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Abstract

The field of Information Security and the sub-field of Cryptographic Protocols are both

vast and continually evolving fields. The use of cryptographic protocols as a means to

provide security to web servers and services at the transport layer, by providing both en-

cryption and authentication to data transfer, has become increasingly popular. However,

it is noted that it is rather difficult to perform legitimate analysis, intrusion detection and

debugging on data that has passed through a cryptographic protocol as it is encrypted.

The aim of this thesis is to design a framework, named Project Bellerophon, that is capa-

ble of decrypting traffic that has been encrypted by an arbitrary cryptographic protocol.

Once the plain-text has been retrieved further analysis may take place.

To aid in this an in depth investigation of the TLS protocol was undertaken. This pro-

duced a detailed document considering the message structures and the related fields con-

tained within these messages which are involved in the TLS handshake process. Detailed

examples explaining the processes that are involved in obtaining and generating the var-

ious cryptographic components were explored.

A systems design was proposed, considering the role of each of the components required in

order to produce an accurate decryption of traffic encrypted by a cryptographic protocol.

Investigations into the accuracy and the efficiency of Project Bellerophon to decrypt

specific test data were conducted. An investigation into the accuracy of the decryption

produced by the application framework showed that Project Bellerophon produced an

accurate decryption for a small test file.

An investigation into the efficiency of Project Bellerophon was conducted, comparing

execution times for decryption against Tshark, an industry standard protocol analyser.

This investigation showed a linear relationship between execution time and file size for

both Tshark and Project Bellerophon. However it was noted that in general Project

Bellerophon had longer execution times. It was argued that this difference in execution

time is not sufficiently significant to conclude that the framework is infeasible.
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Glossary

PCAP

PCAP is an API that provides features for packet capture. PCAP files contain packets

that have been captured using a traffic analysis tool such as Wireshark.

MITM

A man-in-the-middle attack is an attack where a third party intercepts communications

of another party and then may alter the information passed onto the original recipient.

IDS

An intrusion detection system (IDS) inspects traffic passing through a network, attempt-

ing to identify potential security threats using a signature database.

HTTPS

Hypertext Transfer Protocol Secure (HTTPS) combines HTTP together with the SS-

L/TLS protocols in order to provide encryption and authentication to web-based commu-

nications.

RSA

A popular public-key encryption algorithm.

xi



GLOSSARY xii

MAC (Message Authentication Code)

A message authentication code is used to provide authentication to messages sent by

producing a cryptographic hash of the message.

OSI

Open System Interconnection is an ISO standard which defines a networking framework

for implementing protocols.

HMAC

HMAC is a type of MAC that makes use of a key in addition to a cryptographic hash.

Cipher suites

A cipher suite is a structure within the TLS/SSL protocols that defines the symmetric

key used for encryption, the hash algorithm used for producing the MAC hashes and the

technique used for key exchange. For example, TLS RSA AES 256 CBC SHA1 defines

RSA for key exchange, 256-bit AES-CBC for symmetric encryption and SHA1 to provide

the MAC hashes.



Chapter 1

Introduction

The ability to convey information between two parties in a secure fashion is a desirable

property of any form of communication [20]. Cryptography, part art and part science, is

the study of the ways in which information can be disguised by encoding a message in

some specific way and then after the message has been transmitted, perform an inverse

process to recover the original information [18]. It is important at this point to differen-

tiate cryptography from its logical cousin, stenography. Stenography is the study of the

ways in which information that is to be communicated can be hidden. Where as cryptog-

raphy is concerned with keeping the message in plain sight [43], but instead performing

transformations on the data so that it cannot be read without performing the reverse

transformations [36].

Historically, many countries and cultures have taken an active interest in cryptography

including the Romans, ancient Egyptians and the French. This interest has been necessi-

tated by the need for military leaders to be able to communicate safely and securely [39].

Some classical ciphers such as Caesars Cipher, Simple Substitution Cipher and the Ving

Cipher were sufficiently cryptic in their respective times but are now considered trivial

in complexity when compared to the complex ciphers used today [23, 36]. Many famous

academics and scholars have been involved in the cryptographic arts including Edgar Alan

Poe [26], Giambattista della Porta [17] and Blaise de Vigen [23].

Modern cryptography is concerned with providing secure electronic communications. Dig-

ital cryptography has a wide number of uses within in the scope of computing including

file encryption, providing secure connections to websites for transferal of sensitive infor-

mation such as credit card details, checking the validity of data through cryptographic

hashing and non-repudiation for e-mail and other messaging technologies.

Cryptographic Protocols establish a sequence of steps required to perform a negotiation al-

1
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lowing parties to come to an agreement over certain cryptographic parameters, after which

a secure communication channel can be created. Historically notable cryptographic in-

clude the Diffie-Hellman key exchange protocol [32] and the Needham-Schroeder protocol

[27, 41]. In more recent times TLS, SSH and IPSec are more relevant protocols.

This introductory chapter considers the thesis problem statement, the research goals, the

research scope, the motivation for research and the document structure.

1.1 Problem Statement

Cryptography and thus by extension cryptographic protocols are metaphorically double

edged blades. Through cryptography it is possible to obfuscate the data being transmitted

and thus preventing third parties from being able to listen in on communication this has

the negative effect that in the process systems which wish to legitimately gain access to

this encrypted information to perform legitimate analysis or scanning cannot make sense

of the obfuscated data.Considering a firewall as an example, if one of the users behind

a firewall makes a connection to an external server using a cryptographic protocol, often

called an “encrypted tunnel”, the firewall is incapable of performing analysis on the traffic

passing through the encrypted tunnel as the firewall is missing some of the components

required to build the cryptographic parameters. This is extremely problematic as it

hinders firewalls and IDS (Intrusion Detection systems) from being able to perform their

specified tasks effectively [2].

The core problem examined in this thesis is the development of a framework design, which

was named Project Bellerophon after the protagonist of Homer’s Illiad, for decrypting data

that has been encrypted by an arbitrary cryptographic protocol. Project Bellerophon must

be able to reconstruct the cryptographic parameters used during the handshake phase of

the protocol for both live traffic and prerecorded network traffic. Once these parameters

have been constructed and the cryptographic cipher suite has been obtained the encrypted

application traffic will be decrypted.

Having considered the problem statement the next section considers the research goals of

this thesis.
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1.2 Research Goals

The primary research goal was to provide an entry point for the generic decryption of

network traffic by developing a system design that is appropriate for the decryption of

traffic encrypted by an arbitrary protocol. Having developed said design, it was necessary

to provide a sample implementation for a well known cryptographic protocol to show that

said design is feasible.

Secondary goals include testing of the developed implementation in terms of both the

accuracy of decryptions provided and comparing the efficiency of the implementation by

contrasting it against another tool which provides the same basic functionality.

The tertiary research goal was to provide documentation of the TLS protocol that is more

accessible and understandable to programmers by showing worked examples of the TLS

Handshake and the key generation that occurs within in the TLS Handshake.

The bounds and assumptions made to contact such research is considered in the next

section.

1.3 Research Scope

This thesis shall only consider an implementation for TLS. However using the concepts

developed in this thesis is should be possible to extend to other cryptographic protocols

such as SSH and IPSec. The actual decryption will assume legitimate and lawful access to

the data that is to be decrypted and as a result it is expected that access to the complete

negotiation of phase under taken by the parties will be provided. Further access to all

cryptographic parameters is assumed.

Having discussed the research scope, the need for such research is considered. .

1.4 Motivation for research

Due to the upsurge in the demand for secure transactions over the Internet there is a

need for constant evaluation and research in the field of Information Security particularly

in the fields of cryptography and cryptanalysis. To put further emphasis some of the

potential scenarios where this type of research may be useful are now outlined.
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1.4.1 Prevalence of Web Based Transactions

HTTPS has become prevalent as a means to communicate with a web server securely.

However if an attacker were to use HTTPS as a means to perform an attack it becomes

difficult to detect such an attack due to the encrypted nature of the traffic. It would

be useful if a system existed to decrypt this traffic and then perform analysis. This is

highlighted by work done by Marklinspike [22] in developing a tool, SSLStripper [22], that

removes the secure components of a SSL connection allowing for a new form of MITM

(man in the middle) attack where the user believes that his connection is secured but in

reality messages are passed through HTTP and are intercepted by a third-party.

1.4.2 Software Development Habits

Wang et al. [42] comment that in the long term software development cannot afford to

consider implementing security only after the application has been developed or late in

the development cycle as irreparable security compromises may already exist and that

attempts to correct them would require significant resources. It can further be noted that

security is one of the core metrics in McCall’s Software Quality Checklist [1].

However, software development is notorious for being over budget and far exceeding its

expected completion date. As a result it is often found that security is left until late in the

development cycle and sometimes even after the application has been built [42]. Often

this causes poorly implemented security and this only serves to degrade the quality of

the system built as it provides the user with a false sense of security. Further an insecure

application that passes and receives sensitive information is equally as unusable as an

application that fails to meet its specifications in terms of correctness [42].

It could be argued that the reason why security is not part of many development cycles

in the earlier stages is due to the difficulty and tedium of checking the correctness of

security [37, 5]. To put this in context considering the period between January 2004 and

December 2008 there have been 26,139 reported security vulnerabilities [28]. It would be

useful if there existed a framework that decrypted data and then provided some analysis

on issues pertaining to the implemented security.

Finally the document structure is now outlined in this final section of Chapter 1.
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1.5 Document Structure and Outline

The remainder of this document is organized as follows.

Chapter 2 provides a literature survey on cryptography, cryptographic protocols and

related issues.

Chapter 3 provides a technical discussion of the TLS/SSL protocols.This section has

been written and illustrated in a way to make it be more accessible to programmers

who desire a deeper understanding of these protocols which is difficult to infer from

documents such as the TLS/SSL RFC.

Chapter 4 discusses how the system and experimental design .

Chapter 5 considers results obtained during experimentation

Chapter 6 concludes the research that has been done, providing a summary of the re-

search with possible extensions for the future

Appendix A consists of coding listings for test scripts used.

Appendix B consists of coding listings for C++ protocol structs used.

Appendix C consists of coding listings for a sample capture module.

Appendix D lists the contents of the accompanying CD.



Chapter 2

Literature Survey

Cryptography is the discipline, art and science of ensuring that messages are secure from

possible eavesdropping, impersonation or data corruption. Cryptography provides se-

curity through a sequence of mathematical transformations that can be shown to be

mathematically secure provided some optimum conditions [36]. It is important to be

cognizant of the fact that cryptography on its own is insufficient to ensure a high level

of security within an organization. That is to say that cryptography is not the silver

bullet to solve all Information Security issues and should be used in conjunction with

good security practices [38]. Cryptography, like the Information Security field itself, is

an incredibly broad field involving many existing disciplines such as abstract algebra to

provide mathematical proofs for the guaranteed correctness of an algorithm, statistics for

the analysis of cryptographic algorithms and quantum physics for quantum based random

number generation for quantum cryptography [38].

In this chapter schemes for cryptography are discussed including symmetric cryptography,

public key cryptography and hybrid cryptosystems. An outline of cryptographic hash

functions is provided as well. The architecture of TLS is considered and a discussion of

the SSH protocol is provided. Finally some consideration is given to related work and

related tools with regards to protocol analysis and decrypting encrypted protocols.

The first cryptographic scheme to be considered is symmetric cryptography.

2.1 Symmetric Cryptography

Symmetric cryptography, also known as secret key cryptography, has been in use since

ancient times [23] and has a wide variety of different implementations. These range from

simple substitution ciphers such as Caesars Cipher to complex and supposedly mathe-

matically unbreakable algorithms such as AES [21]. Symmetric key encryption makes use

6
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of a single key that must be kept secret. This key is used for both the encryption and

decryption of messages to be sent or stored. In this section the DES and AES algorithms

are discussed considering some of the history of these algorithms and the phases and

processes involved in said algorithms.

The DES algorithm is considered in the next subsection.

2.1.1 The Data Encryption Standard (DES)

DES is considered within this literature survey as it is one of the classical encryption

algorithms. Considering the algorithms and structures involved in DES allows for a deeper

understanding of cryptographic algorithms.

The Data Encryption Standard was developed by IBM and was selected in 1976 as an

official Federal Information Processing Standard for the United States [21]. The DES

algorithm uses a 64-bit key of which 8-bits are used for parity and the remaining 56-bits

are used to encrypt the plain-text.

The required computations for brute forcing a DES key would be 256 operations, given a

64-bit plain-text and 64-bit DES key. While the DES algorithm itself is considered to be

resistant to cryptanalysis the actual keys used for encryption are considered to be fairly

weak [9, 36].

The DES algorithm consists of three phases, a Cryptographic Hash function and a Key

Scheduler which are detailed in the remainder of this subsection.

Phase 1

The first 64-bits of plain-text, denoted by x , runs through an Initial Permutation function

(IP ) returning 64-bits of output denoted by x0. Mathematically this can be represented as

x0 = IP (x). The output is separated into two sections of equal length. This separation is

represented as L0R0, where L0 represents the first 32-bits and R0 represents the remaining

32-bits. An inverse function of IP named IIP is also defined [9].

Phase 2

The output obtained in Phase 1 then undergoes sixteen repetitions of a computation that

is key dependent using a keyed cryptographic hash function. This function is denoted
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by f . This function makes use of a key scheduling function denoted as KS. A key

scheduler calculates all the sub-keys for each round or iteration. The output of each

iteration or round can be represented as xi = LiRi with 1 ≤ i ≤ 16 with Li = Ri − 1 and

Ri = Li ⊗ f(Ri − 1, Ki). The K ′
is are 48-bit blocks that can be derived from the original

56-bit string using KS [9].

Phase 3

In the final phase, IP is applied to x16 to give another 64-bit cipher block which shall

be called C. It follows that C = IIP (x16) = IIP (R16L16). It is noted that the inverse

property applies, that is IIP (IP (x)) = x [9].

The Cryptographic Hash function, f

This function expands the R′
is from their 32-bit block to a 48-bit block through an ex-

pansion permutation. Essentially this function increases the bit length by reusing some of

the bits in the Ri’s, and also re-ordering them making use of a look-up table. This output

then undergoes the XOR operation with Ki [9]. This result is then broken up in to eight

blocks of six-bits each. These six-bit blocks are then passed through an S-box giving an

output of four-bits. The S-box takes the first bit and the last bit of the input forming a

two-bit binary value. The decimal value of this two-bit number is used to select a row

[9]. The remaining inner four-bits are used to select a column number. These row and

column values are used to index a value from the S-box . The four-bit output of each of

these eight boxes is then concatenated to yield a 32-bit output which is finally given to

the permutation function P which gives a result of 32-bits [9].

Key Scheduling

The key scheduling function, KS, is used to derive the 48-bit K ′
is from the original 56-bit

key. It is noted that while DES keys are 64-bit only 56-bits are actually used to seed the

random functions as eight-bits are used for error checking. Every eighth bit is used for

parity. The key scheduling functions consist of two permutation functions, PC1 and PC2,

where PC stands for Permutation Choice. To select the K ′
is the following algorithm is

applied.

Given a 64-bit key K the eight-bits used for parity are discarded. The PC1 function is

then applied to the remainder of the key. This can be represented as PC1(K) = C0D0
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where C0 represents the first 28-bits and D0 represents the remainder. PC itself has two

components, with the first half determining Ci and the second half determining Di.

To calculate the individual CiDi the LiSi function is applied. The Si function represents

the number of left cylindrical shifts by which Ci or Di are to be shifted. That is Ci =

LiSi(Ci−1) and Di = LiSi(Di−1). The Li function is yet another look up table function.

The resultant bits of Ci and Di are then concatenated together and PC2 is applied to the

output of the concatenation, that is Ki = PC2(Ci; Di). It is noted that PC2is a similar

function to PC1.For decryption the same key is used, but the order of functions applied

is reversed.

The next section considers a more modern symmetric key algorithm known as AES.

2.1.2 The Advanced Encryption Standard (AES)

AES is considered to be the state of the art in terms of modern symmetric cryptographic

algorithms. It is for this reason that is AES is now discussed.

The AES accepted candidate, Rijndael, was designed by John Daemen and Vincent Ri-

jmen from Belgium and was published in 1998 [9]. AES is an iterated block cipher that

allows for a variable key length and a choice from a number of different block sizes.

AES supports block sizes of 128-bits, 192-bits and 256-bits [9]. AES is byte orientated

compared to the bit orientated nature of DES.

The number of rounds or iterations applied is dependent on the block size and the key

used. For example if the block size is 128-bits and letting m be the size of key and r the

number of rounds is given by r = k/32 + 6. At the start of the algorithm a 128-bit block

of plain-text is used as the initial state [9].

This initial state will be passed through a number of key-dependent transformations finally

returning a 128-bit block of plain-text. A state is treated as a 4x4 matrix, where Ai;j will

represent a single byte with 0 ≤ i, j ≤ 3, with i indexing the rows and j indexing the

columns. For example A0,0 is the first byte and A1,0 is the fifth byte. AES makes use of

four basics operators to allow for transformation from one state to another. The set of

operators used by Rijndael include the following four operators [9] :
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Byte Substitution

This is a non-linear permutation that operates on each byte in the current state inde-

pendently, allowing for parallelism. In this phase eight-bytes of the sixteen-bytes to be

operated on are multiplied against a 8x8 matrix, this is matrix multiplication of an 8x8

matrix by a 8x1 column vector resulting in a 8x1 column vector. This can be efficiently

implemented by making use of a 256-bit lookup table or an S-box [9].

Row shift

This is a cyclic shift of the bytes in a state. This shift can be represented mathematically

by Bi;j = Ai,(j+1) mod 4 . The first row will undergo no changes, however the second row

will shift one column, the third row shifts two columns and the third row will shift three

columns [9].

Mix column

Each of the columns Ai undergoes a linear transformation. A transformation is applied

to a column at a time and is equivalent to multiplying the columns contents by a 4x4

matrix [9].

Round Key Addition

For every round performed a round key, RK, is generated from the cipher key via the

key scheduling function. The round key is the same length as the encryption block and

is represented as a 4x4 matrix, similar to how the plain-text is represented. The XOR

operation is then applied to the round key and the current state [9].

The AES Encryption Algorithm

As already mentioned the Rijndael encryption algorithm takes as input a state and pro-

duces a state that contains the cipher-text. Algorithm 1 describes the AES Encryption

Algorithm.
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Algorithm 1 The AES Encryption Algorithm

AESEncrypt ( s ta te , key [ 0 , . . . , 4K−1])
{

/∗The f i r s t k words o f W conta in 4k bytes o f
the key array ∗/
InverseKeyExpansion ( key [ 0 , . . . , K−1] ,
W[ 0 , . . . ,N(R+1) − 1 ] )

//Add the f i r s t round key to the s t a t e
AddRoundKey( s ta te , W[ 0 , . . . , 3N] )

// Ca l cu la t e and add the other keys
f o r ( i n t i = r−2 ; i> 0 ; i )
{

Inve r s eByteSubs t i tu t i on ( s t a t e )
InverseShi f tRow ( s t a t e )
InverseMixColumn ( s t a t e )
AddRoundKey( s ta te ,W[ i , . . . 3+ i ] )

}

//Do the Fina l Round
ByteSubst i tut ion ( s t a t e )
ShiftRow ( s t a t e )
ByteSubst i tut ion ( s t a t e )
AddRoundKey( s ta te ,
W[N(R+1) − 4 , . . . ,N(R+1) − 1 ] )

}
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The AES Decryption Algorithm

The decryption of encrypted data is achieved by applying the operations used in encryp-

tion but in reverse order.

Having considered two examples of symmetric encryption, public key cryptography is now

discussed in the next section.

2.2 Public Key Cryptography

One of the difficulties involved in symmetric key encryption is key distribution. The

reason for this is that for each pair of parties who wish to communicate a new key is

required to encrypt and decrypt their communication. This creates a logistical nightmare

when trying to manage all the keys that a party may need in order to communicate with

other parties.

Public key encryption was designed to solve this problem by having a key-pair for each

party. A public key that is given out to those who wish to send messages to the party

and a private key used by the party to decrypt the messages that are encrypted with its

public key [25].

Given the public key it should not be computationally feasible to compute the private

key. Thus the private key and public key should be related in such a way that it should

not be easy to derive the private key from the public key. This usually entails some

sort of unsolved mathematical problem such as the factorization of large numbers or the

discrete logarithm problem [38]. This chapter provides a mathematics primer required in

order to understand public key cryptographic algorithms and then goes on to discuss the

Diffie-Hellman key exchange and RSA.

The next section considers some of the mathematics involved in public key cryptography.

2.2.1 Mathematics primer

In order to understand some of the concepts used in public key cryptography a basic

understanding of some mathematical concepts involved is required. Especially abstract

algebraic concepts such as groups, co-primes,relatively prime numbers, congruency and

prime roots.
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Groups

A group is a set of mathematical elements together with a binary operation, that is an

operation that takes two inputs and produces a single output, that together satisfy the

following four properties. Let G be a group and a, b, c ∈ G with ∗ the binary operator of

G.

1. Closure : If there are two elements a, b ∈ G then the product a ∗ b ∈ G.

2. Associativity: The defined binary operation, ∗, must be associative. That is for

∀a, b, c ∈ G then it follows that a ∗ (b ∗ c) = (a ∗ b) ∗ c

3. Identity: There is an identity element a ∈ G such that for ∀b ∈ G, a ∗ b = b and

b ∗ a = b.

4. Inverse: For each element there must exist an inverse. Let b ∈ G then there must

∃d ∈ G such that b ∗ d = a and d ∗ b = a where a is the identity of G.

An example of group could be Z10, that is the set of integers modulo 10 under the action

of integer multiplication [35].

Greatest Common Divisor (GCD)

The greatest common divisor of two positive integers, say a, b ∈ G , is the largest positive

integer that divides both integers a and b. The greatest common divisor of a and b is

commonly represented as GCD(a, b) [45].

Relatively prime

Two integers are said to be relatively prime to each other if the largest and thus only

positive divisor of the two is the integer one. That is, if a, b ∈ G then it follows that a

and b are relatively prime to each other if and only if GCD(a, b) = 1 [46]. It is noted that

the terminology relatively prime and co-prime are equivalent.

Congruency in Algebra

Two integers are said to be congruent if the two integer are equivalent modulo n. For

example, 5 and 11 are congruent modulo 3 [44].
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Prime roots

Let m and p be integers, m is said to be a prime root of p if any integer co-prime to p is

congruent to the power of g mod n. Considering the set of integers under the operation of

multiplication modulo 14. It follows then that 3 and 5 are the only prime roots modulo 14

[44]

Having considered the required mathematics the Diffie-Hellman key exchange is now con-

sidered. While the Diffie-Hellman key exchange is not truly a public key cryptographic

system, it laid the foundations used by later public key systems.

2.2.2 Diffie-Hellman key exchange

The Diffie-Hellman key exchange algorithm is of importance to this thesis as it explains

a technique for secure key exchange. Understanding this is helpful when trying to under-

stand more complex key exchange mechanism.

The Diffie-Hellman key exchange algorithm was the first public-key cryptographic scheme

to be published [36]. The scheme exploits the difficulty of the discrete logarithm problem

for the field of the multiplicative integers modulo n. The Diffie-Hellman Key exchange

protocol allows for the exchange of cryptographic keys through an insecure channel. This

provides a solution to the key distribution problem experienced by symmetric key encryp-

tion [9]. This key exchange algorithm is now illustrated through an example.

Assuming that Alice and Bob wish to share a cryptographic key over an insecure channel,

the following series of steps would allow for this using Diffie-Hellman key exchange [9].

1. Both Alice and Bob decide upon a suitable prime p and an integer m such that m is a

prime root of p and that both m and p can be made public.

2. Alice then selects some integer ma. She then computes ya = mma mod p, and sends

this value of ya to Bob.

3. Bob then selects some integer mb. He then computes yb = mmb mod p and sends this

value of yb to Alice. The values ya and yb are commonly called Diffie-Hellman public

values.

4. Alice then computes K, the secret key, by calculating the value L = yma
b .



2.2. PUBLIC KEY CRYPTOGRAPHY 15

5. Bob then computes K by calculating the value L = ymb
a [9, 36].

It can mathematically shown that both Alice and Bob will arrive to the same value for K.

The crux of this protocol lies in the fact that it is computationally difficult to calculate

ma or mb from ya or yb respectively. Being able to easily calculate these values would be

equivalent to producing a solution to the discrete logarithm problem.

In the next section the successor to the Diffie-Hellman key exchange, RSA, is considered

2.2.3 RSA

While the Diffie-Hellman Key exchange protocol provides a solution to the key distribution

problem, it does not provide a practical public key cryptographic system.

In 1978 Ronald Rivest, Adi Shamir and Len Adlemar created the first public key crypto-

graphic system [36]. The processes followed in RSA can be described as follows [9].

1. Generate two large primes which shall be called p and q. The choice of p and q should

be uniformly random and they should be of a similar bit length [9].

2. Calculate the product of these two primes which shall be called n. That is n = p ∗ q

[9].

3. The the number of integers that are less than n and are relatively prime to n is

then calculated. This can be calculated making use of the Euler-Phi functions. That is

ϕ(n) = (p − 1)(q − 1) where ϕ(n) is the number of integers less than n and relatively

prime to n [9].

4. A random number, which shall be called b, is selected with 1 < b < ϕ(n) and b is

relatively prime to ϕ(n). This ensures the existence of a multiplicative inverse [9].

5. Calculate a = b − 1 mod ϕ(n) [9].

6. The values of a, p and q are kept secret while making n and b publicly available [9].

Encryption of the plain-text occurs in blocks with each block less than log2n bits in

length. The cipher-text can be generated by making use of b and n in the following

relation, c = xb. The plain-text can be regenerated by calculating x = ca mod n. The

crux of the this scheme is the difficulty in factoring large numbers efficiently and the task

of finding the eth roots of a composite number n whose factors are not known [9].
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Having completed the discussion on public key cryptography, the next section will discuss

cryptographic hash functions.

2.3 Cryptographic hash functions

A cryptographic hash function takes a message of arbitrary length and produces a fixed

length output which is a called a fingerprint, hash or message digest. Hash functions

are used to verify the integrity of messages or files that have been transferred. A good

cryptographic hash function is one that is resistant to collisions. A collision occurs when

two messages, x and y withx 6= y but h(x) = h(y) where h is a cryptographic hash.

Popular hash functions include SHA-1, MD5 and RIPEMD-160 [20]. MD5 will now be

considered as an example cryptographic hash.

2.3.1 MD5

The MD5 hash function was developed by Ronald Rivest at MIT as an improvement to

the existing MD4 hash [36]. The MD5 hash function takes a message, which shall be

named x, of an arbitrary length and produces a 128-bit hash known asH(x). The MD5

algorithm consists of the following five phases [9].

Appending padding bits

The message is padded with a single one-bit and a number of zero-bits such that length

of the message is a multiple of 512. Padded bits are always added even if the original

message is 64-bits. This implies that the number of bits padded on is between one and

512 [9].

Append the length

The 64-bit representation of the original message is appended to the end of the new

padded message. If the length exceeds 264 then only the lower order bits of the message

are appended. At this point the message will be exactly divisible by 512[9].

Initialize the Message Digest Buffer

The buffer used to compute the hash is 128-bits long. This buffer is formatted as four

32-bit registers labeled A, B, C and D. These registers are initialized to the values shown
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01 23 45 67A
{

89 ab cd efB
{

fe dc ba 98C
{

76 54 32 10D
{

Figure 2.1: Block Diagram of initialization values for registers during a MD5 hash

in Figure 2.1 [36].

Process the message

The message is processed as sixteen word blocks of 32-bits each. Let X and M denote

word blocks and the message X[i] an element of that word block. The algorithm that

describes this phase is shown in Algorithm 2 [9].

Algorithm 2 Process Message phase of MD5

f o r ( i n t i = 0 ; i < n/16 ; i++)
{

f o r ( i n t j = 0 ; j < 15 ; j++)
X[ j ] = M[ i ∗ 16 + j ]

A ˆ A = A ;// bit−wise and o f A with i t s e l f
B ˆ B = B; ;
C ˆ C = C D ˆ D = D ;
Round1 ( ) ;
Round2 ( ) ;
Round3 ( ) ;
Round4 ( ) ;
A = (A + AA) mod
B = (B + BB) mod
C = (C + CC) mod
D = (D + DD) mod

}

Where Round 1 through to Round 4 are auxiliary functions that make use of a 64-bit

element table T[1...64] where T [i] = 232 × abs(sin(i)). The exact details of these rounds

has been omitted but may be found in [9].

The next section discusses the TLS protocol and hybrid cryptography.
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2.4 TLS

It is important to understand the underlying architecture of some example cryptographic

protocols in order to provide a design for a framework that allows for the decryption of

encrypted traffic by an arbitrary cryptographic protocol.

This section considers hybrid cryptosystems, the TLS Handshake and trends in TLS and

SSL. Note that Chapter 3 is devoted to a discussion of the specifics the TLS protocol

related to this thesis while this section considers some of the literature and theory related

to TLS.

2.4.1 Hybrid Cryptosystems

It has already been discussed that symmetric cryptography suffers from key distribution

issues. Asymmetric cryptography solves this problem by allocating a private and public

key pair to each party allowing for ease of distribution. For example, Bob generates a

public and private key pair and then distributes the public key to all those who wish to

communicate with Bob. Eve who received a public key from Bob then encrypts some

plain-text with the key and then sends the cipher-text to Bob. This plain-text can only

be decrypted using Bob’s private key. Unfortunately public key cryptography relies on

intensive mathematical computations which are far more costly than symmetric key cryp-

tography in terms of computational power required [36].

The aim of hybrid cryptosystem is to solve these two problems of key distribution and

computational expense by combining the desirable components of public key and symmet-

ric cryptography together. This is achieved by using public key cryptography to secure

the symmetric keys. Once this distribution has been completed the decrypted symmetric

key is used for the actual encryption and decryption of messages being passed [10].

The TLS protocol makes use of a hybrid cryptosystem. The TLS handshake uses public

key in the form of RSA to perform key exchange. Once this key exchange has been

completed the decrypted symmetric keys are used to encrypt application data.

2.4.2 The TLS Handshake

The TLS Handshake is the part of the TLS protocol in which key generation and distri-

bution occurs. Thus it follows that it is of special significance to this thesis.
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During this phase decisions are made as to what cryptographic parameters are to be used

for the actual TLS connection. This includes deciding on the protocol version, selecting

a cipher suite and performing the secret key exchange. The remainder of this section

outlines the process followed during the TLS Handshake.

Connection Establishment

The client sends a Client Hello message to the server. The server then possibly responds

with a server hello message. If there is no response then a fatal error occurs and the

connection is closed. These Hello messages establish: the protocol version to be used,

session ID, cipher suite to be used, compression algorithm to use, ClientHello.Random

and ServerHello.Random [9].

Key Exchange

The actual key exchange may consist of up to four messages containing: the Server

Certificate, the Client Certificate, the Server Key exchange and the Client Key Exchange.

If the Server Certificate is to be authenticated it is sent after the connection establishment

phase. If the server passes the authentication, it may request the Client Certificate.

Finally the client sends the Client Key Exchange message to the server. This contains

the Premaster Secret which has been encrypted using the server’s public key [11].

Key Exchange Completed

After receiving the Client Key Exchange message the server responds with Cipher Spec

Change message. This message implies that all data sent after this message will be

encrypted. The client responds with Cipher Spec Change message as well. The Handshake

is now completed [11].

2.4.3 Practices in TLS and SSL

It has already been mentioned that cryptographic protocols are a popular method of

securing web servers. It should be considered that simply providing support for crypto-

graphic protocols is insufficient in terms of providing adequate security. Homin et al. [15]

produce a tool to perform the analysis of over 19,000 web servers employing SSL/TLS.

They conclude from their results that in 2006 approximately 85.37% of the over 19,000

web servers still provided support for SSLv2.0 which is a fundamentally flawed protocol
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due to SSLv2.0 weakness to Man in the Middle (MITM) attacks [15]. While 66.55% of

servers still supported DES-40 encryption even though the US export laws limiting the

key length of DES to 40-bits was no longer in effect.

It is unwise to still provide support for SSLv.2.0 as its well documented that MITM

attacks can force the adoption of a weak encryption protocol like DES-40 creating a large

and exploitable vulnerability for brute force attacks. While adaption of new algorithms

such as AES is prevalent the rate at which old standards are no longer being supported

is not sufficiently rapid [15].

The SSH protocol is now considered in contrast to the TLS protocol.

2.5 SSH

This section shall consider the components and architecture of SSH. Such a section is

important as it gives insight into the structure of other cryptographic protocols which is

required for the overall system design.

The SSH-1 protocol was developed in 1995 by Tatu Yl, a researcher at the Helsinki

University of Technology in Finland [34]. SSH allows for transparent encryption, that

is the user is unaware of the encryption and decryption occurring in the background.

It is critical to realize that SSH is a protocol and not a product and as such has a

number of implementations. SSH provides its users with three basic security features :

authentication, encryption and integrity. SSH provides support for secure remote login,

secure file transfer, secure remote command execution and port forwarding. The core

of SSH is the Binary Packet Protocol (BPP) which performs the underlying symmetric

encryption and authentication [34].

2.5.1 Components of SSH

In this section the various components that make up the SSH protocol are considered.

These components include :

• SSH Server

• SSH Client

• SSH Session
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• SSH Keys

• Key Generator

• Agent

SSH Server and SSH Client

A SSH Server is a program on the host machines that handles incoming SSH connection

dealing with the authentication and authorization of users. In UNIX this is usually

performed by a program named SSHD but there are Windows implementation such as

Bitvise WinSSHD. A SSH Client is a program that makes requests for secure remote login

and secure file copy. Typical SSH clients include Putty, SCP, SFTP and Bitvise Tunnelier

[34].

SSH Session

A SSH Session is a persistent connection made between a SSH Client and a SSH Server.

The SSH Session begins when the server authenticates the client and ends once the con-

nection is closed [34].

SSH Keys

Keys are used as the random component to initialize the cryptographic functions. Keys

used by SSH are the user key, host key and session key. The user key is the asymmetric

key used by a server as a way to identify the client. The host key is also an asymmetric

key that is used to prove the identity of the server to the client. The session key is a

randomly generated symmetric key used for encrypting the communication between an

SSH client and server. It is shared by the host and client in a secure manner during the

SSH connection setup so that an eavesdropper will not discover this key. Both sides then

have the session key which they use to encrypt their communications. When the SSH

session ends the key is destroyed [34].

Key generator

A program that creates persistent keys for both users and hosts [34].
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Agent

An Agent is a program that caches user keys in memory so users do not have to keep

retyping their pass phrases. The Agent responds to requests for key-related operations,

such as signing an authenticator, but the Agent will not disclose the keys themselves. It

is a convenience feature. OpenSSH and Tectia have the agent ssh-agent, and the program

ssh-add loads and unloads the key cache [34].

2.5.2 Architecture of SSH

The SSH protocol consists of four independent protocols listed below:

SSH Transport Layer Protocol (SSH-TRANS) :

SSH-TRANS allows for the initial connection to be made and provides server authenti-

cation, basic encryption and integrity services. Once a SSH Transport Layer Protocol

connection is made a SSH Client has a full-duplex byte stream connection to an SSH

Server [34].

SSH Authentication Protocol (SSH-AUTH):

Following a successful SSH-TRANS connection the SSH Client may use the SSH-AUTH

protocol, using the SSH-TRANS connection, to authenticate with the server. SSH-AUTH

defines an abstraction in which many different implementations of authentication could

potentially be used. SSH-AUTH only specifies the format and order of authentication

[34].

SSH Connection Protocol (SSH-CONN) :

After authentication has occurred the SSH client may call the SSH-CONN protocol to

provides additional services using the SSH-TRANS connection. These services include

support for multiple interactive and non-interactive sessions, terminal handling; data

compression; and remote program execution [34].
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SSH File Transfer Protocol (SSH-SFTP)

A client application may use SSH-SFTP over an SSH-CONN channel to allow for secure

file transfer for file manipulation [34].

SSH is designed to be modular and extensible. All of the core protocols mentioned above

provide abstract services that ensure a minimum level of functionality provided and re-

quirements they must met. However multiple mechanisms for fulfilling these requirements

and functionality are allowed. All the critical parameters of an SSH connection are nego-

tiable [34] . including the methods and algorithms used in :

• Session key exchange

• Server authentication

• Data privacy and integrity

• User authentication

• Data compression.

In conclusion it is interesting that the basic structure of the SSH protocol is similar to the

TLS protocol. That is, both are client-server orientated and they both make exchange

cryptographic parameters and make use of key generator function in order to derive the

keys used for decryption.

2.6 Related tools

A number of tools exist that allow for the decryption of encrypted traffic. Some of these

are considered in this section. It is noted the problem with all these tools is that they

are not sufficiently generic and will only allow the decryption of traffic encrypted by a

specific protocol.

2.6.1 SSLDump

SSLDump [33] is an SSL and TLS network protocol analyser which identifies TCP connec-

tions on the chosen network interface and then attempts to interpret them as SSL/TLS

traffic. When it identifies SSL/TLS traffic it decodes the records and displays them in
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a textual form to standard out. If SSLDump is given the cryptographic keys involved it

can be used to decrypt the traffic passing through.

2.6.2 Wireshark and Tshark

Wireshark [8] is a GUI based network protocol analyser logs all incoming and outgoing

traffic filtered by user specified rules. Additionally Wireshark can read files from other

applications that produce PCAP captures. Wireshark provides the ability to decrypt SSL

and TLS encrypted streams provided the negation protocol uses RSA for key exchange

and the RSA private key used by the server is available. Tshark [7] provides the same

functionality as Wireshark but is command-line based.

2.7 Related Research

This section deals with some topics related to analysis of cryptographic algorithms and

the analysis of encrypted network traffic. In particular discussions on the detection of

encrypted applications and running mode analysis are provided.

2.7.1 Detection of encrypted applications

The use of libraries such as OpenSSL allows for the encryption to generic traffic. This

creates a problem for the analysis of network traffic as the traffic is now encrypted. For

example, most common p2p clients provide a means to encrypt traffic by means of an

encrypted tunnel provided through SSH . This makes it difficult to block or limit certain

types of traffic which may be the goal of a network administrator.

Bernaille and Teixeira [2] suggest a system for the early recognition of encrypted appli-

cations is outlined and developed with a high degree of success in terms of identification

of applications within an SSL connection. They take the approach of using specific parts

of the TCP payload to identify the SSL connection by studying said traffic in detail and

then producing patterns to be used in detection methods [2]. A similar methodology of

analyzing the TCP payloads could be incorporated into the research topic.
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2.7.2 Running Mode Analysis

Running Mode Analysis is a technique for the formal analysis of cryptographic protocols.

It makes use of conclusions derived from model checking [47]. The central component

of Running Mode Analysis involves creating a system including an attacker, a protocol

and two parties attempting communication and then discovering all of the possible modes

the system can enter. For example, in a three-principal security system there are seven

running modes[47]. If it can shown that these seven modes do not exist then the protocol is

deemed to be safe within the system. When working with complex protocols, such as SSL,

it is a matter of decomposing the more complex protocol into a number of smaller protocols

and then performing Running Mode Analysis on each of the simpler protocols. This sort

of analysis is often done by hand and provides an interesting means of the verification of

the correctness of a protocol. In a by paper Zhang and Liu [47], running mode analysis

is performed on the SSL Handshake protocol. While it may not be important to perform

such an analysis, as such research already exists, it’s important to understand that many

protocols are fundamentally flawed and identification of such flaws when providing analysis

of application security would be a useful.

2.8 Conclusion

Some of the core concepts involved in cryptography and cryptographic protocols have

been considered. Though, a considerable amount of work done in this field has omitted,

due to its vastness. It is apparent that it is no longer possible to be an expert within

Information Security but rather an expert in one of its subsidiary fields. Cryptography

is a field of great interest both academically and economically and the intelligent use of

cryptography will lead to improved user satisfaction and safety when using networks to

perform confidential tasks.



Chapter 3

TLS Technical Specification

This chapter discusses the technical specifications and structures of the TLSv1.0 [11]

protocol that are relevant to building Project Bellerophon through detailed worked exam-

ples. Some consideration is provided for the SSL protocol as well. How the negotiation

phase of the protocols occurs considering the messages and message fields involved in

the generation of the symmetric keys for TLS forms the primary focus of this chapter.

Block diagrams are used to show the results obtained in both hexadecimal format and in

ASCII where applicable. This chapter is part experimentation and part theoretical as the

messages are obtained experimentally and meaning is interpreted from this results using

theoretical knowledge. It is noted that TLS and SSL differ in very minor ways and thus

they are often used interchangeably.

3.1 TLS Specification

In this section a broad overview of the structure of a network packet is discussed, followed

by the specifics of the structure of the individual protocols headers within a network

packet that are relevant to this thesis. Having considered the higher level packet structure,

the details of the underlying TLS/SSL messages is discussed. It is noted that the TLS

Handshake was considered in Chapter 2.4.2. While the TLS Handshake is revisited shortly

it would be well advised to read the before mentioned section before continuing.

The packet structure of messages involved in the TLS Handshake is considered in the next

subsection.

26
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Ethernet IPv4 TCP

SSL Record Layer

Figure 3.1: Logical packet structure considered

3.1.1 An overview of the packet structure

The way in which data is represented within a packet data structure needs to be carefully

considered in order to be able to correctly parse said packets. Thus packet structure shall

be the primary focus of this section.

For the purposes of this research the following was assumed : only Ethernet shall be

considered as the Data Link Layer, IPv4 as the Transport Layer and TCP shall implement

the Session, Presentation and Application Layers of the OSI model [40]. The reasoning

behind this is that these are the protocols that typically implement those particular tiers

of the OSI model and further this implementation is intended to be a proof of concept and

not a definitive framework. Appendix B provides C++ structs that were used by Project

Bellerophon to parse the packets headers that are discussed in the following sections.

Figure 3.1 represents the logical packet structure that is to be considered.

Data in each of these fields may be treated as blocks of hexadecimal values with each

value consisting of two hexadecimal digits. At least two hexadecimal digits are needed

to represent all of the characters present in the ASCII table. The reasoning behind this

is that a single hexadecimal digit can represent a total of sixteen unique values. Thus

it follows that two digits can represent 162 = 256 values. Which is sufficient to display

all possible ASCII Characters. Figure 3.2 shows an example of a packet with the various

regions marked and containing sample hexadecimal data.

The individual headers that make up the logical packet structure are now considered.

3.1.2 Ethernet Header

A typical packet will begin with an Ethernet Header [29], which is of a fixed fourteen-byte

length. The Ethernet Header consists of a Source MAC, Destination MAC and a Ether

Type. The Ether Type is a value that is used to determine which version of Ethernet

that is being used. Figure 3.3 shows the logical structure of the Ethernet Header. Note

that in Figure 3.3 “ET” is the Ether Type. Figure 3.4 shows sample values for the fields
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00 0c 29 2b 6f 58 00 50 56 c0

00 08 08 00
Ethernet Header


45 00 00 65 69 20 40 00 80 06

9f 96 c0 a8 38 01 c0 a8 38 8a
IPv4 Header


11 85 01 bb ff 8c a7 34 c4 7a

37 98 50 18 ff ff d2 4f 00 00
TCP Header


00 00 16 03 01 00 38 01 00 00

34 03 01 4a e3 15 83 2c de 2e

32 1d 39 bd 39 a8 3d 1d ea 03

01 0f 23 33 ca c4 46 93 6d 4b

cf 72 4e 45 dd 00 00 02 00 05

SSL Record


Figure 3.2: Block diagram of packet structure considered with sample hexadecimal values

Source MAC Destination MAC

ET

Other Protocol Headers and Message Payload

Figure 3.3: Logical Structure of an Ethernet packet

of the Ethernet Header.

Source and Destination MAC

The Source and Destination MAC addresses can be read directly from their hexadecimal

as MAC addresses are usually written in hexadecimal.

00 0c 29 2b 6f 58Source MAC
{

00 50 56 c0 00 08Destination MAC
{

08 00Ethernet Type
{

Figure 3.4: Example Ethernet Header with sample hexadecimal values
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Hexadecimal Value Decimal Value Ethernet Type
0x08 0x00 2048 IPv4
0x08 0x01 2049 X.75 Internet
0x08 0x02 2050 NBS Internet
0x08 0x06 2054 ARP

Table 3.1: Table providing a reduced list of Ether Types

Figure 3.5: Logical Structure of an IP Header

Ether Type

For the Ether Type, a value of 0x80 was read. Using Table 3.1 it was determined that

the Ether Type was in fact Ethernet. A complete list of Ethernet Types can be obtained

from the IANA Ether Types [6].

3.1.3 IP Header

The IP Header [30] consists of a number of fields of which only the IP version, Total

header length, Source IP Address and Destination IP Address are of interest. Figure 3.5

shows the logical structure of an IP header that was considered. Figure 3.6 shows sample

values for the fields of the IP Header.

45Version and IHL
{

C0 A8 9D 01Source IP Address
{

C0 A8 9D 8ADestination IP Address
{

Figure 3.6: Example IP Header with sample hexadecimal values
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Header Length

Following after the Ethernet Header, the next 20 bytes will consist of the IP header in the

case of IPv4. It is noted that for different versions of IP this length differs. The IP version

used can be verified by considering the value of the first byte. In the given example, the

value of the first byte is 0x45 or 01000101 in binary. Further it is known that the IP

version number takes up the first four bits of the first byte. In this example the first four

bits of the first byte have a binary value of 0100 which converts to a decimal value of four

implying the use of the IPv4. The last four bits of the first byte contains the total header

length. In the given example this is a binary value of 0101 which converts to a decimal

value of five. As the total header length is the total number of 32-bit words this implies

a total header length of 20 bytes, as 32 × 5/8 = 20.

Source and Destination IP Addresses

The Source and Destination IP Addresses are of interest as they allow the framework to

differentiate between the client and server. This ensures that the correct key is used to

decrypt the application data. The Source IP is contained in bytes 27 to 30 of the IP

header. For this example the value of the Source IP Address is 0xC0 0xA8 0x9D 0x01.

Converting each of the hexadecimal values to decimal an IP Address of 192.168.157.1 is

obtained. The Destination IP address follows on directly from the source IP address.

In this case the hexadecimal representation is 0xC0 0xA8 0x9D 0x8A from which an IP

address of 192.168.157.138 is obtained.

3.1.4 TCP Header

Within the TCP Header [31] only the TCP Header Length field is of interest. The header

length is used to determine how long the TCP Header is so that the remainder of the

TCP Header can be skipped in order to reach the SSL record.

Header Length

Directly following the IP header is the TCP header. The twelfth byte from the start of

the header will contain the Header Length field. The header length calculations are the

same as shown in the IP Header length subsection.
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Figure 3.7: Logical Structure of a SSL Record

16Content Type
{

03 01Version
{

00 38Length
{

01 00 00 34 03 01 4a e3 00 38 01 00 00

34 03 01 4a e3 15 83 2c de 2e 32 1d 39

bd 39 a8 3d 1d ea 03 01 0f 23 33 ca c4

46 93 6d 4b cf 25 4e 45 dd 00 00 02 00

73 01 00 00 09 0f

Message Data


Figure 3.8: Example SSL Record with sample hexadecimal values

3.1.5 SSL Record

The SSL Record is of vital importance to construction of Project Bellerophon. This struc-

ture contains all of the cryptographic parameters required to reconstruct the symmetric

keys. The basic logical structure consists of a Content Type, Version, Length and Message

Data. It is noted that this is exactly the same structure that is used by SSL. The basic

structure of an SSL record is shown in Figure 3.7. Figure 3.8 shows a sample SSL Record.

The SSL Record fields are now discussed.

The first byte of the message, as shown in Figure 3.8, is 0x16 or 20 in decimal, contains the

content type of the message sent. Table 3.2 specifies the different types of SSL messages

available. Using Table 3.2 it can be concluded that this example message was a SSL

Handshake message.

Version

The next two bytes, 0x03 0x01 in this case, represent the TLS version supported by

the sender. The first byte, 0x03, represents the major version of the protocol supported

while the second byte, 0x01, represents the minor version supported. Table 3.3 specifies
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Hexadecimal Value Decimal Value Content Type
0x14 20 Change Cipher

Specification message
0x15 21 SSL Alert message
0x16 22 SSL Handshake message
0x17 23 Application message

Table 3.2: Table of SSL Content Types

Major Version Minor Version SSL Version
0x03 0x0 SSLv3
0x03 0x1 TLSv1.0
0x03 0x2 TLSv1.1
0x03 0x3 TLSv1.2

Table 3.3: Table providing a reduced list of SSL and TLS Versions

the different version types. Using the table it can be concluded that the TLS version

supported by the sender was TLSv1.0.

Length

The next two bytes, 0x00 0x38 , following on from the version specify the length of the

SSL message. In this case this means a length of 56 bytes. This was determined by

treating the two values as a single hexadecimal value and then converting to decimal.

Project Bellerophon only needs to consider the Handshake messages as these messages

contain the encrypted data and cryptographic parameters that are of interest. The SSL

Handshake message is considered in the next subsection.

3.1.6 SSL Handshake and SSL Message Types

When a TLS enabled client wishes to establish a connection with a TLS server, the client

is required to perform a TLS Handshake with the server. The TLS handshake is of

great importance to Project Bellerophon as it is during the handshake that a number of

cryptographic parameters are passed between the client and server and the generation of

symmetric keys takes place. As mentioned in the previous section, the first byte of the

TLS record or the “content type” is set to a value of 0x16 if the message is involved in

the handshake. Figure 3.9 shows an example SSL Record.

The first byte (also known as the Content Type) in the SSL Record as shown in Figure
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16Content Type
{

03 01Version
{

00 38 01 00 00 34 03 01 4a e3 00 38 01

00 00 34 03 01 4a e3 15 83 2c de 2e 32

1d 39 bd 39 a8 3d 1d ea 03 01 0f 23 33

ca c4 46 93 6d 4b cf 72 4e 45 dd 00 00

02 00 35 01 00 00 09 00 05 00 05 01 00

00 00 00

Message Data


Figure 3.9: Example SSL Record with sample hexadecimal values

Hexadecimal Decimal Value Handshake Type
0x00 0 Hello Request
0x01 1 Client Hello
0x02 2 Server Hello
0x0B 11 Certificate
0x0C 12 Server Key Exchange
0x0D 13 Certificate Request
0x0E 14 Server Hello Done
0x0F 15 Certificate Response
0x10 16 Client Key Exchange
0x20 32 Finished

Table 3.4: Table listing SSL/TLS Handshake types

3.9 is 0x16 and thus it follows that this is a SSL Handshake message.

The two bytes following on from the Content Type represent the version number, which

is not of any real interest as this information was already listed previously.

The next two bytes that follow directly on, in this case 0x00 0x01 represent the SSL Hand-

shake message type. Table 3.4 provides a listing of all SSL Handshake message types [11].

Following after the Version field is the actual payload, which is usually a Handshake mes-

sage. The rest of this section considers the structure of some of the Handshake messages

relevant to Project Bellerophon. In particular the Client Hello, Server Hello, Client Key

Exchange and Change Cipher Specification messages are discussed.

The next subsection discusses the structure and importance of the Client Hello message.
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HT VE Len

ClientHello.Random

CSL

Acceptable Cipher Suites

Figure 3.10: Logical Structure of a Client Hello message

01Message Type
{

00 00 34Length
{

03 01Version
{

4a e3 15 83 2c de 2e 32 1d 39

bd a8 3d 1d ea 03 01 0f 23 33

ca c4 46 93 6d 4b cf 72 4e 45

dd 34

ClientHello.Random


00 02Cipher Suite Length

{
03 01Accepted Cipher Suites

{

Figure 3.11: Client Hello Message example with sample hexadecimal values

3.1.7 Client Hello

To establish a TLS handshake the client must begin by sending a Client Hello Message

to the server. The Client Hello message consists of a length field, version field, Clien-

tHello.Random field, cipher suite length field and a list of client accepted cipher suites..

The length field is used to determine the number of bytes used by the Client Hello Message.

The version field is the same as discussed in previous sections. The ClientHello.Random

field is a randomly generated 32-byte value that is used in conjunction with the Server-

Hello.Random to seed the TLS PRF. The cipher suite length is a two byte value which

specifies the number of bytes used to represent all the cipher suites supported by the client.

The cipher suites list is of variable length but dependent upon the cipher suite length.

This field contains a list of all of cipher suites that the client is willing to accept. Figure

3.10 shows the logical structure of a Client Hello message, note that “VE” represents the

version field, ”Len” the length and “CSL” represents the cipher suite length.

Figure 3.11 shows an example Client Hello message with sample values for the fields.
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Considering Figure 3.11 the following was concluded :

Handshake message type

The first byte in Figure 3.11 is 0x02. Considering Table 3.4 it can be concluded that this

message is a Server Hello Message.

Length

As the first byte is 0x01 it follows from Table 3.4 that this message is indeed a Client

Hello message. The next three bytes specify the length of the Client Hello Message, for

the given case this is a value of 0x00 0x00 0x34, this corresponds to a decimal value of

52. Thus it follows that the Client Hello Message will consist of 52 bytes.

ClientHello.Random

The next 32-bytes make up what is known as the ClientHello.Random value. The Clien-

tHello.Random value is made of two components. The first eight bytes are the current

date and time in standard UNIX 32-bit time format of time at which the message was

sent.. Considering the example values given, 0x4a 0xbc 0x25 0x33 0x7d 0x11 0x64 0x6d,

this corresponds to Sep 25, 2009 04:04:35, the time at which the original request was

sent from the client. The remaining twelve-bytes are random bytes generated by a secure

random function. The implementation of this secure random function is dependent upon

the client application.

Cipher Suite Length

After the ClientHello.Random field the next field of interest is the cipher suite length. This

field specifies the number of bytes used to represent the list of cipher suites supported.

In this case two bytes have been given to this representation. Each cipher suite requires

two bytes and thus only one cipher suite is supported by the client.

Client Accepted Cipher Suites

Following on from the cipher suite length is a list of the cipher suites supported by the

client. It is noted that the next two bytes in the example are 0x00 0x35, this relates to

the cipher suite TLS RSA WITH AES 256 CBC SHA. Table 3.5 shows a reduced list of
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Hexadecimal Value Cipher Suite
0x00 0x01 TLS RSA WITH NULL MD5
0x00 0x02 TLS RSA WITH NULL SHA
0x00 0x3B TLS RSA WITH NULL SHA256
0x00 0x05 TLS RSA WITH RC4 128 SHA
0x00 0x35 TLS RSA WITH AES 256 CBC SHA

Table 3.5: Table of TLS Cipher Suites

HT VE Len

ServerHello.Random

CSL

Accepted Cipher Suites

Figure 3.12: Logical Structure of a Client Hello Message

cipher suites. A full list may be obtained from the TLS RFC [11].

This concludes the relevant sections of the SSL record in Client Hello message. The Server

Hello message is considered in the next subsection.

3.1.8 Server Hello

After the server has received a Client Hello message, the server will then respond to the

Clients Hello message with a Server Hello message. The Server Hello message consists of

a length field, version field, ServerHello.Random field and an accepted cipher suite. The

length field is used to determine the number of bytes used by the Server Hello message.

The version field is the same as found previously. The ServerHello.Random field is a

randomly generated 32 byte value that is used in conjunction with the ClientHello.Random

to seed the TLS PRF. The cipher suite accepted is a two byte field which specifies which

cipher suite is to be used for the encryption of application data traffic. It is noted that

this cipher suite was chosen from the list of supported cipher suites provided in the Client

Hello message. Figure 3.12 shows the logical structure of a Server Hello message. Note

that in 3.12 “VE” represents the version and “Len” the length. Figure 3.13 shows an

example Server Hello message with sample values for the fields.

Considering Figure 3.13 the following was concluded :
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02Handshake Type
{

00 00 46Length
{

03 01Version
{

4a bc 05 02 66 70 e9 d0 f4 96

54 51 14 60 23 ce be 0e 6e ea

6c 2a 1a 1d 09 2f 1b f4 b1 d0

5a 8c

ServerHello.Random


03 01Accepted Cipher Suite

{

Figure 3.13: Server Hello Message example with sample hexadecimal values

Handshake message type

The first byte in 3.13 is 0x02. Considering Table 3.4 it can be concluded that this message

is a Server Hello Message.

Length

As with the Client Hello message, the next three bytes represent the number of bytes used

by the record. In this case the values of these bytes are 0x00 0x00 0x46 which was then

converted to a decimal value of 80

ServerHello.Random

The next 32-bytes makes up ServerHello.Random. This structure is the same as Clien-

tHello.Random with the exception that it originates from the server. In this case the

first component of the random structure is 0x4a 0xbc 0x05 0x02, which corresponds to a

date/time of Sept 25. 2009 01:47:14. The other 28 bytes of random data have no other

interpretable meaning other than they form part of the ServerHello.Random structure.

Accepted Cipher Suite

Finally the accepted cipher suite is 0x00 0x35. It was concluded using Table 3.5 that

TLS RSA WITH AES 256 CBC SHA1 is the accepted cipher suite.
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HT Len

Premaster Secret

Figure 3.14: Logical Structure of a Client Key Exchange Message

10Handshake Type
{

00 02 02Length
{

62 bc 00 82 af 04 29 c3 b1 ff 79

eb 30 60 29 73 f6 da da 61 4d bd

0a 17 9c 1e 0f 78 8f aa d5 29 37

a0 17 3a 96 3a 82 89 76 5a 69 64

e8 67 5d e6

Premaster Secret



Figure 3.15: Client Key Exchange Message example with sample hexadecimal values

3.1.9 Client Key Exchange

After the client receives the Server Hello message it will respond with a Client Key Ex-

change Message. It is at this point that the client will send the encrypted Remaster Secret

to the server. Assuming that RSA will be used in the key exchange, the Premaster Secret

will then be encrypted using RSA. The Client Key Exchange message is a simple structure

and only consists of a Handshake Type field, length and the Encrypted Premaster Secret.

Figure 3.14 describes the logical structure of the Client Key Exchange message. Figure

3.15 shows an example Client Key Exchange message with sample hexadecimal values for

the fields.

Content Type

The first byte in this case, 0x10, implies that the message is a Client Key Exchange

Message. Table 3.4 was used to confirm this result.
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CT Len

Premaster Secret

Figure 3.16: Logical Structure of a Change Cipher Specification Message

Message Length

The next three bytes specify the message length. Which in this case the bytes are 0x00

0x02 0x02. This converts to a decimal value of 514.

Encrypted Premaster Secret

The remaining bytes in this message contains the RSA encrypted Premaster Secret. It is

noted that the Premaster Secret is 512 bytes long. It would be impractical to show the

entire Premaster Secret, so only the last 48-bytes has been presented in Figure 3.15.

3.1.10 Change Cipher Specification

After the Client Key Exchange has taken place, the client will send a Change Cipher

Specification message to the server. This indicates that all messages that are now sent

from the client will be encrypted. The server then will respond with a Change Cipher

Message, indicating all messages that are sent after this point will be encrypted. It is

important to note these messages when using CBC encryption algorithms as the last

sixteen bytes of the messages will form the IV’s for decrypting the application data for

the client and server. The Change Cipher Specification is a simple message consisting of

a content type, length and a Change Cipher Spec message. Figure 3.16 shows the logical

structure of a Change Cipher Specification message.

Figure 3.17 shows an example Change Cipher Specification message with sample values

for the fields.

The contents of this messsage are of little importance. However, the key generation

process may begin once both of these messages have been received.
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14Handshake Type
{

03 01Version
{

00 01Length
{

01Change Cipher Spec Message
{

Figure 3.17: Client Key Exchange Message example with sample hexadecimal values

CT VE Len

Encrypted Application Data

Figure 3.18: Logical structure of an Application Data Message

Application Data

After the Change Cipher Specification messages have been sent, encrypted application is

transferred between the client and server. This data is transferred in the SSL Application

Data messages. An Application Data message consists of the following fields : Content

Type, Version, Length and Encrypted Application Data. Figure 3.18 describes the logical

structure of an Application Data Message.

Figure 3.19 shows an example Application Data Message with sample values for the fields.

17Handshake Type
{

03 01Version
{

00 00 30Length
{

2f b0 5c 58 26 a6 70 71 db 25 80

02 87 5a 52 a4 a9 20 34 aa ee 59

6a 3b 84 31 c2 3b d0 ac 6b 53 c7

1d fd 5f b9 f5 a5 e9 bb 55 81 d9

1c 3d 62 97

Application Data


Figure 3.19: Application Data Message example with sample hexadecimal values
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Content Type

The first byte in this case, 0x17, implies that the message is an Application Data message.

Using Table 3.4 this result was confirmed.

Message Length

The next three bytes specify the message length. Which in this case the bytes are 0x00

0x00 0x30. This converts to a decimal value of 48.

Application Data

This field contains the encrypted application data. Considering HTTPS this data could

potentially be HTTP methods or files being transferred. Using the symmetric keys gen-

erated by the TLS PRF function the encrypted application data is decrypted.

3.2 TLS PRF

The PRF (Pseudo random Function) is the core component of the TLS protocol. This

function takes a number of cryptographic parameters and produces the symmetric keys,

initialization vectors and MAC keys that are used for the decryption of application data.

The key generations process consists of two separate phases which each involve a separate

call to the TLS PRF function. These two phases are namely: Master Secret generation

and key expansion. In this section the TLS PRF algorithm, Master Secret generation and

key expansion is discussed..

3.2.1 The PRF algorithm

The TLS PRF algorithm is vital to the key negotiation phase. The method header to the

TLS PRF has the form shown below.

TLS PRF( St r ing Secret , I n t eg e r Sec r e t Length , S t r ing

Label , S t r ing Random, Int OutputLen )

These parameters are now discussed. The secret field is either the Premaster Secret or

the Master Secret. The secret length is usually set to a value of 48 bytes. The label string
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is used to identify whether a Master Secret or key block is being generated by the TLS

PRF.

At core, the TLS PRF essentially produces a HMAC MD5 hash of the secret value and

a HMAC SHA1 hash of the secret and then performs the XOR operation on these two

hashes. It is important to note that a MD5 hash produces output of only sixteen-bytes.

While SHA-1 produces a 20-byte output. It follows that these hashes are repeated until

the output length is reached. Algorithm 3 shows pseudo-code describing the TLS PRF.

Algorithm 3 TLS PRF Pseudo-code

TLS PRF( St r ing Secret , I n t eg e r Sec r e t Length , S t r ing
Label , Int OutputLen )
{

MD5Key = Cl i en tHe l l o .Random + Serve rHe l l o .Random
TempHash = HMACMD5( Secret ,MD5Key + Label ) ;
hashedLength = 16 ;

whi l e hashedLength < OutputLen
TempHash = HMACMD5(TempHash ,MD5Key + Label ) ;
hashedLength += 16 ;
MD5HashedValue += TempHash ;

SHA1Key = Serve rHe l l o .Random + Cl i en tHe l l o .Random
TempHash = HMAC SHA1( Secret , SHA1Key + Label ) ;
hashedLength = 20 ;

whi l e hashedLength < OutputLen
TempHash = HMAC SHA1(TempHash , SHA1Key + Label ) ;
hashedLength += 20 ;
SHA1HashedValue += TempHash ;

Return SHA1HashedValue XOR MD5HashedValue
}

3.2.2 Master Secret generation

The Master Secret is a 48-byte value that is used as one of the final inputs to the TLS

PRF in order to generate the key block. The Master Secret acts as a source of entropy

for this generation. In order to generate the Master Secret the following components are

required.
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• Premaster Secret

• ClientHello.Random

• ServerHello.Random

• A label ”

The Premaster Secret is obtained from decrypting the encrypted Premaster Secret which

is contained within the Client Key Exchange message. The ClientHello.Random and

ServerHello.Random are the 32-byte values generated by the client and server contained

respectively in he Client Hello and Server Hello messages. The label is an ASCII string

which is used to identify which phase the TLS PRF is in. For Master Secret generation

the label will be “master secret”.

The TLS PRF method header has the following format :

TLS PRF( St r ing Secret , I n t eg e r Sec r e t Length , S t r ing

Label , S t r ing Random, Int OutputLen )

Assuming this header, in order to perform the Master Secret generation a the following

call would be required :

TLS PRF( PremasterSecret , 4 8 , master s e c r e t ,

C l i en tHe l l o .Random + Serve rHe l l o .Random, 48 )

Note that in the above call ClientHello.Random + ServerHello.Random implies the con-

catenation of ClientHello.Random and ServerHello.Random.

3.2.3 Key expansion

The TLS PRF is also used to generate the key block from which the symmetric keys,

IV’s and MAC keys are cut. Essentially, the HMAC hashes are repeatedly applied until

sufficient amount of data is generated. For key expansion, the following parameters are

required :

• Master Secret

• ClientHello.Random
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• ServerHello.Random

• A label

In the case of key expansion, the label used is “key expansion”. In order to perform key

expansion, the following call would be required :

TLS PRF( MasterSecret , 4 8 , key expansion ,

C l i en tHe l l o .Random + Serve rHe l l o .Random, keyLength )

The key length property will be dependent on the cipher suite chosen.

Having considered the TLS protocol and the TLS PRF, the final section of this chapter

the SSL protocol is briefly contrasted with the TLS protocol.

3.3 SSL Specification

As TLSv1.0 is the successor to the SSv3 protocol it follows that the two protocols are

similar in nature. The only significant differences worth mentioning is the difference

between the TLS PRF and the SSL PRF and the cipher suites supported by said protocols

[11]. Algorithm 4 describes the SSL PRF in pseudo-code and should be contrasted with

Algorithm 3 which describes the TLS PRF in pseudo-code.

Algorithm 4 SSL PRF Pseudo-code

SSL PRF( St r ing Secret , I n t eg e r Sec r e t Length , S t r ing
Label , Int OutputLen )
{

whi le hashedLength < OutputLen
va l = ’ A’
/∗

The value o f va l increments
in the f o l l ow i ng pattern
i t e r a t i o n 0 : va l = ’A’ , i t e r a t i o n 1 :
va l =’BB’ , i t e r a t i o n 2 : va l = ’CCC’ . . .

∗/
TempHash = MD5( s e c r e t + SHA( va l + Sec r e t +
Cl i en tHe l l o .Random + Serve rHe l l o .Random ) ;
hashedLength += 16 ;
Output += TempHash ;

}
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3.4 Summary

This chapter has discussed some of the technical details of the TLS protocol. A discus-

sion of the protocols relevant to the transfer of network traffic was considered within this

chapter. Namely Ethernet, IPv4 and TCP were discussed and logical models and sample

headers were provided. A discussion of the TLS Record Layer was provided. This was

achieved by considering the packet structure of messages in terms of both logical mod-

els and sample message sent during the TLS Handshake phase. All critical parameters

required in order to generate the symmetric keys were discussed. These parameters in-

cluded : ClientHello.Random, ServerHello.Random, Premaster Secret, Master Secret and

the TLS PRF labels . The TLS PRF function was considered in terms of its purpose within

the TLS protocol and the requirements for key generation and a pseudo-code implemen-

tation were provided. Finally some brief discussion on the differences between TLS and

SSL was provided. It was concluded that these protocols differ in their implementation

of their PRF’s and the cipher suites supported.



Chapter 4

Design and Implementation

This chapter discusses the framework design for Project Bellerophon and the experimental

design used for testing. The application design section discusses the design of Project

Bellerophon considering the framework’s structure and the modules necessary for such a

framework. In the experimental design section discussion relating to the configuration of

a TLS testbed consisting of a TLS server and a TLS client for the purpose of debugging

and testing Project Bellerophon is provided. Note that an outline of the tests performed

on Project Bellerophon can be found in Chapter 5.

4.1 Application Design

As assumed in the introductory chapters, legitimate access to the data or network con-

nection is assumed. Further it is assumed that the private keys which are required to

build the symmetric keys are also available. If these assumptions are not made the thesis

scope would need to include methods related to feasible brute forcing or side channel

attacks. This section discusses the system design which is then broken up into three

core modules and a main (loader) module. These modules are outlined and pseudo-code

implementations are provided.

The next subsection considers the logical system design .

4.1.1 Logical system design

In order to build such a system an overall systems design is required which details the

individual components of the system and the general flow control. This model was created

after considering the structure of the protocols discussed in Chapter 2 and Chapter 3

.Figure 4.1 shows the logical structure and flow of Project Bellerophon.
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Figure 4.1: Flow diagram showing the proposed systems design detailing the system
structure and logical flow

This logical design diagram is now phrased as a textual scenario:

Once the system has been started, a PCAP file or stream is loaded. Project Bellerophon

then processes the stream or file attempting to find the the cryptographic suite used by

the protocol. It then attempts to rebuild the session keys used for the encryption and

decryption of application data. Once these parameters have been obtained any applica-

tion data that passes through the cryptographic is then decrypted and the plain-text is

produced. This plain-text can then undergo analysis by other applications.

From this textual scenario and the logical design it follows that the following modules are

required.

• A Decryption module

• Traffic Analyser module

• Packet Capture module

• A main application

Each of these modules are now considered discussing the requirements of each model, the

purpose of each module and some of the implementation choices and details. The first

module to be considered is the Decryption module.
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4.1.2 Decryption module

The Decryption module needs to be able to decrypt generic application traffic when given

the decryption key and the name of encryption algorithm used to encrypt the traffic.

Thus in order to decrypt encrypted traffic from both the client and server this module

will require both the client and server symmetric keys. OpenSSL [12] was chosen as the

library to provide the decryption functionality for two reasons. Firstly, OpenSSL is cross

platform and thus it should be possible to port code relatively easily. Secondly, the EVP

Interface [16] provided by OpenSSL is an excellent interface for dealing with decrypting

traffic encrypted with an arbitrary encryption algorithm. Algorithm 5 provides simplified

pseudo-code describing the functioning of the Decryption module.

Algorithm 5 Decryption module pseudo-code

Decypt ( App l i ca t ion Data )
{

Get the decrypt ion ;
Get c iphe r s u i t e ;
EVP Decrypt ( CipherSuite , App l i ca t ion Data , Key ) ;
Pass output back to main app l i c a t i o n ;

}

The next module to be considered is the Packet Capture module.

4.1.3 Packet Capture module

The Packet Capture module filters traffic from either a live or prerecorded PCAP stream

and then presents the appropriate traffic to the protocol analyser module. The Packet

Capture module requires functions to stop and start the actual capture and a callback

function which passes packets onto an analyser dependent upon some criteria. In addition,

the Packet Capture module needs to be able to filter for specific traffic.

As development of Project Bellerophon took place in a Linux environment, LibPCAP [19]

was chosen to provide the packet capturing abilities. The advantage of using this library

is that in theory minimal effort is required in porting to the Windows platform as there is

a native Windows implementation of PCAP called WinPCAP [4]. LibPCAP also allows

for the construction and application of Berkeley Packet Filters (BPF) [24].

Algorithm 6 provides simplified pseudo-code describing the functioning of the Packet
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Capture module. Sample implementation of the Packet Capture Module can be found in

Appendix C.

Algorithm 6 Packet Capture module pseudo-code

Star t ( )
{

Load PCAP Stream
Bu i l dF i l t e r (TCP)

whi l e the re I s T r a f f i c
{

packet = new packet form the stream ;

i f packet meets f i l t e r requ i rements
Give packet to ana ly s e r ;

}

}

The next module to be considered is the Traffic analyser.

4.1.4 Traffic Analyser module

The Traffic Analyser must be able to parse packets received from the Packet Capture

module in order to find the cryptographic parameters required for building the symmetric

keys that are to be used by the Decryption module.

Considering a TLS implementation of such a module implies that an implementation

of the TLS PRF function is required as this function is used to generate the final key

block from which the symmetric keys are cut. The Traffic Analyser needs to be able to

differentiate different messages received and be able to identify the Client Hello message

for the ClientHello.Random value, the Server Hello Message for the ServerHello.Random

value and the accepted cipher suite, the Client Key Exchange message for the encrypted

Premaster Secret and finally the Application Data messages for the encrypted data held

within. Further the Traffic Analyser module needs to load the RSA Private key used by

the TLS server in order to decrypt the Premaster Secret. Once all the parameters required

have been collected, the TLS PRF is invoked to perform the symmetric key generation.

OpenSSL was chosen to load the RSA key and to decrypt the encrypted Premaster Secret.
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The TLS PRF function implementation was built from the TLS PRF function provided

in XYSSL (now know as the PolarSSL library) [3] with some modifications to the original

source code due to the TLS PRF from XYSSL incorrectly performing bitwise XOR on

the HMAC hashes produced.

It is noted that it would be possible to develop other Traffic Analyser modules for other

protocols and in this way allow for extensibility.

Algorithm 7 provides simplified pseudo-code describing the functioning of the Traffic

Analyser module for TLS.

Algorithm 7 Traffic Analyser module pseudo-code

Analyse
{

I f Message va l i d SSL Content Type
{

I f HandShake Type i s C l i en t He l lo Message
Store C l i en tHe l l o .Random ;
Store C l i en t IP Address ;

I f HandShake Type i s Server h e l l o Message
Store Se rve rHe l l o .Random ;
Store Server IP Address ;

I f HandShake Type i s C l i en t Key Exchange Message
Store encrypted Premaster Sec r e t ;
Load RSA Pr ivate Key ;
Decrypt Premaster Sec r e t ;
and s t o r e ;

I f Seen Both Cipher Spec Changes
Generate Master Sec r e t us ing Se rve rHe l l o .Random,
C l i en tHe l l o .Random and decrypted Premaster Sec r e t ;
Generate Key Block us ing Se rve rHe l l o .Random,
C l i en tHe l l o .Random and master s e c r e t ;
Cut symmetric keys ;

I f App l i ca t ion Data
Get IP Address ;
Determine i f C l i en t / Server ;
Pass to decrypt ion module f o r decrypt ion ;

}
}
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Figure 4.2: Class Diagram of Project Bellerophon

4.1.5 Main Application

The main application simply needs to load the other modules and start the Packet Capture

module. In this implementation of Project Bellerophon the Main Application is very

simplistic. Finally a complete class diagram consisting of all the modules is shown in

Figure 4.2 .

The next section considers the design of a testbed used for testing the implementation.

4.2 Testbed Design and Construction

This section discusses constructing a TLS server and a TLS client for the purposes of

testing Project Bellerophon. Again it is noted that that an outline of each experiment

performed is provided in the appropriate section in chapter 5. An OpenSSL enabled

Apache web server [13] was configured to accept TLS 1.1 connections thus acting as the

TLS server and the Opera web browser was configured to act as the TLS client.

The configuration of the TLS server is now discussed.
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4.2.1 Configuring the TLS server

An Ubuntu 9.04 Virtual Machine was prepared, running in VMWare 6.5.1. The configu-

ration process started off by installing OpenSSL and Apache. The console command for

the installation of these software packages follows below :

sudo apt−get i n s t a l l apache2 apache2 .2−common

apache2−u t i l s opens s l

After Apache and OpenSSL had been successfully installed, it was necessary to generate a

RSA private key and a certificate that can be used during the negotiation phases in TLS.

OpenSSL was used for all of the key generation and signing requirements. The command

below was issued in order to generate a RSA private key :

opens s l genrsa −out keyName keyLength

A “keyName” of serverkey and a “key length” of 4096 were chosen as the parameters

in the above command. After creating the key, a CSR (Certificate signing request) was

needed in order to create a certificate. The command below created a CSR :

opens s l req −new −key s e r v e r . key −out s e r v e r . c s r

This request is usually then sent to a Certification Authority (CA) such as Thwate for

processing. However as this was not a real world production environment the CSR was self

signed. Web browsers will not accept self signed certificates without confirmation from

the user but again as this was not a production environment this issue was neglected.

The command below self signed the CSR for 365 days :

opens s l x509 −req −days 365 −in s e r v e r . c s r

−s ignkey s e r v e r . key −out s e r v e r . key

The generated certificate and key are now installed on the web server. This was a simple

process of creating a directory to house these files and then moving the files there. The

following commands achieved this :

sudo mkdir / e t c /apache2/ s s l /

sudo cp s e r v e r . c r t / e t c /apache2/ s s l /

sudo cp s e r v e r . key / e tc /apache2/ s s l /
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Next, the Apache SSL module was enabled. This was achieved by entering the following

command :

sudo a2enmod s s l

Next, a SSL enabled site was created. This was achieved by adding a configuration file

to /etc/apache2/sites-available/. The configuration used is shown below :

NameVirtualHost ∗ : 443

<v i r t u a l h o s t ∗:443>

ServerAdmin webmaster@localhost

SSLEngine On

SSLCe r t i f i c a t eF i l e / e t c /apache2/ s s l / s e r v e r . c r t

SSLCer t i f i ca t eKeyF i l e / e t c /apache2/ s s l / s e r v e r . key

SSLCipherSuite ALL:+HIGH:+MEDIUM:+LOW

#other c on f i gu r a t i on

<d i r e c t o r y /var /www/>

. . . .

</v i r t u a l h o s t ∗:443>

The SSLCipherSuite parameter specifies what cipher suites Apache will accept. Apache

was configured to accept all valid SSL Cipher Suites. In order to accept HTTPS con-

nections Apache needed to know to listen on port 443. This was achieved by editing

ports.conf to listen on port 443 as shown below.

<IfModule mod ss l . c>

Li s t en 443

</IfModule>

The new SSL site was then enabled by entering the following command :

sudo a2 en s i t e siteName

Finally Apache was restarted. This was accomplished by :

sudo / e tc / i n i t . d/apache2 r e s t a r t

Files in the /var/www directory were now available through a web-browser pointed at

https://hostname/.
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Figure 4.3: Cipher Suite Configuration for Opera 10

Having configured the TLS server, the TLS client configuration was considered.

4.2.2 Configuring the TLS Client

For testing purposes it would useful to configure which cipher suite will be used by TLS

for the encryption functionality. As the client specifies what protocols it is willing to

accept it is possible to force a specific cipher suite to be chosen assuming the server is

willing to accept said cipher suite . This was achieving by disabling all other cipher

suites except for the desired suite on the TLS client. Opera, acting as the TLS client,

was configured by changing what cipher suites are accepted under the Security Protocols

tab in Security Menu in the Preferences tab. Figure 4.3 shows the Security Protocols

configuration window for Opera 10.

4.3 Summary

This chapter has considered the system design and experimental design for Project Belle-

rophon. In the system design section the various components for building a generic

decryption framework were identified. These components included a Decryption module,

a Packet Capture module and a Traffic Analyser module. Each of these modules were

discussed with regards to their purpose, requirements and pseudo-code implementation.

In the experimental design section it was considered how to construct a TLS server and

a TLS client in order to test Project Bellerophon. The chosen TLS server was a TLS

enabled Apache web server and within this section detailed instructions as to how said

server was configured was provided. The chosen TLS client was the Opera Web browser

and details concerning its configuration were provided.



Chapter 5

Results and Discussion

This chapter considers results obtained during experimentation. Section 5.1 considers the

platform on which testing was perfomed on. Section 5.2 considers the accuracy of the

decryption provided by Project Bellerophon by providing the application with a sample

capture and observing the resultant output. Section 5.3 evaluates the performance of

Project Bellerophon in terms of the efficiency of the decryptions provided by Project

Bellerophon by comparing the time taken for the decryption of encrypted traffic against

Tshark. Section 5.4 considers the meaning of the results obtained in Section 5.3.

5.1 Test platform

Testing was performed on the hardware and software platform specified in Table 5.1. It

is noted that while the base operating system running on the test platform was Windows

XP, the actual application was run in an Ubuntu 9.04 virtual machine running within

VMWare.

5.2 Verifying the accuracy of the decryption

This section considers experiments conducted in order to determine whether Project

Bellerophon produces accurate decryption. The experimental methodology is considered

Category Type
CPU Intel Core 2 Quad Q6600 clocked at 2.6 GHz

Memory 1x 2Gb Kingmax DDR2 800
Motherboard MSI P35 Neo 3 (socket 775)

Base OS Windows XP SP3

Table 5.1: Table containing the hardware and software configuration used for testing

55



5.2. VERIFYING THE ACCURACY OF THE DECRYPTION 56

File Size 27 bytes
Contents (ASCII) Knowning is half the battle

Contents (Hexadecimal) 4b 6e 6f 77 6e 69 6e 67 20 69 73 20
68 61 6c 66 20 74 68 65 20 62 61 74
74 6c 65

MD5 of Contents 54 03 d2 9b f8 7f 9d f6 60 8c d3 4d
08 a3 f8 27

SHA-1 of Contents 31 84 bb 58 24 eb 74 19 db 9d 12 79
0d 6b 1b de 42 d0 8a ef

Table 5.2: Table specifying the test file parameters

and results obtained are provided.

5.2.1 Experimental Outline

A series of simple experiments were conducted to determine whether Project Bellerophon

could indeed provide accurate decrypted output, as correctness is a critical goal of such

a project. To this end a number of standardized tests were performed which involved

copying relatively small files through HTTPS and capturing the resultant traffic as a

PCAP file. This PCAP file is then loaded by the decryption tool which then produces

the decrypted file as output. The MD5 and SHA-1 hash of the original file can then be

compared against the MD5 and SHA-1 of the decrypted output. If these hashes match it

can assumed that the decryption was successful. Copying files through HTTPS has the

additional effect of producing a HTTP Request from the client and a HTTP Response from

the server in addition to the file being copied. For the purposes of this implementation

these HTTP messages are ignored. .

For brevity only a single file that was copied through HTTPS will be considered within

this section. Additional results can be found on the accompanying CD. A file prepared

to the specifics shown in Table 5.2 was created. This file was then transferred through

HTTPS. The TLS client used was forced use the TLS RSA WITH AES 256 CBC SHA

cipher suite as described in Section 4.2. Using Wireshark the resultant traffic was captured

into a PCAP file.

The PCAP file was given as input to the Project Bellerophon producing the results found

in Algorithm 8.

The server key was required for decryption as the file was sent by the server and thus it

follows that it was encrypted with the server’s symmetric key. The server’s initialization
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01Message Type
{

00 00 34Length
{

03 01Version
{

4a e3 15 83 2c de 2e 32 1d 39

bd 39 a8 3d 1d ea 03 01 0f 23

33 ca c4 46 93 6d 4b cf 72 4e

45 dd

ClientHello.Random


00 02Cipher Suite Length

{
03 01Accepted Cipher Suites

{

Figure 5.1: Client Hello message obtained during Project Bellerophon execution

vector (IV) was required in addition to the key as a chain block cipher type encryption

algorithm. The Hex Decrypted-Trimmed field shows the data after it has been decrypted

and additional padding bytes have been removed. Performing MD5 and SHA-1 hashes

on the resultant plain-text it was observed that these hashes produce the same values as

shown in Table 5.2. Clearly, for this small test file Project Bellerophon has produced an

accurate decryption.

Arguably this simple result should show that Project Bellerophon can produce accurate

decryptions. However to be pedantic the researcher traced through the entire key nega-

tion, encryption and decryption processes to justify that for this small data set that

Project Bellerophon was functioning correctly. The remainder of this section traces

through how the symmetric keys were built and how the application data was decrypted.

It is noted that additional sample output from Project Bellerophon in terms of the plain-

text decrypt and cryptographic parameters generated are provided on the accompanying

project CD.

The next sections consider messages parsed and parameters collected by Project Belle-

rophon in order to obtain the plain-text.

5.2.2 Cryptographic parameters acquired from Server Hello and Client Hello

The ServerHello.Random and ClientHello.Random values were retrieved from the Client

Hello, as shown in Figure 5.1 and Figure 5.2.
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Algorithm 8 Output produced by Project Bellerophon when supplied with captured
traffic in PCAP format

Pro j e c t Be l l e rophron Decryption Output F i l e

Encryption Used : AES−256−CBC

Star t o f encrypted app l i c a i t on data

The message was sent from the s e r v e r ( 1 9 2 . 1 6 8 . 5 6 . 1 )

Server key :

42 7a 1d 5a 47 7c da a7 3c 8e 48 6d b3 e2 59 92
6e 15 0a 96 69 8d 5b b4 ab 80 83 e4 cd 4 f 76 db

Server IV :

c7 1d fd 5 f b9 f5 a5 e9 bb 55 81 d9 1c 3d 62 97

Encrypted Form [ 4 8 ] :

2 f b0 5c 58 26 a6 70 71 db 25 80 02 87 5a 52 a4
a9 20 34 aa ee 59 6a 3b 84 31 c2 3b d0 ac 6b 53
c7 1d fd 5 f b9 f5 a5 e9 bb 55 81 d9 1c 3d 62 97

Hex Decrypt ( without padding ) [ 2 7 ] :

4b 6e 6 f 77 6e 69 6e 67 20 69 73 20 68 61 6c 66
20 74 68 65 20 62 61 74 74 6c 65

PlainText Decrypt :

Knowning i s h a l f the ba t t l e

End o f encrypted app l i c a i t on data
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02Handshake Type
{

00 00 46Length
{

03 01Version
{

4a e2 f3 72 66 70 e9 d0 f4 96

54 51 14 60 23 ce be 0e 6e ea

6c 2a 09 ff 1b f4 b1 d0 5a 8c

1a 1d

ServerHello.Random


03 01Accepted Cipher Suite

{

Figure 5.2: Server Hello message obtained during Project Bellerophon execution

10Handshake Type
{

00 02 02Length
{

62 bc 00 82 af 04 29 c3 b1 ff 79

eb 30 60 29 73 f6 da da 61 4d bd

0a 17 9c 1e 0f 78 8f aa d5 29 37

a0 17 3a 96 3a 82 89 76 5a 69 64

e8 67 5d e6

Premaster Secret


Figure 5.3: Client Key Exchange message obtained during Project Bellerophon execution

Figure 5.2 also shows that the chosen cipher suite, in this case, is the cipher suite associated

with the value 0x00 0x35. Using the values from Table 3.5 it is concluded that this suite is

TLS RSA WITH AES 256 CBC SHA. As RSA was chosen for negotiation, the encrypted

Premaster Secret must be obtained and then decrypted using the RSA private key.

5.2.3 Premaster Secret and Client Key exchange

As mentioned in Chapter 3, the encrypted Premaster Secret is stored in the Client Key

Exchange message. However, this Premaster Secret is 512 bytes long which is difficult to

display within this context and thus only the last 48-bits have been displayed. Figure 5.3

shows the obtained Client Key Exchange message.

Using the RSA decryption algorithm and the RSA private key the encrypted Premaster

Secret was decrypted yielding the Premaster Secret as shown in Figure 5.4. Note that
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03 01 9d 62 22 5c ab 2e 80 fa 7b

22 1b 59 eb 82 2a 5d 7d 9e 55 69

ff e1 95 e0 3a 18 32 f6 b5 4c 0f

06 44 82 ef 1a 62 27 5b fc 31 59

Decrypted PS


f6 2b bf 49

Figure 5.4: Decrypted Premaster Secret obtained after decrypting the encrypted Premas-
ter Secret

“PS” stands for Premaster Secret.

5.2.4 Master Key generation

Using the parameters derived in earlier sections, the Master Secret was generated through

the use of the TLS PRF. The Master Secret is generated by calculating the HMAC MD5 of

the Premaster Secret and then calculating the HMAC SHA1 of the Premaster Secret and

then performing the XOR operation on these two results. The ClientHello.Random and

ServerHello.Random form the key used by the HMAC functions. The HMAC MD5 key is

formed by appending ClientHello.Random to ServerHello.Random. The HMAC SHA1 key

is formed by appending ServerHello.Random to ClientHello.Random. Figure 5.5 shows

these keys in block diagram format. Figure 5.6 shows the resultant HMAC hashes of the

Premaster Secret.

Performing the XOR operation on each of the bytes in the two hashes results in the Master

Secret. Figure 5.7 shows the Master Secret generated.

Now that the Master Secret has been obtained, key expansion may take place using the

TLS PRF.

5.2.5 Key expansion

Using the Master Secret as input to the TLS PRF in key expansion mode the following

key block was obtained as shown in Figure 5.9.

This key block was then dissected into the required cryptographic components. It is noted

that AES-256- CBC is used as the encryption algorithm, this implies a key length of 32-

bytes. As SHA1 is used for authentication this implies that tbe MAC keys of twenty-bytes
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4a e2 f3 72 66 70 e9 d0 f4 96 54

51 14 60 23 ce be 0e 6e ea 6c 2a

09 ff 1b f4 b1 d0 5a 8c 1a 1d 4a

e3 15 83 2c de 2e 32 1d 39 bd 39

a8 3d 1d ea 03 01 0f 23 33 ca c4

46 93 6d 4b cf 72 4e 45 dd

MD5 Key


4a e3 15 83 2c de 2e 32 1d 39 bd

39 a8 3d 1d ea 03 01 0f 23 33 ca

c4 46 93 6d 4b cf 72 4e 45 dd 4a

e2 f3 72 66 70 e9 d0 f4 96 54 51

14 60 23 ce be 0e 6e ea 6c 2a 09

ff 1b f4 b1 d0 5a 8c 1a 1d

SHA-1 Key


Figure 5.5: Block Diagram of HMAC Keys used in the TLS PRF

4d e7 79 27 e2 7c 50 da be 19 55

16 54 e4 9f fb 8f 06 cb 01 40 b7

38 40 c0 54 c3 93 73 24 79 c7 ae

ae 9f c5 01 5e 23 10 53 b8 f4 41

bc 47 97 ef

HMAC-MD5 Hash


f4 2f 4f 54 69 b6 d9 62 f2 70 45

fd 95 10 e3 06 fc 22 bb 6c f5 36

5c f7 87 d8 0e 80 27 45 28 43 9e

72 fc b3 d3 04 d3 7e a3 70 a5 ce

17 96 92 8b

HMAC-SHA1 Hash


Figure 5.6: Block Diagram of HMAC hashes created during the TLS PRF execution

03 01 9d 62 22 5c ab 2e 80 fa 7b

22 1b 59 eb 82 2a 5d 7d 9e 55 69

ff e1 95 e0 3a 18 32 f6 b5 4c 0f

06 44 82 ef 1a 62 27 5b fc 31 59

Master Secret


f6 2b bf 49

Figure 5.7: Block Diagram of the generated Master Secret from the TLS PRF



5.2. VERIFYING THE ACCURACY OF THE DECRYPTION 62

c1 54 c6 dd 12 a6 b4 0d 08 6c

87 a0 34 6e b1 4e 9d ed 91 6c

65 1b 1e 9b e9 0d 04 f5 88 c8

e6 92 c9 fe 68 e6 d0 d9 d7 73

10 98 16 f3 3c 80 46 60 57 d4

bb fe 99 f8 1c 3e a8 e1 b1 7c

59 e3 69 c6 1b 65 3f 4f 8c 70

04 a0 37 d0 20 0b 7a d8 65 ed

43 98 fd 69 c6 1b 65 3f 42 7a

1d 5a 47 7c da a7 3c 8e 48 6d

b3 e2 59 92 6e 15 0a 96 69 8d

5b b4 ab 80 83 e4 cd 4f 76 db

70 77 8d da 7e dc af 9e 19 51

95 67 f5 59 08 19

Client MAC Key


Figure 5.8: Block Diagram of the output of the PRF Key Expansion

must be generated. Finally as a chain block cipher is used it follows sixteen-byte IV’s are

required. Two of each of these cryptographic parameters were required as both the client

and server needs one of each. This amounts to a total block size of 136-bytes.. Using the

key sizes previously discussed and the fact that two sets of these keys are generated, the

key block was cut correctly into a Server Write key, a Client Write key, a Server MAC

key, a Client MAC key, a Server IV and a Client IV. Figure 5.9 shows the recovered

cryptographic parameters for the encryption and decryption of application data sent by

the client. Figure 5.10 shows the recovered cryptographic parameters for the encryption

and decryption of application data sent from the server.

Having obtained the cryptographic keys it is now possible to decrypt encrypted application

data.

5.2.6 Recovered Application Data

The encrypted application data was recovered from the application messages. Figure 5.11

shows the message that contains the desired plain-text in encrypted form.
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c1 54 c6 dd 12 a6 b4 0d 08 6c

87 a0 34 6e b1 4e 9d ed 91 6c
Client MAC Key


65 1b 1e 9b e9 0d 04 f5 88 c8

e6 92 c9 fe 68 e6 d0 d9 d7 73

10 98 16 f3 3c 80 46 60 57 d4

bb fe

Client Write Key


99 f8 1c 3e a8 e1 b1 7c 59 e3

69 c6 1b 65 3f 4f
Client IV


Figure 5.9: Block Diagram of recovered client cryptographic parameters

8c 70 04 a0 37 d0 20 0b 7a d8

65 ed 43 98 fd 69 c6 1b 65 3f
Server MAC Key


42 7a 1d 5a 47 7c da a7 3c 8e

48 6d b3 e2 59 92 6e 15 0a 96

69 8d 5b b4 ab 80 83 e4 cd 4f

76 db

Server Write Key


70 77 8d da 7e dc af 9e 19 51

95 67 f5 59 08 19
Server IV


Figure 5.10: Block Diagram of recovered server cryptographic parameters

2f b0 5c 58 26 a6 70 71 db 25 80

02 87 5a 52 a4 a9 20 34 aa ee 59

6a 3b 84 31 c2 3b d0 ac 6b 53 c7

1d fd 5f b9 f5 a5 e9 bb 55 81 d9

1c 3d 62 97

Encrypted Message


Figure 5.11: Block Diagram of Encrypted Application Data
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4b 6e 6f 77 6e 69 6e 67 20 69

73 20 68 61 6c 66 20 74 68 65

20 62 61 74 74 6c 65 be 66 5c

fd ed 9d 4c 1f 73 96 34 a7 41

ed 5c 87 f7 99 30 4a 00

Decrypted Message(H)


4b 6e 6f 77 6e 69 6e 67 20 69

73 20 68 61 6c 66 20 74 68 65

20 6c 62 61 74 74 6c 65

Decrypted Message(T)


Knowning is half the battleDecrypted Message(A)

{
Figure 5.12: Block Diagram of Decrypted Application Data

Using the cryptographic keys obtained and identifying which keys are to use based upon

the message’s IP address, omitted here for brevity, the message was decrypted. Figure

5.12 shows the decrypted message in both hexadecimal and ASCII form. Note that

Decrypted Message(H) is the complete decrypted block, Decrypted Message(T) is the

decrypted block without the padding bits and Decrypted Message(A) is the ASCII form

of the decrypted application (without padding bits).

Having shown that Project Bellerophron can produce accurate decryption, the next sec-

tion now considers the efficiency of Project Bellerophon

5.3 Testing the efficiency of decryption

This section discusses the efficiency of the developed implementation. An outline to the

experimental process is provided together with results obtained for Tshark and Project

Bellerophon

5.3.1 Experimental Outline

To show that the implementation was feasible, the time taken for Project Bellerophon

to decrypt encrypted traffic was tested and contrasted with Tshark. A PHP script was

developed to create random data of a specific length. This data was then copied to the

web directory of the machine running the TLS server. This data was copied through

HTTPS and the resulting traffic was recorded to a PCAP file. To measure the time taken

for Project Bellerophon the perform the decryption of the encrypted traffic a simple test
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File Size 100 500 1000 10000 15000 20000
Execution Time 9.32 9.33 9.43 9.35 9.53 9.56

File Size 25000 30000 35000 40000 450000 50000
Execution Time 9.74 9.83 9.89 9.96 10.02 10.13

Table 5.3: Table of File Size vs. Execution time to decrypt a file encrypted using AES-
256-CBC

script was developed using shell scripts to provide timing to millisecond precision. A

similar script was used to determine the time taken to decrypt the encypted traffic using

Tshark . Details of said scripts can be found in Appendix A.

It would useful to understand the general relationship that exists between the time taken

to decrypt an encrypted file versus the the size of the file as this results can be contrasted

with the relationships obtained between time taken to decrypt encrypted traffic and the

size of the encrypted traffic for Tshark and Project Bellerophon. To achieve this a baseline

was established by considering the time that it takes to decrypt files that have been

encrypted using Opens.

5.3.2 Establishing a baseline

Knowing the relationship between files size and time to decrypt is useful information

as a similar relationship between time to decrypt encrypted traffic and the amount of

encrypted traffic is expected. To this end a file was encrypted using ASE-256-CBC and

then decrypted a 1000 times, measuring the execution time and recording the average

of all of the executions. OpenSSL was used as the library to provide the encryption and

decryption facilities. The use of OpenSSL was appropriate as it is the library that provides

the decryption functionality for Project Bellerophon. The script that was used to generate

these results can be found in Appendix A. Table 5.3 shows the acquired results.

This data was then graphed producing Figure 5.14. It was apparent from 5.14 that there

appears to be a linear relationship between time taken to decrypt and the size of the

file decrypted. This relationship was then investigated through the use of simple linear

regression.

The data shown in Table 5.3 was entered into into R (the statistical analysis software

package) [25, 14]. A simple linear regression was performed and the correlation co-efficient

was calculated to determine whether the result obtained was significant. From the results

of the linear regression and letting x represent the file size and y represent the time taken
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Figure 5.13: Graph of File Size(bytes) vs.Time to decrypt encrypted files(ms) using
OpenSSL

to decrypt, the following equation was derived :

:y = (1.607 × 10−5)x + 9.31

The correlation co-efficient, R2, was calculated as well :

R2 = 0.963136

The correlation co-efficient reveals how much of the deviation in the dependent variable(y)

can be explained by variation in in the independent variable(x) and is used as a measure

of the significance of a linear relationship. Generally a correlation co-efficient of greater

that 0.95 is considered to be very significant. From the R2 value it can concluded that

the regression is significant and that a significant linear relationship exists between the

time taken to decrypt the file and the file size.

In the next section the efficiency of Tshark is considered.

5.3.3 Tshark Timing Results

A similar experiment was then conducted using Tshark. In this case the random file

generation script was used to create files of the appropriate length. These files were then

copied through HTTPS with the resultant traffic captured using Wireshark. The resultant
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Traffic Size 100 200 300 400 500 1000
Decryption Time 391.1 391.61 391.49 392.52 392.65 393

Traffic Size 2000 4000 6000 8000 10000 20000
Decryption Time 392.84 394.89 398.03 394.97 399.47 404.92

Traffic Size 40000 60000 80000 100000 200000 400000
Decryption Time 417.69 432.76 441.15 452.14 510.55 628.8

Traffic Size 600000 800000 1000000
Decryption Time 712.39 854.96 983.75

Table 5.4: Table showing time taken to decrypt encypted traffic(ms) vs.traffic size for
Tshark(bytes)

Figure 5.14: Graph of encrypted traffic size (bytes) vs. time taken for decrypting en-
crypted traffic using Tshark

PCAP was file was given as input to a script which then decrypted the application data

using TShark. The script was written in a way such that it repeated this process 1000

times and produced the average time to perform the entire key generation and decryption.

Table 5.4 shows the obtained results.

Figure 5.14 depicts the relation between traffic size and the time taken to decrypt en-

crypted traffic in milliseconds. It appears from the graph that there is a linear relationship

between execution time and the amount of traffic decrypted.

Linear regression was then applied to the results in Table 5.4. From the results of the

linear regression and letting x represent the traffic size and y represent the time taken to

decrypt, the following equation was acquired :
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Traffic Size 100 200 300 400 500 1000
Time to Decrypt 415.63 416.23 415.89 416.76 416.88 417.11

Traffic Size 2000 4000 6000 8000 10000 20000
Time to Decrypt 420.25 426.59 430.243 436.3 442.63 460.69

Traffic Size 40000 60000 80000 100000 200000 400000
Time to Decrypt 475.48 485.17 497.79 530.16 563.35 715.76

Traffic Size 600000 800000 1000000
Time to Decrypt 850.78 1004.47 1163.56

Table 5.5: Table showing time taken to decrypt encrypted traffic(ms) vs. traffic time for
Project Bellerophon(bytes)

y = (5.780 × 10−4)x + 3.9626 × 102

The correlation co-efficient, R2, was calculated as well :

R2 = 0.999825

From these results it can be concluded that the regression is significant and that there is a

slope of approximately 5.78×10−4, that is for every byte increase in traffic size there is an

increase of about 0.58 of a millisecond change in time to decrypt. When compared to the

baseline a similar trend in increase in execution time is noted, however Tshark has a much

larger y intercept and x co-efficient. The larger y intercept is attributed to the overhead

in starting the traffic dissectors and analysers and building the relevant symmetric keys

from the cryptographic parameters.

Both Figure 5.13 and Figure 5.14 show clear linear relationships between execution time

to decrypt data and the size of the data. This is easily justified as cryptographic algo-

rithms tend to deal with blocks of encrypted data which are then decrypted. The linear

relationship follows from the fact that it should theoretically be no more computationally

expensive to perform the decryption operations for a single block of encrypted plain text

than any other block of encrypted plain-text.

5.3.4 Project Bellerophon Timing Results

Finally, the experiment was conducted using Project Bellerophon to provide the decryp-

tion functionality. A script was modified for the testing of the Project Bellerophon and

can be found in Appendix A. The results captured are presented in Table 5.4

Figure 5.15 depicts the relation between encrypted traffic size and the time taken to

decrypt the encrypted traffic in milliseconds. There appears to be a linear relationship
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Figure 5.15: Graph of encrypted traffic size (bytes) vs. time taken for decrypting en-
crypted traffic using Project Bellerophon

between time taken to decrypt encrypted traffic and the amount of data decrypted, as

was discovered in the results for Tshark’s execution times. Some “inaccuracies” have

been noted, that is for small values of file size it sometimes occurs that it takes longer to

decrypt a shorter encrypted traffic size. This is highly illogical and it can be concluded

that the accuracy of the timing mechanism may be called into question as the correct

decryption is produced.

The data shown in Table 5.5 was entered in to R and simple linear regression was per-

formed, letting x represent the file size and y represent the time taken to decrypt the

encrypted traffic, the following equation was acquired :

y = (7.272 × 10−4)x + 4.275 × 102

The correlation co-efficient, R2, was calculated as well :

R2 = 0.99637

From these acquired results it can be concluded that there is a linear relationship between

time taken to decrypt encrypted traffic and the size of the encrypted traffic for Project

Bellerophon. When compared to the baseline it is noted that both the y-intercept and

x co-efficients are much greater than that for the baseline. This is expected due to the

additional overhead of parsing packets and symmetric key generation.
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TShark Project Bellerophon OpenSSL Decrypt
x co-efficient 5.78 × 10−4 7.272 × 10−4 1.607 × 10−5

intercept 392.6 427.5 9.31

Table 5.6: Table providing a comparison of results obtained for Tshark, Project
Bellerophon and OpenSSL

The next section considers the results obtained and provides some comparison.

5.4 Comparing Project Bellerophon and Tshark in terms of effi-

ciency

Reconsidering the results of the linear regression in the previous section yields Table

5.6. It is clear from Table 5.6 that Tshark is more efficient at obtaining the symmetric

keys required and producing the decrypted output. This is evident by the smaller gradient

between execution time and file size that Tshark has when compared to the larger gradient

for Project Bellerophon. However, it should be noted that the execution times that Project

Bellerophon produced could still be considered reasonable. When both of these results are

compared against using OpenSSL to decrypt an encrypted file a large difference in both

the gradient and intercept was noted. It can be concluded that a considerable amount of

additional processing is required to analyze and decrypt encrypted traffic when compared

to file decryption.

5.5 Summary

This section has considered the efficiency and the accuracy of Project Bellerophon by

performing a series of tests. The accuracy of Project Bellerophon was tested by recording

the transfer of a file through HTTPS and storing this recording as a PCAP file. The

PCAP file was then run through Project Bellerophon producing a plain-text decrypt and

the cryptographic parameters produced. A complete reconstruction of the key generation

that had occurred was provided. It was shown that Project Bellerophon produces accurate

decrypt ions for small files encrypted by Project Bellerophon.

The efficiency of Project Bellerophon was considered by comparing the time that it took

to decrypt encrypted traffic of varying sizes. These results were contrasted against results

for the same experiment but using Tshark to perform the key generation and decryption.

It was found that that Project Bellerophon was slower in its key generation and decryption
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than Tshark. It could however be argued that this difference is not sufficiently significant

to suggest that Project Bellerohpron provides inefficient decryptions.



Chapter 6

Conclusion

6.1 Summary

The intention of this thesis was to produce a framework design that could be used to

decrypt data that had been encrypted through the use of an arbitrary cryptographic pro-

tocol. A literature survey was performed considering symmetric cryptography, public key

cryptography, cryptographic protocols and work related to cryptographic protocols. The

structure and specification of TLS protocol was considered experimentally by considering

the traffic generated when a TLS connection is created. The results of this experimenta-

tion were recorded and was complemented with theoretical knowledge of the TLS protocol.

After having considered the related literature and the functioning of the TLS protocol a

design for a framework that could be used to decrypt traffic generated by an arbitrary

protocol was developed including a logical design and the modules required for the cor-

rect functioning of the system. A test bed was constructed consisting of a TLS enabled

Apache web server acting as the TLS server and a configured web browser acting as the

TLS client. A number of experiments testing the efficiency and accuracy of the provided

implementation were conducted. Tshark was used to contrast the performance of the

implementation by comparing the execution times for sample encrypted traffic decryp-

tion. It was concluded that the implementation provided accurate decryptions but was

less efficient than Tshark.

6.2 Revisiting the research goals

The primary goal of this thesis was to develop a framework design for decrypting traffic

that had been encrypted by an arbitrary cryptographic protocol and to provide sample

implementation for the TLS protocol. This was achieved and a suitable design was dis-

72
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cussed in Chapter 4 with the overall framework consisting of a Decryption module, Traffic

Analyser module and a Packet Capture module. This design was shown to be feasible by

using OpenSSL, LibPCAP and the XYSSL to provide sample implementation for TLS.

The secondary goal was to provide some analysis of the implementation in terms of the

accuracy and efficiency of the decryptions provided. To this ends a test bed was con-

structed consisting of a TLS server and a TLS client. The details of which were discussed

in Chapter 4.2. The accuracy of the implementation was tested by copying files through

HTTPS and comparing the decrypted output from the implementation against the orig-

inal file. It was found that the implementation provides accurate decryptions for small

files. The efficiency of the implementation was also tested and the implementation was

shown to produce decrypted traffic slower than Tshark. However it was concluded that

the implementation still completed the task in a sensible amount of time.

The tertiary goal was to provide some documentation of the TLS protocol through prac-

tical examples. Chapter 3 achieves this goal by providing a step by step walk through

of the processes involved in obtaining the parameters used for key generation in the TLS

protocol. Chapter 5 provides a further example of the key generation process.

6.3 Possible Extensions

The application framework shown in this thesis was developed as a proof of concept and

was not intended to be an industry ready product. At the present time a number of

potential features have not as of yet been implemented. Below some possible extensions

are outlined :

• The implementation may benefit from techniques to optimize performance. These

techniques could possible include parallelization techniques using libraries such as

Linda or making use of NVIDIA’s CUDA technology to allow for massive paral-

lelization on modern GPU’s. These techniques would allow for an increase in per-

formance and would be useful when dealing with large set input sets, seeing as after

the symmetric keys have been recovered the application data could be decrypted in

parallel.

• Additional modules could be developed to deal with other cryptographic protocols

such as IPSec and SSH. As the system has been designed in a way to make it easy

to add additional modules. The real difficulty in providing support for additional
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protocols is understanding the underlying processes involved in the generation of

the symmetric keys for the protocol to be implemented.
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Appendix A

Test scripts listing

This appendix provides source code listings for all the scripts used for testing Project

Bellerophon.

PHP Script to generate a random file of a given byte size

Appendix A details the scripts used in Chapter 5 to produce timing results.

1 <?php

2 $numBytes = ( i n t ) $argv [ 1 ] ;

3 $f i leName = ( s t r i n g ) $argv [ 2 ] ;

4

5 i f ( $numBytes == ””)

6 d i e (”You must s p e c i f y a byte l ength \n ” ) ;

7

8 i f ( $numBytes <= 0 )

9 d i e (” Inva l i d byte l ength \n ” ) ;

10

11 i f ( $f i leName == ””)

12 $f i leName = ”genOut ” ;

13

14 $fh = fopen ( $fi leName , ”w” ) ;

15

16 whi le ( $numBytes != 0)

17 {
18 $numBytes−−;

19 $x = chr ( rand ( 3 3 , 1 2 2 ) ) ;

20 fw r i t e ( $fh , ” $x ” ) ; }
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21 exec (” sudo cp $f i leName /var /www/ $f i l ename ” ) ;

22 exec (” sudo rm $fi leName”

23 ) ;

24 ?>

Bash shell script used to determine the average time to decrypt a

file using OpenSSL

1 #!/bin /bash t o t a l=0

2 i t e r=0

3 max=100

4 whi le [ ” $ i t e r ” != ”$max” ]

5 do

6 s t a r t=$ ( date +%s%N)

7 opens s l aes−256−cbc −d −k $passphrase

8 −in /var /www/ encryptedTest −out /var /www/ p l a i n t e x t

9 end=$ ( date +%s%N)

10 d i f f=$ ( ( $end − $ s t a r t ) )

11 t o t a l=$ ( ( t o t a l + d i f f ) )

12 i t e r=$ ( ( i t e r +1))

13 done

14

15 echo ” s c a l e=2” > aTest

16 echo ” $ t o t a l / (1000000∗$max) ” >> aTest

17 echo ” qu i t ” >> aTest

18 echo ”A timing to t e s t to compare execut ion

19 time f o r openSSL . ”

20 echo ”This t e s t was run $max times ”

21 echo −n ”On average openSSL completed the decrypt

22 in $ t o t a l ( measured in ms) ” > out

23 bc −q aTest >> out

24 cat out rm aTest rm out
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Bash shell script used to determine the average time to decrypt a

file using Tshark

1 #!/bin /bash t o t a l=0

2 i t e r=0

3 max=100

4 whi le [ ” $ i t e r ” != ”$max” ]

5 do

6 s t a r t=$ ( date +%s%N)

7 t shark −q −o ” s s l . d e s e gmen t s s l r e c o rd s : TRUE”

8 −o ” s s l . d e s e gmen t s s l app l i c a t i on da t a : TRUE”

9 −o ” s s l . k e y s l i s t :

10 192 . 168 . 56 . 138 , 443 , tcp , / home/samba/ s e r v e r . key”

11 −o ” s s l . d e bu g f i l e : /home/samba/eDecrypt”

12 −r /home/samba/FinalCaptureSet / cap8000 . pcap

13 −R ” tcp . port == 443 and s s l ”

14 end=$ ( date +%s%N)

15 d i f f=$ ( ( $end − $ s t a r t ) )

16 t o t a l=$ ( ( t o t a l + d i f f ) )

17 i t e r=$ ( ( i t e r +1))

18 done

19

20 echo ” s c a l e=2” > aTest

21 echo ” $ t o t a l / (1000000∗$max) ” >> aTest

22 echo ” qu i t ” >> aTest

23 echo ”A timing to t e s t to compare execut ion time

24 f o r TShark . ”

25 echo ”This t e s t was run $max times ”

26 echo −n ”On average Tshark completed the decrypt

27 in $ t o t a l ( measured in ms) ” > out

28 bc −q aTest >> out

29 cat out rm aTest rm out
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Bash shell script used to determine the average time to decrypt a

file using Project Bellerophon

1 #!/bin /bash t o t a l=0

2 i t e r=0

3 max=100

4 whi le [ ” $ i t e r ” != ”$max” ]

5 do

6 s t a r t=$ ( date +%s%N)

7 t shark −q −o ” s s l . d e s e gmen t s s l r e c o rd s : TRUE”

8 . /NewCap

9 end=$ ( date +%s%N)

10 d i f f=$ ( ( $end − $ s t a r t ) )

11 t o t a l=$ ( ( t o t a l + d i f f ) )

12 i t e r=$ ( ( i t e r +1))

13 done

14

15 echo ” s c a l e=2” > aTest

16 echo ” $ t o t a l / (1000000∗$max) ” >> aTest

17 echo ” qu i t ” >> aTest

18 echo ”A timing to t e s t to compare execut ion time

19 f o r Pro j e c t Bel lerophon . ”

20 echo ”This t e s t was run $max times ”

21 echo −n ”On average Pro j e c t Bel lerophon completed the

22 decrypt in $ t o t a l ( measured in ms) ” > out

23 bc −q aTest >> out

24 cat out rm aTest rm out



Appendix B

Protocol Structs

This appendix discusses the structure of C++ structs used to parse packet headers pro-

duced by PCAP.

Ethernet Header Struct

1 s t r u c t e the rne t

2 {
3 unsigned char ucDest inat ion ;

4 unsigned char ucSource ;

5 i n t type l eng th ;

6 } ;

IP Header Struct

1 s t r u c t ip heade r

2 {
3 u char verLen ;// Vers ion and header l ength

4 u char s e r v i c e ; // Type o f s e r v i c e

5 u shor t tLen ;// Total l ength

6 u shor t ident ; // I d e n t i f i c a t i o n

7 u shor t f l a g s ; // Flags

8 u char t t l ; // Time to l i v e

9 u char p ro to co l ; // Protoco l

10 u shor t c r c ; // Header checksum

11 i p add r e s s saddr ; // Source address

12 i p add r e s s daddr ; // Des t inat i on address

13 u in t padding ;// Padding
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14 } ;

TCP Header Struct

1 s t r u c t tcp header

2 {
3 u shor t spor t ; // source port

4 u shor t dport ; // d e s t i n a t i on port

5 t cp s eq seqNo ;// sequence number

6 t cp s eq ackNo ; // acknowledgement number

7 u char dOffSet ; // data o f f s e t

8 u shor t winSize ; // window

9 u shor t csum// checksum

10 u shor t urgPointer ; // urgent po in t e r

11 } ;



Appendix C

PCAP Capture Sample Code

This appendix details an example capture module using LibPCAP.

1 void packet hand le r ( u char ∗buf f , const

2 s t r u c t pcap pkthdr∗ header , const u char ∗ packet )

3 {
4 //Packet Ana lys i s Occurs Here

5 }
6 void packetCapture : : s t a r t ( )

7 {
8 pcap t ∗adhandle ;

9 char e r rbu f [PCAP ERRBUF SIZE ] ;

10 i f ( i s L i v e )

11 {
12 s t r u c t bpf program fp ;

13 bp f u in t 32 mask ;

14 bp f u in t 32 ipaddy ;

15 pcap lookupnet (devName,&ipaddy ,&mask , e r rbu f ) ;

16

17 adhandle =

18 pcap open l i v e (devName ,5000 ,1 ,1000 , e r rbu f ) ;

19

20 i f ( pcap compi le ( adhandle ,& fp , ” tcp port 443” ,

21 1 , ipaddy ) == −1)

22 {
23 cout<< ” F i l t e r compi la t ion f a i l u r e \n ” ;

24 e x i t ( 1 ) ;

25 }
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26

27

28 i f ( p c a p s e t f i l t e r ( adhandle ,& fp ) == −1)

29 {
30 cout << ” Fa i l ed to apply f i l t e r \n ” ;

31 e x i t ( 1 ) ;

32 }
33 }
34 e l s e

35 {
36 adhandle =

37 pc ap op en o f f l i n e (devName , e r rbu f ) ;

38 pcap loop ( adhandle , 5000000 ,

39 packet handler , NULL) ;

40 }
41 }



Appendix D

CD Contents

The associated project CD contains all files used in order to produce and test the Project

Bellerophon. The following can be found on said CD :

• PCAP files which be open using any traffic analyser which supports the PCAP

format, such as Wireshark, Tshark and SSLDump

• Copies of LibPCAP and OpenSSL

• The Source Code used to produce theProject Bellerophon

• R workspace containg the aquired results

• ISSA published paper

• Scripts used to generate the results

• A copy of the associated development website

• A copy of this thesis in PDF and Lyx format.

• Project Poster

• Literature review

• Final presentation slide deck
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