font
styles and colours used to emphasise and distinguish keywords, identifiers
and symbols. “String” underlined to indicate a hyperlink when Ctrl held
down and mouse moved over. Rectangle drawn around comments to indicate
folded code. (ii) Matching braces at mouse position highlighted with yel-
low. Number five surrounded by a red rectangle to emphasise newly typed
parameter. “doubleValue” in italics to emphasise edited function. (iii) “un-
usedResult” underlined by a grey wavy line (green when line not highlighted)
to indicate that it is never used and warn that the line is superfluous. (iv)
Red octogon containing an exclamation mark to draw attention to synax er-
ror. “abcd” underlined by a red wavy line to indicate that it is syntactically
incorrect. (vi) Currently selected line highlighted. (v) Squares containing
“+” or “-” to control and indicate whether code is folded. (vi) Floating text
box to give meta-information about code.

Figure 2.2: Use of graphical decoration used by Visual Studio 2008 Express
Edition. (i) Margin colours used to represent code added in the current
session. Green indicates that it has been saved, orange that it has not. (ii)
The square under the ’S’ of “SquareRoot” indicates extra options the IDE
may perform on the SquareRoot function. In this case the dialog expands
when clicked on to allow the IDE to auto-generate a stub function.



CHAPTER 2. RESEARCH QUESTION 9

Figure 2.3: An example of a class diagram in Vi-
sual Studio (from http://mariusbancila.ro/blog/wp-
content/uploads/2007/09/vs2008_classdesigner.png)



CHAPTER 2. RESEARCH QUESTION 10

Figure 2.4: Visual editing of a Python shader in Blender (version 2.48).

2.1.5 Room for improvement

2.1.5.1 Some advantages of text

Text is an effective representation when implementing routines and the acti-
ons that take place in an algorithm.

• It can be quickly typed

• It can be compact and concise

• The meanings of many distinct words have already been memorised,
whereas the same is not always true with colours or icons

• Blocks of text can be summarised as a single word or identifier (in the
case of functions)

• Text is widely used and supported, and so a number of tools and faci-
lities exist that make text simple to work with. Graphical decoration
of text and a large variety in fonts make text even easier to read.



CHAPTER 2. RESEARCH QUESTION 11

2.1.5.2 Some disadvantages of text

But text does have failings. There is no way to automatically adjust the
level of detail (or zoom in and out) with text. Code folding achieves a
fair approximation, and changing the font size is another (though not very
useful) option, but there is no way to dynamically fold code, gradually reduce
subsections to icons or ellipses, and so view more code at a higher level of
abstraction. This is possible with a text editor, but not ideal, and could
be better simulated by giving the underlying structure a graphical and two
dimensional basis.

Text is serial and this greatly reduces complexity when deciding where
to start and where to end reading. But this poses a problem when trying to
simultaneously view non-adjacent portions code. It is sometimes possible to
open multiple sub-windows and lay them out side by side. Often this requires
using external text editors (if the IDE allows only one instance to run at a
time, and especially if the code is in the same file which is then read-write
locked by the first IDE). This means forfeiting the advantages of the IDE
(syntax highlighting, auto-completion, class and method summaries) when
working from any but the primary window. Also as each window is given
focus, it covers over all other windows and complex juggling and scrolling
about is required to manage the multiple windows and lay them out in their
own space on the screen. This can be avoided by incorporating the use of
multiple windows into the underlying structure of the IDE.

A number of techniques are used to make code easier to find, such as text
search and summaries. But these mechanisms could be further improved by
using spatial awareness and memory as an aid to finding locations of interest,
and a greater use of visual cues such as colour or shape to tag currently
relevant information.



Chapter 3

Related Work

3.1 Introduction

3.1.1 Visual programming

Visual programming was a major field of study between the mid-eighties and
mid-nineties (author?) [10]. As computer hardware advanced, so did the
ability to render and display graphical content. The proponents of visual
programming hoped to harness this technology, and so advance the techni-
ques used to program computers from simple text to present more natural
methods. The aim of this endeavour was to find more effective represen-
tations to use in the translation between solutions and their programming
language encodings (author?) [2].

The field of visual programming encompasses a number of different areas
of research. Some researchers aim to produce graphical front-ends for existing
textual languages. Others create entirely new languages based on diagrams
and graphics. Some abandon textual encoding completely and spatially parse
pictures and graphics as code.

This project takes the former approach, as designing, writing, establishing
and maintaining a mainstream programming language is far out of the scope

12



CHAPTER 3. RELATED WORK 13

of this project. Instead the approach has been to use existing and mature
textual programming languages, and to build on these to investigate and
demonstrate how alternative representations may be beneficial.

3.1.2 Dataflow

A large number of visual programming languages and interfaces use a repre-
sentation known as dataflow. A dataflow diagram consists of a number of
nodes linked into one another, where nodes receive input, do some processing
and possibly produce output to send to other nodes. This is used to represent
functions, where each node is a routine and may in turn be defined by a num-
ber of other routines. The input and output of these routines is combined
to form a program. This has been used to model interaction with interfaces,
where the program moves between different states based on what the user in-
teracts with (such as Libero, available at http://legacy.imatix.com/html/libero/).
It is also commonly used in graphical art software, where nodes perform dif-
ferent transformations to an image, such as adding colour, distorting the
image, applying a mask or output the image to file (for example MapZone,
available at http://www.mapzoneeditor.com/).

This project has not chosen this route for a number of reasons. First, this
representation is fairly common, with a number of systems based on dataflow,
and it is unlikely that it would have yielded much that is new. Secondly, at
the level of routine implementation text works remarkably well. It is very
compact, textual characters are easy to identify, it is possible to type very
quickly, text is well supported by existing software and people have a lot of
experience using text, it is simple (serial) and so easy to read. But to express
a large amount of detail with graphical representations can result in a bulky,
difficult to read diagrams, where each change may require rearranging the
entire scene to make it readable. In more complex diagrams, it may difficult
to find where to start and where to end.



CHAPTER 3. RELATED WORK 14

3.1.3 Project focus

Instead this project focuses on areas where text does not do quite so well -
notably that it is not as easily scalable and the serial format is in some cases
too restrictive. As such, this project provides a high level front-end interface
representing the data structures of existing textual languages, but leaves the
low level implementation of algorithms as text. This excludes much of the
research in visual programming, including graphical representation of algo-
rithms, derivation and parsing of new graphical languages and the use of
visual programming in education. Despite this, some of these papers have
presented interesting questions, arguments or observations relevant to the
current study, some of which are presented here. Other relevant papers have
focused on issues such as how users perceive and interact with programming
languages, considerations important when designing interfaces to program-
ming languages and deciding on means of evaluating such interfaces

3.2 Contributions from existing systems

3.2.1 Introduction

Before designing a system it is important to look at what has gone before, to
avoid pitfalls and wasteful reinvention, and to gain inspiration from the ideas
of others. A number of visual programming systems have been developed
and discussed in the literature. These have introduced a number of different
ideas and been designed to fulfill a number of different aims. Some are front-
ends for textual languages, some are languages designed to take advantage of
graphical representations. Some are meant to make programming easier and
more accessible to novices or non-programmers, some service specialised fields
such as audio or electronics, some focus on data structures while others focus
on algorithms. This section introduces some of the ideas and arguments that
factored into the design of various systems, and some comments or criticisms



CHAPTER 3. RELATED WORK 15

of various ideas and design decisions.

3.2.2 Write

3.2.2.1 The value of text and graphics

One of the data flow oriented visual programming systems that has been
created is Pict. Pict was designed to run without any use of text or the
keyboard, the paper’s unsubstantiated claim having been that graphics are
inherently better and easier to process than text (author?) [5]. A more
realistic view is posed by (author?) [6], namely that text and diagrams
each have different strengths and weaknesses.But a valid point raised by
(author?) [5] is that graphical symbols may be used to compress a lengthy
textual description into a compact graphic. But (author?) [11] has raised
the equally important point that the interpretive value of images is not always
beneficial, and can lead to ambiguity. With this in mind, it is possible to
use graphics effectively to express large amounts of information in a limited
space, but that the meaning of such graphics must be clearly defined to avoid
ambiguous interpretation.

3.2.2.2 Importance of evaluation (author?) [3]

Tinkertoy is a graphical data flow oriented front-end for Lisp. An important
observation made was that users will not work with anything more difficult
to use than what they currently have. This highlights the importance of eva-
luation and comparison with existing means of programming, to determine
whether improvements have been made. This is conducted in the evaluation
section.

3.2.2.3 Role of an interface to code

A valuable contribution arising from the added interface between the user
and code, is that systems such as Tinkertoy ensure that syntax mistakes can



CHAPTER 3. RELATED WORK 16

never occur. Tinkertoy uses the powerful concept of context-sensitive menus
attached to icons, meaning that the interface allows only legitimate actions
to take place (author?) [3].

A criticism of both ThinkPad and Tinkertoy is raised by (author?) [12].
This paper claims that visual front-ends should completely hide the textual
representations they abstract. But this seems unnecessary for two reasons.
Firstly, users experienced with textual languages could use the textual repre-
sentations as guides. Secondly, as each representation may be better or worse
at expressing different concepts (author?) [6], the textual representations
may be helpful where graphical representations are ambiguous, complicated
or do not sufficiently emphasise the required information.

3.2.3 Navigate

An interesting idea raised by (author?) [2] is that graphical representations
should act in a way with which users are familiar. For instance, double
clicking on a class should open a window to view its contents, analogous
to double clicking on an operating system folder. This metaphor could be
extended in a number of ways. For example, file extension could be used
to represent variable or method return type, and shortcuts used as pointers.
Read and write access rights could represent the availability of get or set
methods. Likewise, these virtual folders could be dragged, copied or renamed
using the same shortcut keys or techniques used on operating system folders.
But as this project focuses on higher level structures and abstractions, these
method level ideas have not been implemented.

3.2.4 Understand

3.2.4.1 Interpretation

(author?) [11] has given a comprehensive overview of the issues relating to
graphical programming and the setbacks that have prevented its dominance



CHAPTER 3. RELATED WORK 17

over textual programming. He poses that text is more suited to programming,
as programmers need a precise, almost mathematical, notation to unambi-
guously instruct the computer how to go about a task. This is opposed to
graphics, whose ability to convey multiple and complex concepts using limi-
ted space and complexity is due to the interpretation afforded by pictures.
A problem with graphics is then the issue of ambiguity, that different people
may interpret the same picture in different ways. This is valid but ignores an
important issue. Both text and diagrams may be susceptible to ambiguity
and to interpretation according to the context in which they are used, for
instance poetry, art or satire. To say that graphics are expressive only be-
cause of the number of ways of interpreting the same image, and so must be
inherently ambiguous to be of any use, is misleading. Both text and graphics
may be clear or ambiguous depending on the rules governing the language
or diagram. The words used in programming languages are restricted and
strictly defined for that language. In the same way unfettered graphics are
open to interpretation. To use graphics in programming, the images would
likewise need to be restricted and their usage and meaning strictly defined.
But some problems or ideas are better expressed with the structural freedom
of graphics, and others with the descriptive properties of text. Yet other
problems or ideas require ambiguous interpretation (though not as likely for
the cause of programming), but this is neither a property only of graphics
nor the only property of graphics.

3.2.4.2 Visual Cues

An important part of programming emphasised by (author?) [11] is that
of layout, termed secondary notation. The readability of code is greatly
enhanced or crippled by the appropriate or inappropriate use of layout. In-
dentation, spaces and conventions all help convey the meaning of textual
code and was found by (author?) [11] to be a major distinguishing factor
between novice and experienced programmers. With graphical programming



CHAPTER 3. RELATED WORK 18

layout becomes an even greater issue due to the departure from text to a
greater reliance on visual cues. For a graphical programming language to
ease interpretation, focus would need to given to encouraging or enforcing a
logical layout of graphics.

3.2.4.3 Graphics and expertise

A claim made by (author?) [5] is that visual systems are suitable only
while learning to program, and that users should make the transition to
textual programming as they gain expertise. This is in contradiction to
the conclusion drawn by (author?) [11] that the extra room for expression
provided by visual languages makes their use more complex for novices, and
that expertise is required to use this room for expression in a beneficial
way. Despite (author?) [5]’s view, this project intends to address some of
the issues of experienced programmers using ideas from visual programming,
with the view that only a relatively short period of a programmer’s career is
spent learning to program.

3.2.4.4 Graphical debugging and execution (author?) [5]

An interesting idea demostrated in Pict is that of graphical debugging. This
allows the user to watch their code execute, as the sections of code currently
under executed are animated by the system. Added to this, Pict can run
incomplete sections of code, to allow design and testing without writing a full
program. But as this project focuses on higher level structure, investigating
these ideas was out of the scope of the current project.

3.2.4.5 Issues with graphical representation

A point highlighted in (author?) [3] is that visual representations of lan-
guages may become very awkward when over complex. It is this issue that
features partly in the decision to leave routine level implementation of the



CHAPTER 3. RELATED WORK 19

current system as text.
Another issue is one highlighted by ThinkPad, a data structure oriented

front-end developed for Prolog. In ThinkPad, users may choose between a
circle or a rectangle to represent a data structure. This would allow program-
mers to use different styles for different programs, and the lack of consistency
could make reading such representations difficult (author?) [6].

3.2.4.6 Icons

Prograph is a data flow oriented system. In a paper written on Prograph
((author?) [2]), it is claimed that one of the advantages of graphical repre-
sentation is that, for example, a variable of a bicycle could be represented
as a bicycle. But this recalls an argument by (author?) [11] about inter-
pretation - all too often such representations are more easily understood by
reading the textual captions. Other issues involved are the time, inclination
and secondary tools required to draw the pictures for the multitude of, so-
metimes very temporary, variables appearing in a typical project. Finally,
not all variables have an associated graphical representation. To avoid these
issues, it may be better to use a limited set of commonly used graphics, the
meaning of which users are required to learn.

3.3 Evaluation

3.3.1 Introduction (author?) [4, 1, 7]

Four methods of evaluation are available in HCI. These are user studies,
heuristic evaluations, cognitive walkthroughs and predictive evaluation. Tra-
ditionally these techniques are used to evaluate and improve upon a single
interface, but in this case their use will be expanded to compare interfa-
ces, and so evaluate the successes and failings of the project interface over
traditional IDEs.



CHAPTER 3. RELATED WORK 20

User studies are considered one of the most important studies when eva-
luating a single interface, as it exposes problems that result in the field with
real end users, rather than relying on predictions and hypotheses. However,
a user study is less useful when comparing interfaces. It also has a number
of drawbacks which proved insurmountable in this project and so was not
used. These points are discussed below.

A heuristic evaluation is a discussion of guidelines, set out in the litera-
ture, which work as a checklist for evaluating the design of an interface. Such
evaluations are conducted below on both tradition IDEs and on the project
interface, to evaluate how each interface fares and highlight where, and where
not, the project interface improves upon that which already exists.

A cognitive walkthrough is a test which relies on a number of scenarios,
and evaluates how closely the solution to a real world problem maps to a
description in some other format, such as a computer language. This eva-
luation helps to highlight distracting and unwanted steps that are required
by the description format but are irrelevant to the problem being solved. As
the interface is an extension of an existing language, and evaluation of the
underlying language is not part of this project, this technique is less useful to
evaluation of the project interface. Where it could feature is highlighting how
distracting format-specific details are automated, and so removed or hidden
from the user’s perspective, and so mapping between the problem and the
encoding is improved by the project interface. But due to time constraints,
a cognitive walkthrough was not conducted.

Predictive evaluation is an objective form of evaluating the details of an
interface. This again relies on a set of scenarios (which must themselves
be guarded from subjectivity), decomposed into a sequence of basics steps
formulated in the literature. Each step has an associated time value, such
as the time taken to press a key or click a mouse. The total time taken to
achieve the same goal on different interfaces is used to assess the efficiency
of each interface for different tasks. For this project, these scenarios consist



CHAPTER 3. RELATED WORK 21

of various programming tasks which the author believes to be common. The
efficiency predicted for traditional IDEs is compared to that of the project
interface, and is used to evaluate the project interface’s success.

Select of these evaluations have been used to compare traditional IDEs
and the project interface, and so evaluate where the project has made im-
provements over traditional IDEs, and where not. They have also been used
to uncover other problems and potential improvements to both sets of in-
terfaces. Rather than comparing a single IDE or the project interface as it
stands, comparison has been made between features of the two that exist in
at least one traditional IDE, or that have been considered for development
in the project interface but might not yet have been implemented. If a dis-
cussed feature of the project interface has not yet been implemented, it has
be noted as such.

3.3.2 User study (author?) [4]

In a user study, testers from the target user group are set tasks demonstrating
different features of the interface. Their use of the interface is observed to
uncover where difficulty or confusion arise, where mistakes are made and
where improvements could be made. These results and feedback from the user
are used to identify and improve on these flaws. For a comparative evaluation
between two interfaces, such as the project interface and traditional IDEs,
timings could be taken to provide a measure of comparison.

The advantage of a user study is that it is tested by real users - the issues
uncovered are those that would be encountered under normal use, rather than
predicted or hypothesised issues that might never arise in practice. It may
also uncover issues that were missed during the other forms of evaluation.
But there are a number of issues that made a user study infeasible for this
project:

• Lack of testers: According to (author?) [4], a minimum of ten users
are required in a user study to provide statistical significance, although



CHAPTER 3. RELATED WORK 22

some researches claim only three are needed. Added to this, a number
of users would be required for preliminary runs used to design the
experiments. These results would be discarded and the testers could
not be reused due to the resulting bias of having performed the tasks
before. This number of testers were not available.

• Time: Developing, testing and collating suitable tests and tasks used in
test scenarios would take a significant amount of time, which was not
available. Participating in tests would also require a lot of time from the
participants, which was also not available. This issue might be possible
to circumvent if the participants were remunerated in some way, but
this could lead to bias as the testers would be positively predisposed
towards the test.

• Bias: User testing is potentially very subjective. Besides timings, re-
sults rely on questionnaires based on user opinion. This is useful in
finding flaws and room for improvement, but less useful for compara-
tive evaluation. The project interface would be novel to the use and
may bias opinion either way. Order of testing and discrepancies and
similarities between the test scenarios would be an issue. Users might
be more capable when completing the second test due to their experi-
ences in the first. Users might find the difficulty of different tasks to
be unbalanced, and the affect of the interface would be skewed due to
these results. There may also be bias due to the degree of familiarity
or aversion to programming language or IDE used. Added to this, the
user study would necessarily test novices of the system, whereas it the
ease of use to experienced users that is more important (users are only
novices for a short period of their use of the system). Correcting for
bias is non-trivial, and would require assessing the predisposition of
the user and using this information to temper the results. The order
of tasks, and assignment of tasks to a traditional IDE or the project



CHAPTER 3. RELATED WORK 23

interface could be inverted between groups of testers, but this would
again require a large number of testers and a lot of time to collate and
analyse. As an example of these issues,(author?) [5] evaluated Pict
using an opinion survey. A number of issues about these tests were
raised, such as the role novelty of the system may have had, and the
presence of Pict’s author during testing.

• Redundancy: The same comparative results (timings) can be predicted
objectively using a predictive evaluation.

3.3.3 Heuristic evaluation

A heuristic evaluation is essentially a discussion of a set of guidelines, set
out in the literature. These guidelines serve as a checklist of areas where
users may have difficulty, of pitfalls that should be avoided and of additions
that serve to improve interfaces. These are used to identify problems with
the interface, and is especially useful in identifying discreet issues which a
user may find a hindrance but not consciously notice, or may be unable to
describe. They also set out the path towards a good interface, uncovering
areas which might not be an active problem, but could yet be improved upon.

These guidelines are to compare two interfaces - the traditional IDE and
the interface developed in the course of this project. There are a number
of sources for these guidelines. Many of these guidelines are too general,
too specific, or are otherwise not applicable to the current evaluation. A
set of heuristics by Gerhardt-Powals, as given in (author?) [4] have been
used in this evaluation, as there are a manageable number of them and they
discuss issues related to the aims of the project. A second set of heuristics
by (author?) [6] has been chosen for this project, as it is aimed specifically
at visual programming interfaces.



CHAPTER 3. RELATED WORK 24

3.3.4 Predictive evaluation

3.3.4.1 Introduction (author?) [8, 7]

Predictive evaluation allows the analyser to predict the performance and
efficiency of interfaces when used to perform different tasks. The advantage
of predictive evaluation models is that they can be conducted before the
interface is complete. They do not require training in psychology in order
to conduct. Importantly the results they yield are objective, and the steps
taken are open to criticism and correction. The restriction of these models
is that they predict only error-free expert use. But as this system assumes
expert use, this is an advantage.

The most mature of these evaluation models is the GOMS family, which is
an acronym for Goals, Operators, Methods and Selection rules. The GOMS
model allows the user to break down goals and tasks into a set of subtasks.
These subtasks consist of pre-defined operators. Existing research on these
operators allows the analyser to make predictions about the tasks comprising
them.

A number of different forms of GOMS evaluations are available. Some
are more complex than others. With this complexity come extra predictive
abilities, such as predictions of the learning curve and of errors that are li-
kely to occur. The simplest GOMS model is Keystroke-Level Model GOMS
(KLM-GOMS). This satisfies the most important goal of the evaluation, na-
mely predicting the traditional and project interfaces’ efficiencies. This is
the model used in the study, as the benefits of using one of the more com-
plex models are low and the increased complexity gives rise to an increased
probability of errors.

The process of conducting a KLM-GOMS evaluation consists of identify-
ing the main tasks in the system. These are then repeatedly broken down
into subtasks, which in turn consist of operators or more subtasks. Finally,
the timings for each operator are used to calculate the time taken to execute



CHAPTER 3. RELATED WORK 25

each task.

3.3.4.2 Operators

KLM-GOMS consists of a number of operators and their associated timings.
The recommended times for each operator were used in the study. These are
repeated below, as taken from (author?) [9], but with comments derived
from (author?) [1]. The times given in (author?) [9] differ slightly from
those in (author?) [1], but (author?) [9] is far more recent and, although
the report was not published, the author is a major contributor to the field
of GOMS modelling. The shorthand symbol used to represent each operator
is given in brackets:

• Pressing or depressing the mouse button (B) - the recommended time
is 0.1 seconds.

– It then follows that a click is BB, and double clicking is BBBB,
also written as B(4).

– Separate times are not given for rolling the mouse wheel. This
action is assumed also to amount to a B.

– Where the number of presses or scrolls are case dependant, assu-
med values are given to simplify the analysis.

• Homing (moving hands to) a device, in this case the mouse or keyboard
(H) - the recommend time is 0.4 seconds.

– As a simplification, it was assumed that either the mouse or the
keyboard were used. But in some cases a user could have one hand
on the mouse and the other on the keyboard.

• Pressing a key (K) - the recommended time is 0.28 seconds.



CHAPTER 3. RELATED WORK 26

– K is not divided into a press and depress, as is the case with a
mouse button press.

– For variable string lengths, assumed values are given to simplify
the analysis.

• Mentally preparing for an action (M) - the recommended time is 1.2
seconds.

– This time is not accurate if, for instance, the user needs to think
up an name or perform some other creative activity. Such special
cases cannot be accurately predicted, and as a simplification such
cases were ignored.

• Point or move the mouse cursor onto a target (P) - the recommended
time is 1.1 seconds.

– The times taken when pointing or steering can be calculated using
the equations known as Fitt’s Law and the Steering Law respec-
tively. These calculations take into account the size and distance
of the targets. This information is partly available, but differs from
operating system to operating system, depends on the widget set
settings, and depend on the screen resolution. As a simplifica-
tion, both steering and pointing were assumed to have the default
value.

• System response time (R) and wait time (W) - there is no recommended
time.

– These times must be determined on a case to case basis. In the
case of the response time, it is assumed that the platforms on
which the systems operates are fast enough to run without any



CHAPTER 3. RELATED WORK 27

delays. But wait time is significant when scrolling over long di-
stances, where the user must wait to arrive at the destination.
As a simplification, it is assumed that such navigation techniques
are used only to reach adjacent portions of the workspace, and so
require no wait time. Fortunately there are alternative navigation
techniques for both the traditional and project interfaces which
do not require waiting and have efficiency times close enough to
make them viable substitutes.

3.3.4.3 Rules

A number of rules are given which decide when and where operators are
required. These rules, taken from (author?) [1], are explained in the context
of this evaluation below:

• Rule 0: Insert M’s in front of P’s, B’s and K’s. For example pointing
the mouse and depressing the mouse button would at first glance be
MPMB.

• Rule 1: If one operator fully anticipates the next (there is no need to
think about what to do next), then remove the M between them. For
example the action above would then be MPB.

• Rule 2: If the a string of key presses is part of the same cognitive unit
(i.e. there is no need to think about which letter comes next, as in the
case of a command name), then delete all the M’s except for the initial
one. For example “open” would go from MKMKMKMK to MKKKK,
also written as MK(4).

• Rule 3: If K is a redundant terminator, for example a terminating
return key press immediately following another terminating return key
press, then remove the M in front of it.



CHAPTER 3. RELATED WORK 28

• Rule 4: If K terminated a constant string, for example a return key
press after a reserved word, then remove the M in front of it. But if it
comes after a variable string, for example a return key press after an
identifier, then do not remove the M.

3.4 Summary

Numerous examples of visual programming software for audio programming,
electronic circuit design, education and graphical design applications appear
frequently in a web search on the topic. But examples of visual program-
ming concepts in mainstream use for general programming are more difficult
to uncover. A number of purely visual languages and interfaces have been
developed in the past, but now largely exist only in the literature. Prograph
is one of the rare examples that has survived, now marketed commercially
as Marten (http://www.andescotia.com/) and available for MacOS.

Despite the lack of mainstream success of these systems, their develop-
ment nonetheless generated many interesting ideas from which this project
has drawn inspiration. But before designing such a system, it is important to
have an appreciation of the issues involved, and a set of goals towards which
development is aimed. Insightful papers such as (author?) [6] and (aut-
hor?) [11] provide many arguments and interesting points for consideration.
Constantly aiming toward these goals, and carefully avoiding the mistakes
and pitfalls of the past, is important when the aim is to yield more successful
techniques of programming than those currently available.

A number of methods of evaluation are available, including user studies,
heuristic evaluations, cognitive walkthroughs and predictive evaluations. Of
these, predictive and heuristic evaluations have been used to evaluate the
project. The predictive evaluation provides numerical results to evaluate the
interfaces’ efficiencies, while the heuristics are used to evaluate and discuss
the more abstract components of the interface.



Chapter 4

Design

4.1 Introduction

4.1.1 Components

This project provides an interface to represent code in a format which is easier
to write, navigate and understand than current textual representations. This
is achieved by using a number of components in conjunction with one another.
These components may work individually or in combination, each addressing
part of the above aims. An outline of these components and how they satisfy
the project aims is given below.

4.1.2 Design outline

4.1.2.1 Writing

• Creating data structures

– Class trees

• Editing data structures

– Text windows

29



CHAPTER 4. DESIGN 30

4.1.2.2 Navigating

• Defining the viewspace

– Scrollwindow

– Workspace

• Moving the viewspace

– Zoom

– Minimap

– Scrolling

4.1.2.3 Understanding

• Explaining function

– Code tour

• Showing associations

– Class trees

• Summarising and abstracting information

– Minimap

– Zoom

• Hiding information

– Scrollwindow

– Scrolling

– Text windows



CHAPTER 4. DESIGN 31

4.2 Components

4.2.1 Introduction

This project consists of a number of components, each of which contribu-
tes to achieving the project aims. This section introduces the components,
what they are, what they do and how they contribute to the system. Some
definitions are used frequently in the text below:

viewspace the portion of the workspace currently displayed on the screen.

workspace the entire project represented in two dimensions.

4.2.2 Workspace

4.2.2.1 Introduction

The workspace consists of the class trees of the entire project, arranged on a
two dimensional plane. The user then decides which portion of the workspace
to view and at what level of detail.

4.2.2.2 Contributions to navigation

The workspace merges the information that would usually be presented in
multiple files, and presents it on a single plane. This helps avoid user disori-
entation from jumping to and from different files. As it is in two dimensions,
the user can use his spatial awareness to arrange and find parts of the pro-
ject, for example arrange classes according to their function or retrieving a
class last seen in the top right corner.



CHAPTER 4. DESIGN 32

4.2.3 Scrolling

4.2.3.1 Introduction

Scrolling is the ability to move the viewspace, namely the portion of the
workspace currently displayed on the screen.

4.2.3.2 Contributions to navigation

Scrolling allows the user to maintain his level of detail, but to view different
parts of the project. For example, the user may wish to view the details of
the classes on which he is working, but the classes do not fit together in the
viewspace. He can then scroll from one class to the other to bring each into
the viewspace as it is needed.

4.2.3.3 Contributions to understanding

Scrolling allows the move into the viewspace the portions of the project
currently relevant, and so reduce the amount of detail on the screen.

4.2.4 Class trees

4.2.4.1 Introduction

A class tree is a graphical representations of a hierarchy of classes (Figure 4.1
on page 33). This consists of a number of nodes (graphical representations
of classes). After these have been zoomed in past a certain threshold, they
display their internal details (4.2).

4.2.4.2 Contributions to writing

The trees automate a large amount of the workload that would normally
be handled manually by the programmer. This avoids the user having to
manage files, input keywords or enter the name of the parent class.



CHAPTER 4. DESIGN 33

4.2.4.3 Contributions to understanding

The trees show associations between classes. This is achieved by highlighting
any classes which are contained as fields in the currently selected class. The
trees also manage comments by displaying the comments associated with the
selected class in a separate text window (4.3).

Figure 4.1: A class tree.

Figure 4.2: One of the class nodes zoomed in and showing the internal details.



CHAPTER 4. DESIGN 34

Figure 4.3: The highlighted class node (top node, orange) contains fields
which are instance of the yellow highlighted nodes (two bottom right nodes).
By selecting the class node, any comments associated with the node are also
shown.

4.2.5 Zoom

4.2.5.1 Introduction

Zooming is the animated scaling of objects, to allow the user to see an over-
view of the entire project or a detailed view of only a portion. For example,
4.2 is more zoomed in than 4.1.

4.2.5.2 Contributions to navigation

Zooming aids navigation by allowing the user to zoom out until their desti-
nation fits within the viewspace. From there they can zoom in on their desti-
nation. By allowing the user to fit more of the project inside the viewspace,
the user can determine the spatial relationships between different structures.

4.2.5.3 Contributions to understanding

Zooming allows the user to view information at the level of detail currently
desired. They may either view a summary of a large portion of the project,



CHAPTER 4. DESIGN 35

or the details of a small portion of the project.

4.2.6 Text windows

4.2.6.1 Introduction

Text windows are moveable text boxes used to display code, comments or
descriptions. An example is the comment box in 4.3.

4.2.6.2 Contributions to writing and navigation

Text windows are spatially disjoint and can be freely moved around, as oppo-
sed to text which is serial an cannot be moved out of sequence. This allows
the user to drag different text boxes into the proximity of one another, for
example if the user wishes to work one three different methods. This avoids
the necessity of jump to and from different files.

4.2.6.3 Contributions to navigation

As the details of code, such as comments or method implementation, are con-
tained in text windows, the user can choose to show only the text currently
relevant, and hide all other text windows. As the text boxes may be moved
around, the user can spatially arrange the text boxes in the viewspace accor-
ding to his own method of grouping, such as according to their contents or
current priority.

4.2.7 Minimap

4.2.7.1 Introduction

The minimap (4.4) gives a second and higher level view of project. This
allows the user to get an abstract overview of the project from the minimap,
while at the same time working on a more detailed portion of the workspace
in the scrollwindow.



CHAPTER 4. DESIGN 36

4.2.7.2 Contributions to navigation

The summarised overview of the minimap allows the user to know where
they are in relation to the rest of the project, providing orientation. It also
provides coarse navigation from anywhere to anywhere else.

4.2.7.3 Contributions to understanding

The minimap gives an overview of the spatial relationships between objects
on the workspace. This may aid understanding if the user has attached any
meaning to these relationships, such as grouping class trees by function.

Figure 4.4: The minimap. (i) Outside of the project. (ii) The workspace.
(iii) The viewspace. (iv) An object on the workspace (in this case a class
tree).

4.2.8 Code tour

4.2.8.1 Introduction

A number of tools exist to help document code. Often, these tools parse
code and extract text within special documentation code blocks. These com-



CHAPTER 4. DESIGN 37

ments are then formatted and presented in html or pdf documents. In some
IDEs, these comments are displayed in a hint when the mouse hovers over
a relevant keyword - and instance of the class or the use of a function. So-
metimes accompanying diagrams are provided to illustrate the structure and
relationships between parts of the project.

The code tour attempts to improve on these mechanisms by providing a
more interactive and integrated means of documenting code. The code tour
visits a list of destinations or waypoints, such as the position of a class or class
tree, which can be visited in any order. At each waypoint, a predetermined
action occurs, such as displaying a textual explanation, a diagram or an
animation. This is used to explain to the viewer the function of the code.

4.2.8.2 Contributions to understanding

The code tour allows the documentor to associate explanations with the code
itself, rather than in separate documents referring to the code. It also allows
more interaction between the user, documentation and code - such as viewing
only an introduction to each section of the tour, or viewing on sections of
interest in detail, or using the code tour to write a program step by step as
part of a tutorial.

4.2.9 Scrollwindow

4.2.9.1 Introduction

The scrollwindow (4.5) contains the viewspace, and allows the user to scroll
relative to their current position, such as up, down, left or right.

4.2.9.2 Contributions to navigation

The scrollwindow allows for fine grain navigation, relative to the current
position. This is opposed to the minimap, which navigates at a higher level



CHAPTER 4. DESIGN 38

of abstraction and can jump from and to anywhere. This is useful for visiting
portions of the project adjacent to the current position.

4.2.9.3 Contributions to understanding

The scrollwindow display the details, as opposed to the minimap which dis-
plays only an overview.

Figure 4.5: The scrollwindow. (i) When the mouse moves over the border,
the scrollwindow scrolls in the associated direction. (ii) The workspace. (iii)
A class tree.

4.3 Summary

The above components form the redesigned interface used to address the
shortfalls of the traditional IDE. How these components function is given in
more detail in the next section, on implementation.



Chapter 5

Implementation

5.1 Introduction

5.2 Tools

A number of mature tools, IDEs and libraries are available to aid GUI deve-
lopment. These include the C++ toolkit QT, the Java IDEs Netbeans and
Eclipse, the C++/C#/Visual Basic IDE Visual Studio and the Pascal IDEs
Delphi and Lazarus. Although the project would have been possible with
any of the above, the Lazarus IDE was chosen due to the tight integration
and support for GUI development provided by the IDE.

5.3 Project interface

The aim when implementing the interface was to provide a number pluggable
utility classes, and combining these to add services, such as zooming, moving
or scrolling, to the system components.

39



CHAPTER 5. IMPLEMENTATION 40

5.3.1 Utility classes

These classes perform a large amount of the work of the other classes. These
consist of:

Notifier This class provides communication between classes, by notifying
other classes of some change or event. For example, when the scale
changes, the bounds of all affected controls must be resized. When the
scrollwindow scrolls, other components such as the minimap need to
be updated.

Scalers These classes provides scaling for other classes. For instance a scaler
may be used to maintain the bounds of a control according to some scale
value, or a list of these scalers may be used to simulate scaling of all
the controls in a window.

Mover This class manages moving controls around the screen according to
mouse movements. Classes using the mover tell it when to activate
or deactivate, and the current position of the mouse. The mover then
calculates the new position of the control and moves it there.

Resizer This class attaches and manages resize handles to a control. When
these handles are moved, the resizer determines the new bounds of the
control and resizes it.

ScrollPlugin This class uses a given position and destination to determine
which direction to move a control, then moves the control in the cal-
culated direction whenever a Timer fires Alternately it can use a list
of waypoints to determine the destination, and fire an event when the
destination is reached.

GlobalData These objects contain data shared amongst other controls, and
use Notifiers to communicate with other objects when this data is chan-
ged - for example the default colour or how a control should react when



CHAPTER 5. IMPLEMENTATION 41

interacted with by the user. This allows the user to change the display
and behaviour of various classes from a central point.

BoundsManager This object clamps values between fixed or calculated
bounds. This is used by a control to determine where it is legal or
illegal to move.

5.3.2 Managing state

These classes managing the transition of controls from state to state ac-
cording to the way the user interacts with them, and changes the display
according to the state.

ControlState This class determines holds the current state of a control.
When the user interacts with the control, this is relayed to the Con-
trolState which decides whether the interaction is legal and how it
affects the current state.

Painters These classes draw on other controls. A subset of these classes
use the programs state, as contained in the ControlState object, to
determine what to draw on the control - for example what colour or
which image to display.

BlankControls These controls do not perform any of their own state or
display management, but defer these to ControlState and Painter ob-
jects.

5.3.3 Program structure

These classes are used to represent the project code.

ClassTreeGUI This control uses a basic tree structure to determine what
classes are in the tree and where. The TreePlotter is used to arrange
the nodes of this tree spatially.



CHAPTER 5. IMPLEMENTATION 42

TreeNodeGUI This control consists of a number of two parts. The borders
which determine whether to add a child, left sibling or right sibling. The
central ClassGUI is used to graphical represent the class contained at
a node.

ClassGUI This control has a references to the details of the code it repres-
ents. When the ClassGUI’s scale is shifted past a certain threshold, it
shows or hides a graphical representation of the code.

TreePlotter This class takes a tree and a number of parameters, such as
the output tree’s width, and determines where each node will belongs
spatially.

5.3.4 System components

These are the core components of the system not discussed above.

TextWindow This control has a text box to display a string, and uses the
utilities classes to resize and move.

Minimap This class uses the utility classes above to manage scaling and
scrolling. It scans a given panel and determines where to place pla-
ceholder controls to represent the panels contents. For example, the
minimap scans the workspace to determine the position of the Class-
TreeGUIs.

ScrollWindow This class the utility classes to manage scrolling and scaling
of a given control, which acts as the workspace.

CodeTour This is achieved through the ScrollWindow and the ScrollPlugin.

WorkSpace This may be any control the user decides, preferably one that
can contain other controls.



CHAPTER 5. IMPLEMENTATION 43

LayoutManager This class calculates where new controls should be placed
on the workspace, relative to some calling control. At present this just
places the new control besides the calling control.

SystemInterface This class manages the rest of the system, such as choo-
sing a TextWindow display comments or a LayoutManager to place a
control.



Chapter 6

Evaluation

6.1 Heuristic evaluation

6.1.1 Introduction

As mentioned above, heuristic evaluations are used to discuss the components
of the system, and are the only evaluation used for the more abstract aim
of improving on understanding. Given below are guidelines drawn from two
sources. The first, from (author?) [4], are general HCI guidelines that ap-
ply to this project. The second, from (author?) [6], are guidelines aimed
specifically at visual programming systems.

6.1.2 Write

6.1.2.1 Automate unwanted workload (author?) [4]

The project interface manages and automates code generation and file ma-
nagement, whereas on a traditional IDE these are mostly manual, although
with the help of autocomplete, wizards and templates.

44



CHAPTER 6. EVALUATION 45

6.1.2.2 Style of development(author?) [6]

Not all programmers are the same. Not all projects are the some. Some
users or projects are more disposed to top-down editing, others to bottom-
up editing, and there will more than likely be a mixture of both.

When designing the interface, users should not be constrained to a pre-
defined style. Neither should they be hindered from changing styles. Ideally,
both top-down and bottom-up editing should be possible from the same view,
to avoid the user having to re-orient himself at every switch. As shown in
the predictive evaluation section, this interface does offer some bias by better
supporting some styles over others. But the user may switch between the
interface and traditional textual code to avoid these restrictions.

6.1.2.3 Code reuse(author?) [6]

Programmers often reuse old code, possibly modifying it in some way. Code
is copied and modified by users attempting to learn from an example, or
using it as base for further development.

The interface should allow users to import, export, copy, integrate and
remove portions of code with minimal hassle. These operations could be
achieved using drag and drop techniques, but are out of the scope of the
current project. Also, allowing the user to interact with the code at different
levels, such as entire classes or methods, should improve over the character
level text manipulation provided by most text editors.

6.1.2.4 Workspace(author?) [6]

Programmers generally write in small spurts, iteratively writing a bit here
and something else there, then combining it all together again. It may be
a hindrance to users if they have to flip between multiple pages during this
process. Rather the window or workspace needs to be large enough to allow
the user to jump between different parts of the project. Alternatively, they



CHAPTER 6. EVALUATION 46

should be able to bring the different pieces together so that they fit into the
limited workspace. A similar situation arises where users search or browse
information, such as to check dependencies make comparisons.

Again, a workspace larger than the screen addresses partially addresses
this issue. But it may also be beneficial to create temporary mini-workspaces,
where users can add or remove different views and components, then either
delete or store this assembly for later reference. But these ideas have not
been implemented.

6.1.2.5 Debugging program fragments(author?) [6]

To avoid bugs, programs are often written progressively by writing a small
fragment, then testing it. Likewise, when debugging code is often pruned into
small segments by commenting out surrounding code, to isolate the faulty
piece of code.

As debugging is a major part of programming, it is important for the
interface to facilitate this process. This could be aided by making debugging
simpler, such as commenting out entire structures at a click or automati-
cally commenting out all dependant code as well. Systems such as Pict
(author?) [5] allowed the programmer to interactively and visually debug a
program, and to run incomplete sections of code which halt when they run
out of code to execute. Similar facilities may be replicated by integrating
the environment with a debugger, but may not be as effective if routine le-
vel implementation remains textual rather than graphical. But method-level
implementation is out of the scope of this project.



CHAPTER 6. EVALUATION 47

6.1.3 Navigate

6.1.3.1 Group data in consistently meaningful ways to decrease
search time (author?) [4]

As the various components of the system are no longer serial, as in the
case of traditional IDEs, the user can arrange objects according to his own
categories.

6.1.3.2 Spatial reasoning (author?) [6]

When searching for information, users may use spatial orientation to find it,
for example remembering that some item was last in the bottom right corner
of the screen.

This concept is central to the design of the project. By presenting a single
workspace, necessarily larger than the screen, the spatial reasoning of users
is given more support than traditionally provided. The predicted time saved
by merging multiple files is given in the predictive evaluation section.

6.1.3.3 Following paths through code(author?) [6]

Different environments provide different means to browse through code. But
following a path through code, and importantly navigating back along this
path, is often complicated. For instance, some editors allow the user to
follow hyperlinks. But returning to the hyperlink may be difficult, and so
IDEs often provide bookmarks. Bookmarks may also be used in the above
example of visiting separate parts of a project.

Using a single large workspace avoids some of the disorientation caused
by changing files, and a minimap is provided to allow global scale navigation
and so better allow the user to orient themselves. In place of bookmarks,
beacons or landmarks could be placed to remind users of where they are and
where they wish to be.



CHAPTER 6. EVALUATION 48

6.1.4 Understand

6.1.4.1 Reduce cognitive load by bringing together lower-level
data into a higher-level summation (author?) [4]

Zooming and the dynamic level of detail allow classes to be reduced to
graphics, and a project consisting of many files to be summarised as one
workspace. Traditional IDEs do offer some support through code folding
and class summaries.

6.1.4.2 Present new information with meaningful aids to inter-
pretation (author?) [4]

The code tour uses diagrams and animations to help the user understand the
code.

6.1.4.3 Make appropriate use of colour and graphics (author?) [4]

The project interface uses graphics and colour to represent code, although
this is partially true in traditional IDEs through graphical decoration of text.

6.1.4.4 Include in the displays only that information needed by
the user at a given time (author?) [4]

The user can zoom, scroll and hide objects to ensure that only relevant parts
of code are present. Traditional IDEs provide code folding for a similar
purpose, but the ability to hide distracting details is limited.

6.2 Predictive evaluation

6.2.1 Introduction

As mentioned above, KLM-GOMS has been used to determine the efficiency
of the project interface compared to that of traditional IDE interfaces. This



CHAPTER 6. EVALUATION 49

has been achieved by decomposing programming into a series of tasks, and
calculated the predicted efficiency of performing the tasks on the project
interface and a traditional IDE interface. The full workings are available on
the accompanying CD-Rom.

6.2.2 Example

As an example of how this was achieved, given below is a worked example of
how a class is created using the project interface (6.1).

Figure 6.1: The task (create a class) is broken into subtasks, namely navi-
gating to the class tree and selecting where to add the new class. These are
then broken down into KLM-GOMS operators (M, P, B, H) which are used
to determine the time taken to achieve the task.



CHAPTER 6. EVALUATION 50

6.2.3 Navigation (Figure 6.2 on page 51)

6.2.3.1 Scroll components

• Text Editor

– Scrollbar scroll

– Mousewheel scroll

• Scrollwindow

– Drag-scroll

– Border scroll

– Arrow scroll

– Zoom scroll

• Minimap

– Drag-scroll

– Click-scroll

6.2.3.2 Other

• Text Editor

– Open file tab

6.2.4 Writing (Figure 6.3 on page 52 and Figure 6.4 on

page 53)

• Text Editor

– Arranging text



CHAPTER 6. EVALUATION 51

– Typing text

• Class tree

– Adding class nodes

– Drag and drop fields

– Editing class fields

6.2.5 Results

6.2.6 Navigation

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Scrolling in Traditional IDE

0

1

2

3

4

5

6

7

8

ScrollBar ScrollBar
MouseWheel

OpenFileTab &
ScrollBar

OpenFileTab &
ScrollBar

MouseWheel

Scroll type

T
im

e(
s)

(a)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Scrolling in Project Interface

0

1

2

3

4

5

6

7

8

Minimap click-
scroll

Minimap drag-
scroll

Border scroll Arrow key scroll Zoom scroll

Scroll type

T
im

e(
s)

(b)

Figure 6.2: Navigation using (6.2a) a traditional IDE with and without chan-
ging the current page in the editor, (6.2b) the project interface.



CHAPTER 6. EVALUATION 52

6.2.7 Writing

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

Class creation efficiency

0

5

10

15

20

25

Navigate and
add class

without
names

Add more
classes
without
names

Navigate and
add class
with name

Add more
classes with

names

Task

T
im

e 
(s

)

� � � � � �
� � � � � � Traditional 

Project

Figure 6.3: Relative efficiency when creating classes. On the left is creation
of an empty class with no name, on the right is creation of a class and editing
it to give it a name.



CHAPTER 6. EVALUATION 53

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

Field creation efficiency

0

2

4

6

8

10

12

14

16

18

20

Navigate and
add field
without
names

Add more
fields without

names

Navigate and
add field with

name

Add more
fields with

names

Task

T
im

e 
(s

)

� � � � � �
� � � � � � Traditional 

Project

Figure 6.4: Relative efficiency when creating fields. On the left is creation of
a field with no name, on the right is creation of a field and editing it to give
it a name.



Chapter 7

Discussion

From the predictive results it is evident that it is possible to improve upon
the efficiency of the IDE design. But the project interface provides most
improvement when a specific style of coding is followed - namely creating a
batch of fields or classes, then zooming in and editing all of them. When the
contrary coding style of creating a class or field, zooming in, editing the class
or field, zooming out and repeating the process was followed, the change in
efficiency was minimal improvement or even a decrease in efficiency.

In this case zooming is an issue, as the user must zoom in and out to
manipulate classes and to view their details. A possible solution to this is to
display a separate window with the currently selected class showing it’s de-
tails. If the user wishes to view the details of multiple classes simultaneously,
he may then arrange them at adjacent positions and zoom in.

Unfortunately these differences in efficiency force the user to adopt a
specific style, which goes against the relevant guideline given in the heuristic
section. This is an area of concern with the project interface.

54



Chapter 8

Conclusions

IDEs began as text editors, and have remained this way. This project looks at
improving this design. This redesign focused on representing the structures
within code in new ways, on the premise that the majority of widely used
programming languages are object oriented.

To achieve this, graphical representations of code structures have been
created, and may be manipulated by moving, zooming and scrolling. These
are placed on a single plane, to simplify navigation. A scrollwindow and
minimap are provided to give views onto this plane at different levels of
detail. A code tour has been provided to better integrate documentation
with the code under explanation.

The effectiveness with which these components improve the efficiency of
writing, navigating and understanding code was assessed using heuristic and
predictive evaluations. These show that the interface is beneficial due to
workload automation, the use of spatial reasoning, the simplifications due to
a single workspace, the use of data hiding and abstraction, and the facility
to include aids to interpretation alongside code.

But they also show that, provided the user need not first select a different
file, scrolling through text using the mouse wheel is faster than any scrolling
technique offered by the project interface. They also show that the project

55



CHAPTER 8. CONCLUSIONS 56

interface is far more efficient when creating fields or classes, but only if these
are created in batches and later edited. This strongly encourages the user to
adopt a specific style, which goes against the heuristic guidelines.

From this, we have shown that

• IDEs have remained unchanged as text editors.

• Past attempts to redesign the IDE have focused on method level im-
plementation, and have not been successful.

• This project has focused on representing code according to its structure.

• We have found our representation to be more efficient when creating
and editing code structures in batches.

• But this efficiency is largely lost if the user wishes to create and edit
structures one at a time.



Bibliography

[1] Stuart K. Card, Thomas P. Moran, and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, USA, 1983.

[2] P.T. Cox, E.R. Giles, and T. Pietrzykowski. Prograph: A step towards
liberating programming from textual conditioning. In 1989 Proceedings
of the IEEE Workshop on Visual Languages, pages 150–156, Washing-
ton, DC, USA, 1989. IEEE Computer Society Press.

[3] M. Edel. The tinkertoy graphical programming environment. IEEE
Transactions on Software Engineering, 14(8):1110–1115, 1988.

[4] Wilbert O. Galitz. The essential guide to user interface design: an
introduction to GUI design principles and techniques. John Wiley &
Sons, Inc., New York, NY, USA, 2007.

[5] E.P. Glinert and S.L. Tanimoto. Pict: An interactive graphical pro-
gramming environment. Computer, 17(11):7–25, 1984.

[6] T.R.G. Green and M. Petre. Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages and Computing, 7:131–174, 1996.

[7] Bonnie E. John and David E. Kieras. The goms family of user interface
analysis techniques: comparison and contrast. ACM Trans. Comput.-
Hum. Interact., 3(4):320–351, 1996.

57



BIBLIOGRAPHY 58

[8] Bonnie E. John and David E. Kieras. Using goms for user interface
design and evaluation: which technique? ACM Trans. Comput.-Hum.
Interact., 3(4):287–319, 1996.

[9] D. Kieras. Using the keystroke-level model to estimate execution ti-
mes. pages 1–11, Ann Arbor: Department of Psychology, University of
Michigan, USA, 2001. Unpublished report.

[10] B.A. Myers and A.J. Ko. The past, present and future of programming
in hci. Human-Computer Interaction Consortium (HCIC’09), 2009.

[11] Marian Petre. Why looking isn’t always seeing: readership skills and gra-
phical programming. Communications of the ACM, 38(6):33–44, 1995.

[12] G. Rogers. Visual programming with objects and relations. In 1988
IEEE Workshop on Visual Languages, pages 29–36, Washington, DC,
USA, 1988. IEEE Computer Society Press.



Appendix A

Accompanying CD-Rom

Contents:

• Demonstration of the project interface

• Source code of the project interface

• Working for the predictive evaluation

• Copy of this document

59


