
A Network Telescope Information
Visualisation Framework

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Samuel Oswald Hunter

Grahamstown, South Africa

November 2010

Abstract

Network telescopes are able to provide a sampled view of the Internet with regard to

nefarious traffic. More specifically they are able to provide empirical data based on ma-

licious traffic, unbiasedly targeted towards unused address space. Network telescopes

accomplish this by monitoring ranges of unused internet address space in which no le-

gitimate traffic should exist. Analysis of traffic captured by network telescopes has been

shown as an effective measure in characterising nefarious traffic caused by worm prop-

agation and distributed denial of service attacks. By choosing the correct metrics for

analysis on this traffic one is able to extract information that gives insight and a greater

understanding of the current state of illegitimate traffic on the Internet. Collecting the

data and extracting the information is however only the first half of the process towards

understanding and interpretation of results. Through correct visualisation, large sets of

data can be summarised in a compact and easily understandable format. This research

focuses on the analysis, manipulation and visualisation of traffic obtained from network

telescope monitoring. Analysis was achieved by outlining specific metrics that were used

to extract information from captured traffic. This information was then manipulated and

prepared for different methods of visualisation. An information visualisation framework

named Ember was created with the goal of managing and visualising multiple data sets.

The Ember framework was then used alongside existing third party libraries to create

a network telescope dashboard. Lastly a case study was conducted with the network

telescope dashboard. It was shown that the dashboard was effective at visualising and

assisting in the interpretation of results.

ACM Computing Classification System Classification

Thesis classification under the ACM Computing Classification System (1998 version, valid

through 2010):

C.2.3 [Network Operations]: Network monitoring, Public networks

D.3.3 [Language Constructs and Features]: Frameworks

K.6.5 [Security and Protection]: Invasive software,

General-Terms: Metrics, Framework, Security

Acknowledgements

Its been a long walk and at times a slow crawl to reach this point, I acknowledge all the

support I have received from my friends and family. I would also like to extend a special

thanks to my supervisor, Barry Irwin for his guidance and support throughout this year.

I would also like to thank my parents for their continued supported and encouragement

over the years. I thank my friends for making this a memorable year. Finally, I would like

to thank the NRF and Telkom SA, Comverse SA, Stortech, Tellabs, Easttel, Bright Ideas

Projects 39 and THRIP through the Telkom Centre of Excellence at Rhodes University

for the financial support they provided.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research Outcomes . 4

1.3 Organisation of Thesis . 5

2 Background and Related Work 6

2.1 Network Telescopes . 7

2.1.1 Passive Network Telescopes . 9

2.1.2 Active Network Telescopes . 9

2.1.3 Honeypots and Honeyfarms . 10

2.1.4 Intrusion Detection Systems . 11

2.1.5 Hybrid Systems . 11

2.2 Network Telescope Architecture and

Configuration . 12

2.2.1 Packet Forwarding . 12

2.2.2 Storage, Filtering and Bandwidth Requirements 13

2.3 Problems Facing Network Telescopes . 14

2.3.1 Placement of Network Telescopes 15

i

CONTENTS ii

2.3.2 Internet Topology . 15

2.3.3 Result Poisoning . 16

2.3.4 Ethical Considerations . 16

2.4 Existing Network Telescopes and Operators 16

2.4.1 CAIDA . 17

2.4.2 Team Cymru . 17

2.4.3 IMS . 17

2.4.4 Rhodes University Network Telescope 18

2.5 Event Probability . 18

2.6 Analysis of Network Telescope Traffic . 20

2.6.1 Distributed Denial of Service Attacks 20

2.6.2 Inferring DDoS Attacks . 21

2.6.3 DDoS Attack Classification and Metrics 22

2.6.4 Worm Propogation . 23

2.7 Security Metrics . 24

2.7.1 Average(Mean) . 26

2.7.2 Median . 26

2.7.3 Standard Deviation . 26

2.7.4 Grouping and Aggregation . 27

2.7.5 Time Series Analysis . 27

2.7.6 Automation of Metric Calculations 27

2.8 Information Dashboards and Visualisation 28

2.9 Summary . 29

CONTENTS iii

3 Information Visualisation Framework Design 30

3.1 Framework Overview . 31

3.2 Containers . 32

3.2.1 Zoom . 33

3.2.2 Description . 33

3.2.3 Navigation . 34

3.2.4 Toggle Cycle . 34

3.3 Graph Scripts . 34

3.3.1 Static Charts . 36

3.3.2 Animated Charts . 36

3.4 Dashboard Generator . 36

3.4.1 XML Constructor . 37

3.4.2 Configuration file . 38

3.5 Libraries . 39

3.5.1 Open Flash Chart 2 . 39

3.5.2 Shadowbox . 40

3.6 Summary . 40

4 Network Telescope Dashboard Design 42

4.1 Data Manager . 43

4.2 Local Database . 44

4.3 Network Telescope Database . 45

4.4 Using Ember . 46

CONTENTS iv

4.5 Additional Components . 47

4.5.1 Gauges . 48

4.5.2 Sparklines . 49

4.5.3 Geopolitical Mapping . 50

4.6 Libraries . 50

4.6.1 Open Flash Gauges . 51

4.6.2 Ammap . 51

4.7 Summary . 52

5 RUscope Dashboard Case Study 53

5.1 Deployment . 54

5.2 Metrics and Traffic Analysis . 54

5.2.1 Distributed Denial of Service(DDoS) Detection 54

5.2.2 Worm Detection . 55

5.2.3 Port Scan Detection . 56

5.2.4 Active and Passive Traffic Detection 57

5.3 Discussion . 58

5.3.1 Ember Containers . 58

5.3.2 Sparklines . 62

5.3.3 Gauges . 63

5.3.4 Geopolitical Map Animation . 65

5.4 Summary . 66

CONTENTS v

6 Conclusion 68

6.1 Future Extensions . 68

6.1.1 GUI for Dashboard Construction 68

6.1.2 Data Aggregation and Visualisation Framework 69

6.2 Summary . 69

A Source Code 76

A.1 Toggle Function . 76

A.2 Graph Script . 77

A.3 OFC-2 Chart Construction . 78

A.4 Embedded SWF . 79

A.5 XML Constructor Class . 80

List of Figures

1.1 Unique source IP addresses scanning on TCP/445(hourly)[5]. 3

1.2 Estimated attack packets per second every 4 hours[17]. 4

2.1 A network diagram illustrating a router that has been configured to route

traffic to a network telescope. 13

2.2 Internet Motion Sensor architecture[7]. 18

2.3 The contribution of individual IP to the total number of packets as seen

at 14 darknets. Over 90% of the packets are from 10% of the source IP

addresses[8]. 19

2.4 A snapshot of Blaster worm showing the three phases of the worm lifecycle[7]. 25

3.1 Ember framework structure when integrated into a dashboard. 32

3.2 An example of a container that contains four charts and is currently dis-

playing a bar chart. 33

3.3 Overview of the dashboard generator, XML constructor and graph script

classes. 37

3.4 The object representation of a dashboard. 38

3.5 Example of the XML configuration file used to define part of a dashboard. 38

4.1 Dashboard component layout. 43

vi

LIST OF FIGURES vii

4.2 Data manager interaction with network telescope database and local SQLite

database. 44

4.3 Database schema for the local dashboard database. 45

4.4 Database schema for the RUscope database. 46

4.5 Protocol Breakdown, pie chart showing the proportion of TCP, UDP and

ICMP packets captured over two intervals. 47

4.6 Operating System(OS) Breakdown, bar chart showing the top 5 OS’s by

packet count over two intervals. 47

4.7 Conficker traffic, bar chart showing the normalised packet count of traffic

caused by Conficker over two intervals. 47

4.8 DDoS traffic, bar chart showing the normalised packet count for DDoS

traffic over two intervals. 47

4.9 Three gauges components; the resource meter, dual gauges and digital

readout. 49

4.10 Three percentage gauges; TCP, UDP and ICMP. 49

4.11 Russia is highlighted in one day, of a 7 days geopolitical traffic density

animation. 51

5.1 RUscope Dashboard. 53

5.2 Example of a Distributed Denial of Service attack in the form of a SYN

flood. 55

5.3 Distribution of packet types among port scans[24]. 57

5.4 Two pie charts showing protocol distribution. 59

5.5 Two bar charts showing Operating System distribution. 60

5.6 Two bar charts showing the packet traffic distribution from Conficker. . . . 60

5.7 Two bar charts showing the packet traffic distribution from DDoS attacks. 61

5.8 Sparklines from the RUscope Dashboard 63

LIST OF FIGURES viii

5.9 Gauges resource meter showing the distribution of traffic over the last 30

days, a drop of 25% in the average traffic is shown. 64

5.10 Gauges digital readout indicating the number of packets captured by RUs-

cope on the 4th of September 2009. 64

5.11 Percentage bars and Dual gauges showing traffic for the 4th of September

2009. 65

5.12 Geopolitical traffic density animation showing the density of traffic by

source country. 67

List of Tables

2.1 Suggested bandwidth requirements according to network telescope sensor

size[7] . 14

2.2 Packets requests and responses[27] . 21

4.1 Sparklines used for dashboard . 50

5.1 Values for protocol distribution chart in Figure 6.4(a) 58

5.2 Values for protocol distribution charts in Figure 6.4(b) 59

ix

Chapter 1

Introduction

On a daily basis the many of hosts that are connected to the Internet experience continu-

ous probes and attacks from malicious entities. These entities such as worms, viruses and

trojan horses are often also the cause of denial of service attacks. Their automated prop-

agation make up the vast majority of the traffic that is captured by network telescopes.

One of the characteristic that a majority of worms share is that during their propagation

phase they tend to target internet addresses indiscriminately although sometimes with a

local bias. They hold no regard for whether the address has been allocated by service

providers or which host device is associated with it. This along with the fact that un-

used address space is not advertised and no live hosts are associated with it means that

the only traffic that should exist there, will be that with potentially malicious intent.

Thus removing the problem faced by traditional IDS of having to discriminating between

legitimate and il-legitimate traffic.

With the steady advance of technology, internet enabled devices are becoming cheaper

and more accessible to the public. This along with decreasing connectivity prices and

increases in network bandwidth[44] has meant that more and more devices are connecting

to the internet every day. This increases the attack vector for these malicious entities and

helps to ensure an increasing population of hosts for future attacks.

The analysis of traffic captured by network telescopes is made easier by the absence of

legitimate traffic that would otherwise have obfuscated traffic with malicious intent. This

however does not greatly simplify the task of analysis as there is still a great volume and

variety of unsolicited traffic to work through.

Any information obtained from this type of traffic analysis is in turn only useful if it

can be interpreted and understood correctly. There are many visualisation techniques

1

1.1. MOTIVATION 2

that can be used to display information and attempt to infer meaning. Some examples

of information visualisations that are often used with regards to network traffic analysis

include charts, graphs, sparklines, heat signatures and animations. These techniques can

be made even more effective if they are grouped into meaningful sets that complement

each other. Providing different views into the same data

1.1 Motivation

This thesis focuses on the development of an information visualisation framework which

will then be used alongside existing third pary libraries to create a dashboard for monitor-

ing traffic obtained from a network telescope. Information visualisation has been proven

as a successful means of summarising large sets of data such as the data obtained from a

network telescope. Simple metrics for traffic analysis will be identified and implemented

for use by the dashboard.

A strong motivation for the research described in this thesis comes from the need for

effective and efficient visualisation of network telescope data. This visualisation need to

be done in manner that lends itself to the explanation of results and helps users to identify

similarities and anomalies that might warrant further investigation. There is also a need

to reduce large quantities of data into smaller re-usable sets of useful information, this is

often a time consuming process and poses a serious problem for a real-time tool such as

an information dashboard. Lastly there is a need to automate the process of analysing

un-solicited traffic which in the past has predominantly been a manual process.

Past research in the field of un-solicited traffic analysis has proven successful in obser-

vation, identification and tracking of Distributed Denial of Service(DDoS) attacks[5][27],

worm prorogation[21][32] and network scanning[9]. An example that serves as motivation

for the use of network telescopes in the detection and tracking of a worm outbreak follows.

Less than a month after Microsoft disclosed the MS08-67[40] vulnerability that affected

multiple versions of the Windows operating system, the Conficker[39] worm was set loose

onto the internet. Figure 1.1 shows traffic observed by CAIDA1 and indicates unique IP

source addresses per day that were scanning network telescope addresses on TCP/445[5].

It should be noted that several outages caused gaps in the data displayed in Figure 1.1.

1CAIDA - http://www.caida.org/home/

1.1. MOTIVATION 3

Figure 1.1: Unique source IP addresses scanning on TCP/445(hourly)[5].

According to Emile Aben two network telescopes from CAIDA started recording scanning

of TCP/445 on the 23rd of October 2008, at which point around 1000-2000 unique source

IP addresses where detected per hour[5]. A sharp increase in scanning was observed at

midnight on the 21st of November UTC. From this point onwards the level of scanning

remained high as Conficker had officially taken hold. This example illustrated how useful

the analysis of un-solicited traffic from network telescopes had been in detecting the date

of origin for Conficker.A and Conficker.B variants.

Traffic as a result of DDoS attacks can also be extracted from network telescope traffic,

this type of traffic is often referred to as backscatter[27]. Backscatter from denial of

service attacks are often received from the target of the attack, an example of this would

be SYN/ACK reply packets received after a SYN flood. During the early morning hours

of December the 10, 2003 the UCSD Network Telescope started receiving backscatter

traffic from the SCO group[17]. This indicated the start of a DDoS attack at which

point approximately 34,000 packets per second where being directed towards the SCO’s

webserver.

On the 11th of December the SCO group’s FTP server became the primary target for the

attack. During the morning of the 11th, the web and FTP servers combined were receiving

over 50,000 packets per second from a SYN flood. Replies from the SCO group’s web and

FTP servers from the resulting SYN flood were sent to spoofed IP addresses that had been

forged by the attackers. The replies from the DDoS attack were as a result detected by

the network telescopes whenever the addresses fell into the same IP address range as the

network telescopes. The DDoS attack against the SCO group is illustrated in Figure 1.2,

the values shown in the graph were calculated using a backscatter analysis technique[27].

1.2. RESEARCH OUTCOMES 4

Figure 1.2: Estimated attack packets per second every 4 hours[17].

This real word example of detecting a DDoS attack by analysing network telescope traffic

further motivates the importance of network telescopes and information visualisation in

modelling malicious activity on the internet.

The research in this thesis is concerned with the development of a visualisation framework

and its application in the creation of a network telescope dashboard that can be used to

help detect and visualise events similar to the Conficker outbreak and SCO denial of

service attack.

1.2 Research Outcomes

The main goals of this thesis are now summarised.

Development of a Visualisation Framework: The Ember framework will be devel-

oped in an attempt to simplify the process of creating and maintaining multiple

visualisations. These visualisation must also be able to make use of multiple data

sets. The framework needs to be able capable of maintaining state over various

charts, allow users to navigating multiple charts and provide additional information

regarding charts. Most importantly the Ember framework needs to be designed

1.3. ORGANISATION OF THESIS 5

in such a manner that allows it to be easily integrated with other projects and

expandable with minimum effort.

Create a Network Telescope Dashboard: A dashboard needs to be created for the

Rhodes University network telescope (RUscope). The dashboard must be capable

of analysing network telescope traffic and visualising the results. It will need to

employ a form of data cache as a high latency is likely to exist when querying a

large network telescope traffic database. The RUscope dashboard should also be

able to visualise and assist in the discovery of DDoS attacks and the monitoring of

Internet based worm activity.

Simplified Traffic Analysis Metrics: For use with the RUscope dashboard, simplified

traffic metrics need to be defined. These metrics will need to be accurate enough to

return useable results that would be sufficient for a proof-of-concept dashboard.

1.3 Organisation of Thesis

Chapter 2 Discusses related work in the field or network telescopes, un-solicited traf-

fic, data visualisation, metrics and traffic analysis. It provides an overview and

background information relating to the research conducted in this thesis.

chapter 3 Provides information on the development of an information visualisation frame-

work called Ember. It explains the various components that make up Ember and

details how the Ember framework could be used.

chapter 4 Makes use of the Ember framework in the development of a network telescope

that will monitor traffic from the Rhodes University network telescope. The network

telescope dashboard was called the RUscope Dashboard.

chapter 5 This chapter details a case study were the RUscope Dashboard was used,

details regarding the traffic analysis used in the dashboard is provided here. A

discussion after using the RUscope Dashboard to analyse and visualise traffic is also

provided.

chapter 6 Lists possible future extensions for the Ember framework and concludes the

research that has been conducted.

Chapter 2

Background and Related Work

An information visualisation framework is responsible for the transformation of data into

useful information and then visualising to convey information and understanding. The

information is obtained by making use of specific metrics and using them to extract

information from a dataset. Once the data has been analysed, it needs to be made use

of in an efficient manner. By visualisation the information one is able to more easily

interpret and understand what it represents.

This research is concerned with the construction of such an information visualisation

framework and its application in a proof of concept dashboard. The datasets that will be

used by the dashboard will come from traffic captured by a network telescope, as such

it is important to understand how a network telescope works and how the environment

it operates in contributes to the data it observes. Further concepts that surround the

information visualisation framework such as metrics and traffic analysis also need to be

explored in detail.

This chapter will address past research in the fields of network telescopes, un-solicited

traffic, network traffic analysis, metrics and information visualisation. The remainder of

this chapter is structured as follows:

• Section 2.1 starts by introducing the concept of network telescopes as a means to

gather data from nefarious and potentially malicious traffic found on the internet.

The section will also differentiate between the different types of network telescopes

and provide an overview of similar technologies.

6

2.1. NETWORK TELESCOPES 7

• Section 2.2 will explore the underlying architecture and configuration of network

telescopes. The resource requirements associated with network telescopes are also

addresses in this section.

• Section 2.3 will address problems that face network telescopes and influence their

ability to monitor unsolicited traffic. A brief overview of ethical considerations with

regard to network telescopes is provided at the end of the section.

• Section 2.4 looks at some of the major network telescopes that are currently in

operation as well as introducing their operators and some of their contributions to

the field.

• Section 2.5 explains how the probability of observing given packet or event on a

network telescope can be calculated according to the size of the network telescopes

address range.

• Section 2.6 explores the different techniques analysing network telescope traffic for

the detection of DDoS events and worm propagation. This section also introduces

the topic of metrics.

• Section 2.7 formally defines metrics and introduces basic statistical methods that

can be used to analyse and manipulate data.

• Section 2.8 introduces the topic of information dashboards and visualisation.

• Section 2.9 serves as a chapter summary.

2.1 Network Telescopes

Network telescopes are also known as darknets or blackholes, the ”dark” or ”black” re-

ferring to the address space that is empty and thus not in use by devices. The basic

setup for a network telescope is to have a server to which traffic that would normally be

destined for un-used address space is forwarded. Different configurations exist for network

telescopes, some respond to incoming traffic (Active Telescopes) such as the IMS which

makes use of a lightweight responder[7] and others simple capture all traffic forwarded

to them (Passive Telescopes). Similar technologies also exist such as honeypots which

attempt to lure malicious traffic and intrusion detection systems (IDS’s) that monitor

live network traffic.

2.1. NETWORK TELESCOPES 8

A network telescope ability to capture traffic destined for unused address space results in

it receive no legitimate traffic with the exception of traffic caused by miss configured hard-

ware. The traffic captured by the network telescope is thus highly suitable for providing

us with information regarding nefarious traffic such as that caused by denial of service

attacks[27] and the automated propagation of internet based worms and viruses[21]. As

mentioned before in Chapter 1, a network telescope operates on unused address space and

not a live network coupled with legitimate hosts sending traffic. This means there is no

need to filter legitimate traffic and all traffic received may be considered un-solicited and

potentially malicious.

When looking at traffic observed by a network telescope various research papers refer to

the term ”backscatter”[6][21][27] which refers to residual traffic observed from other hosts

that may have been the target of distributed denial of service attacks and are responding

to spoofed source addresses. Other traffic such as network scanning from worms and

malicious users also amount to backscatter while a very small portion of backscatter is

the result of miss-configured hardware[6].

There are two main categories for network telescopes, namely active and passive. These

categories refer to the type of traffic that a network telescope is able to capture. However

a passively configured network telescopes is still able to capture initial active packets, it is

however unable to respond to these packets and thus incapable of capturing any further

traffic after the initial message. Active traffic is considered as any type of packet that

tries to solicit a response. This includes packets that are used for port scans as well as

TCP SYN packets which try to initiate a communication session. Passive traffic on the

other hand is sent to the network telescope and requires no further communication, this

includes traffic as the result of a DDoS attacks and initial traffic from most UDP based

worms. Active and Passive network telescopes will be discussed in more detail in the

following two sections.

Honeypots and intrusion detection systems are similar to network telescopes as they to

capture potentially malicious traffic. Honeypots are however more pro-active than network

telescopes and often advertise themselves as vulnerable in order to attract the attention

of malicious entities. Intrusion detection systems may be used to monitor traffic on a live

network for known bad signatures of malicious traffic. Much research[8][14][33] has gone

into the collaboration and aggregation of these various technologies to produce a more

holistic view of nefarious internet topology.

2.1. NETWORK TELESCOPES 9

2.1.1 Passive Network Telescopes

The paper ”Inferring Internet Denial-of-Service Activity” by Moore et al.[27] shows how it

is possible to infer Denial-of-Service (DoS) activity from a passive network telescopes. A

passive network telescope is only capable of receiving incoming traffic and has no means of

responding to any packets. The lack of response capability means the telescope is unable

to complete the 3-way TCP handshake required to receive TCP payloads, this however is

not required to infer some DoS attacks as will be shown in section 2.6.2. Passive network

telescopes can however collect payload data from UDP and ICMP packets as they do not

require active responses[14] and contain a wealth of information in the initial packet.

It has been shown that worm and virus attacks may also be inferred using a passive

network telescope, the paper ”Observing Internet Worm and Virus attacks with a Small

Network Telescope” by Harder et al.[21] examines different methods of analysing worm

and virus traffic on a small network telescope. Alternative methods also exist to detect

the spread of malware such as using ”honeypots” that attempt to attract malicious traffic

and are able to respond to and in some instances capture[3]malware[31].

While passively configured network telescopes are unable to record TCP based exploit

data or details of miss configured application requests[6], they are still capable of detecting

source addresses and packet header information. Passive network telescopes are also able

to record earlier worms such as Witty[32] and Slammer[26] which propagated over UDP

and were able to be delivered to their target via a single packets payload.

2.1.2 Active Network Telescopes

Actively configured network telescopes are capable of issuing responses to certain requests,

by doing so they are able to receive application level data that may lead to a better

understanding of an exploit attempt. For example a telescope might be configured with

a responder to increase its level of interactivity with traffic. A responder would reply

to a TCP SYN request with a TCP SYN-ACK packet and in so doing receive the first

packet containing a data payload[6]. This payload could contain enough information to

accurately identify a threat such as the blaster worm[37].

The Internet Motion Sensor (IMS)[7] project is an example of a distributed darknet mon-

itoring system that makes use of a lightweight responder to elicit the initial packet of

each TCP connection. This allows the IMS to retrieve more information than a passively

2.1. NETWORK TELESCOPES 10

configured network telescope, by implementing a very simple stateless TCP responder.

The IMS also employs a novel payload storage technique, for each packet it receives it

creates a MD5 checksum of the payload[7]. The checksum is then compared to a signature

database for that day, if the signature does not exist in the database (it’s new) the payload

is stored and the signature added to the database[14]. If the signature had already been

captured that day it, the signature is logged but the payload discarded. This catching

technique allows the IMS to reduce its storage requirements but does not hinder its ability

to monitor new payloads or payload frequency.

2.1.3 Honeypots and Honeyfarms

Honeypots are very similar in nature to network telescopes, they are however at the other

end of the spectrum with regards to capturing nefarious traffic. This is because honeypots

emulate a vulnerable service or host in order to attract malicious traffic. They can be

used to monitor individual addresses or function over a range of addresses[3].

One of the key differences between a honeypot and a network telescope is the resource

requirements and the method of capturing potentially malicious traffic. Honeypots inter-

act at greater depths with a threat (such as a worm) and is thus more resource intensive.

Honeypots also attract or encourage malicious traffic as opposed to network telescopes

that just listen for any traffic directed towards it. This allows honeypots to characterize

the vulnerability that’s has been exploited and its affect on a machine[8].

Honeypots can be deployed in many different flavors, a single physical host could act

as a high interaction honeypot[36] alternatively that same host could emulate 10 virtual

honeypots[31] thus creating a virtual honeynet or honeyfarm. Honeypots may also be

categorized as either a low or a high interaction honeypot. This refers to the level of

interaction allowed with a honeypot, low interaction honeypot might only emulate ven-

erable services, while a high interaction honeypot might be a complete physical machine

with a vulnerable operating system. Banks of honeypots are sometimes used to handle

traffic that was initially detected by network telescopes, filtered and deemed important

enough for further analysis[8].

By analyzing the data captured from a honeypot it is possible to learn more about attack

patterns such as how an attacker might elevate their privileges to gain root access on a

host. Other information could also be determined like what type of attacks are currently

the most prevalent, which ports they are targeting and which services they try to exploit.

2.1. NETWORK TELESCOPES 11

Lastly honeypots such as Nepthenses[3] are used to collect worms and could provide

insight to their spread and underlying architecture.

2.1.4 Intrusion Detection Systems

Intrusion detection systems provide automated monitoring and analysis of events that

attempt to ”compromise the confidentiality, integrity, availability, or to bypass the security

mechanisms of a computer or network”[25]. Intrusion detection systems employ one of

two methods to detect threats, the first makes use of known signatures of ”bad” events,

it compares traffic patterns to these signatures and logs the event if the traffic matches a

known signature[25]. The second method involves traffic patterns and the deviation there

of, when anomalies in traffic are detected the second method logs the event. Anomaly

detection is a topic still undergoing further research and is employed in only a few intrusion

detection systems in a limited form[25]. While intrusion detection systems are effective at

identifying known threats, it comes at a price of resources as the traffic comparison against

known signatures involves considerable resources especially as the signature database

grows.

2.1.5 Hybrid Systems

A passive network telescope is not able to respond to requests, which might be needed

to identify certain threats. It should be noted that even the use of an active network

telescope might not guarantee that enough information is captured. While a distributed

collection of network telescopes would be able to register global events, they lack the

ability of assessing how exactly the threat is spreading. On the other side of the spec-

trum honeypots, antivirus software and intrusion detection systems posses the ability of

collecting[3] or at least providing more detailed information on a threat. However due to

the relatively small scale of addresses that they operate on, they are incapable of inter-

preting events on a global scale, such as those required to identify the early growth stages

of a worm[8].

For this reason hybrid architectures have been developed that take advantage of the

scale provided by network telescopes and the detailed threat interpretation provided by

honeypots. A particular system explained by[8] provides a method whereby a collection

of distributed network telescopes are used to track initial threats. The network telescope

2.2. NETWORK TELESCOPE ARCHITECTURE AND
CONFIGURATION 12

architecture then uses packet filtering techniques too select particular sources of the traffic

that is then routed from the network telescopes to honeyfarms. These honeyfarms consist

of multiple honeypots that are then able to interpret the threats at a lower level[8]. While

this thesis’s current research is not concerned with the combination of honeypots and

network telescopes it is a field of notable importance and may one day be integrated

with the information visualisation framework that has been developed. This integration

between information visualisation and multiple data and analysis resources could produce

a tool capable of very accurately detecting and modeling new threats.

2.2 Network Telescope Architecture and

Configuration

Multiple considerations need to be addressed when configuring a network telescope, for

instance the method of forwarding traffic to the telescope that would have been destined

for un-used address space needs to be decided upon. Two common formats that are used

to collect telescope traffic include pcap1 and NetFlow[6], these formats record raw packet

data that will need to be processed before analysis.

Storage and processing is also an important factor, as traffic that has been captured

needs to undergo filtering to extract the desired packet information and then needs space

to be stored for later analysis. It would be inefficient to analyse entire raw packets as they

contain more information than would be used, instead we apply a filter to the packets and

insert they attributes we wish to keep into a database for further analysis. An example of

database used to store network telescope traffic is show in Figure 4.4 which can be found

in section 4.3.

2.2.1 Packet Forwarding

When dealing with a small network telescope such as one capturing traffic from only a

few IP addresses, Bailey et al.[6] suggests configuring the network telescope to send ARP

replies to the router for each un-used address. This however is not scalable for monitoring

large blocks of un-used address space and may be improved by configuring an upstream

router to statically route entire address blocks to the network telescope. This requires an

1pcap is a packet capture API implemented in libcap and WinPcap, http://www.tcpdump.org/

2.2. NETWORK TELESCOPE ARCHITECTURE AND
CONFIGURATION 13

Figure 2.1: A network diagram illustrating a router that has been configured to route
traffic to a network telescope.

entire address block to be dedicated to the network telescope and while this is easiest it

might not be ideal, for a more flexible solution[6] suggests routing all packets that would

have been dropped by the router to the network telescope. With the above examples it

is assumed that the un-used IP addresses are in fact globally addressable and reachable.

There are however methods that allow monitoring of unused non-routable addresses[13],

such as those found inside service providers and large organisations internal networks.

Figure 2.1 illustrates a typical configuration for a network telescope.

2.2.2 Storage, Filtering and Bandwidth Requirements

The once a network telescope has captured traffic, that traffic needs to undergo a filtering

process by which information pertaining to whichever study is being done is extracted

from the packets. This information then needs to be stored into a database for later

analysis. For instance, if a study only requires source and destination ports, there is no

need to insert packet header and address information the database. Once the packets

have been filtered, they need to be stored, storage provisions need to be made and storage

capacity needs to be decided on.

The storage requirements of network telescopes is dependent on the amount of traffic

that will be received, Bailey et al.[6] has found that on a /24 sensor the average traffic

rate can be approximated to 9 packets per second, while a /16 sensor would receive

roughly 75 packets per second and a /8 sensor around 5000 packets per second. The

2.3. PROBLEMS FACING NETWORK TELESCOPES 14

average packet size from the Rhodes University Network telescope which contains just

over 40million packets is 101 bytes, using the average packet size and estimated packet

arrival rate according to sensor size one is able to make a approximation of the size of

storage that will be required. Average bandwidth requirements according to Bailey et

al.[6] is displayed in the table below.

Table 2.1: Suggested bandwidth requirements according to network telescope sensor size[7]
Sensor Size Bandwidth Requirements
/24 7 Kbps
/16 60 Kbps
/8 4Mbps

The bandwidth requirements and packet arrival rates shown in Table2.1 were calculated

from data collected by the globally deployed Internet Motion Sensor (IMS)[7] which is a

distributed darknet monitoring system and will be formally introduced in section 2.4.3.

2.3 Problems Facing Network Telescopes

Due to the inherently distributed architecture of the internet there is always a chance that

traffic does not end up where it should be. Routers may fail, DNS services may be miss

configured and firewalls might drop legal traffic. These are just a few examples of the

difficulties that traffic traversing the internet might encounter. The public nature of the

internet also means that any host may attempt to send data to any other accessible host

on the internet, this intern could result in the poising of network traffic. It has also been

shown by Cook et al.[14] that the traffic collected at individual address blocks monitored

by network telescopes may vary greatly from other address blocks that exist on separate

IP ranges.

This section will highlight some of these inconsistencies encountered during traffic analysis

and why certain considerations should always be kept in mind when conducting research

with network telescope traffic. It will start by introducing the topic of network telescope

placement and the variance of results obtained by monitoring geographically displaced

network telescopes that are part of the IMS project. A brief introduction to internet

topology and architecture will follow to explain some of the problems encountered during

traffic routing from source to destination. The topic of result poisoning follows which is

one of the key reasons that telescope specific data such as actual IP addresses should never

2.3. PROBLEMS FACING NETWORK TELESCOPES 15

be published in research. Lastly the section will highlight ethical considerations pertaining

to traffic captured by network telescopes and similar technologies such as honeypots.

2.3.1 Placement of Network Telescopes

Although the Internet threats observed by network telescopes such as DDoS and worm

propagation are globally scoped, data from the IMS indicate widely different trends be-

tween separate network telescopes[14]. These differences where noted across three di-

mensions namely, over all protocols and services, a specific protocol and port and lastly

signatures of known worms. Another publication[33] shares this view that multiple points

of monitoring are required coupled with a collective interpretation to provide a more

comprehensive view of nefarious network traffic. Thus observing traffic from only a single

point would provide very little, if any information about the background activities[33].

Contrasting this view there are however still important information that can be learnt

from a single vantage point,[21] showed how a small /24 telescope was used to identify and

distinguish between port scans, host scans and DDoS attacks. While the results found

in[21] might not correlate strongly with global findings, their findings were still useful in

understanding current threats.

2.3.2 Internet Topology

The Internet is dependent on an ever expanding, interconnecting network of physical

devices such as routers and switches, which are ultimately responsible for getting packets

from point A to point B. These devices however can be overcome by traffic and the

result of which is a loss of packets. Packets delivery from point A to point B can be

slowed down by processing delays, queuing delays, transmission delays and propagation

delays[23]. These delays can obscure the actual arrival rate of packets that may biased

some of the results obtained from network telescope traffic analysis. Packet loss can also

be a serious problem, in the event of a large scale Distributed Denial of Service attack

routers may queue packets and eventually drop[27] packets if the queue becomes too long.

A good description of the vulnerability of traffic on the internet is presented by[23] as

follows ”unfortunate that the physical laws of reality introduce delay and loss as well as

constrain throughput.” Miss configured of hardware and software can result in arbitrary

but legitimate packets ending up in a network telescope, an example of this could be a

NetBIOS configuration that sends small numbers of unsolicited packets to a monitored

address range[27].

2.4. EXISTING NETWORK TELESCOPES AND OPERATORS 16

2.3.3 Result Poisoning

Due to the nature information that can be learnt from the analysis of network traf-

fic, it would be in the best interest of certain nefarious entities to try and obscure the

data obtained from network telescopes. According to Shinoda, Y., Ikai, K., Itoh, M.[33]

”Knowledge of a monitor’s sensor location can severely reduce its functionality as the

captured data may have been tampered with and can no longer be trusted. ” For this

reason findings obtained from network telescope traffic should never include actual address

ranges used by the networks telescopes, delays should be applied to results and results

aggregated where possible. The power of network telescopes lies in their capability to

collect traffic from sources that believe they are sending data to legitimate hosts.

2.3.4 Ethical Considerations

Depending on the configuration of network telescopes and honeypot technology detailed

information may be extracted from the traffic they obtain. Coupling the information that

could be extracted and the underlying internet architecture that traffic depends on to

reach its information there is always a chance that legitimate traffic might be captured.

Even knowledge of illegitimate traffic might harm certain entities such as the naming of

organisations that have been under attack from DDoS attacks or ISPs that have not put in

place corrective measures such as ingress filtering2 to hinder DDoS attacks. As such service

providers and content providers might consider this type of information confidential[27].

Care should always be taken in the publication of findings and the collection of data. This

is also brings to light one of the advantages of passively configured network telescopes,

by design they are unable to see TCP payloads. This means that passively configured

network telescopes do not infringe on privacy with regard to the majority of internet

communication.

2.4 Existing Network Telescopes and Operators

As a result of the importance and usefulness of network telescopes, various projects and

collaborative efforts have developed to help manage the knowledge base and steer research

in the field of network traffic analysis. This section of the chapter will introduce some of

2Ingress Filtering - Defeating Denial of Service, http://www.faqs.org/rfcs/rfc2827.html

2.4. EXISTING NETWORK TELESCOPES AND OPERATORS 17

the big contributions to the field, not by specific authors but rather by collective effort

of many. CAIDA is introduced first and followed by Team Cymru and and the Internet

Motion Sensor project. Lastly a brief introduction to the Rhodes University Network

Telescope is given.

2.4.1 CAIDA

CAIDA, the Cooperative Association for Internet Data Analysis is a ”collaborative un-

dertaking among organizations in commercial, government, and research sectors aimed

at promoting greater cooperation in the engineering and maintenance of robust, scalable

global internet infrastructure.”. Amongst their various contributions they also supply

data sets, produced by monitoring locations in several large Internet Service Providers

(ISPs) and several other network telescopes to produce large datasets of network traffic.

CAIDA also produces various important reference material that was used in the thesis

such as the ”Network Telescopes: Technical Report”[28].

2.4.2 Team Cymru

Team Cymru3 is a non-profit internet security research firm that is dedicated to making

the internet more secure. They provide in-depth information regarding setting up and

maintain network telescopes. In addition to network telescope construction and use they

provide secondary services that may be used during analysis of captured traffic, such as

a malware hash registry4 that provides a look up service for captured malware.

2.4.3 IMS

The Internet Motion Sensor project that is run by the university of Michigan consists of

a heterogeneous set of sensors and data aggregators which can be divided into two main

categories[14]. Blackhole sensors (network telescopes) that collect treat data and topology

sensors that provide context regarding the data collected by the blackhole sensors. While

the blackhole sensors passively collect traffic over ranges of IP address space they include

an active component that responds to so TCP SYN requests in an attempt to illicit more

data[14].The architecture employed by the IMS is shown in Figure 2.2

3Team Cymru - http://www.team-cymru.org/
4MHR - http://www.team-cymru.org/Services/MHR/

2.5. EVENT PROBABILITY 18

Figure 2.2: Internet Motion Sensor architecture[7].

The IMS’s novel method of traffic storage by use of filtering, hashing and categorising has

already been explored in section 2.1.2.

2.4.4 Rhodes University Network Telescope

The Rhodes University network telescope (RUscope) is the primary provider of captured

network traffic used for this thesis. The network telescope monitors a /24 address block

(traditionally known as a class C) and is passively configured so that it only captures

traffic targeted towards it and does not respond to any requests. After packets are filtered

they are inserted into a Postgres5 database for further analysis such as that achieved by

this project. The network telescope was established on in August 2005 and has captured

approximately 65 million packets. The network telescope dashboard created during this

research was used to monitor traffic from RUscope and is detailed in chapter 4.

2.5 Event Probability

The amount of traffic a network telescope observes is proportional to the size of the address

block it is monitoring. The CAIDA ”Network Telescopes: Technical Report”[28] refers to

the analogy of network telescopes as astronomical telescopes and explains how ”having

a larger ”size” (fraction of address space or telescope aperture) increases the quantity

5PostgreSQL - http://www.postgresql.org/

2.5. EVENT PROBABILITY 19

Figure 2.3: The contribution of individual IP to the total number of packets as seen at
14 darknets. Over 90% of the packets are from 10% of the source IP addresses[8].

of basic data available for processing”[28]. The size of the address block or ’aperture’

also influences the probability of that network telescope observing a given event. When

looking at the Internet Protocol version 4 (IPv4) address space which allows a host a 32

bit address, there are a total of 232 possible IP addresses. Address blocks are commonly

assigned according to the number of leading bits that uniquely identify that address, a /8

address block would describe a range of 224 addresses who all share the first 8 bits of their

IP address. A /32 would then describe a single host, the probability of a network telescope

monitoring a unique host in IPv4 address space is thus given by p(x) = 1/2x where p is the

probability of monitoring the host and x is the size of the address block. For a telescope

monitoring a /8 network, p8 = 1/28 = 1/256 which means the telescope has a 0.39%

chance of observing a packet from a single unique host. A formula for calculating the

probability of 1 of m packets being observed can then be calculated by E(X) = nm/232

where n is the number of unique addresses being monitored[27].

In conjunction with event probabilities it should be noted that there appears to be a

disproportionate distribution between traffic observed and source address distribution.

Research by Bailey et al.[8] found that nearly 90% off all traffic observed by network

telescopes were sent by less than 10% of the total observed source addresses from each of

14 network telescopes. The distribution is illustrated in Figure 2.3.

It has also been shown that the traffic observed by a network telescope does correlate to

its locality in IPv4 address space, which results in different network telescopes observing

2.6. ANALYSIS OF NETWORK TELESCOPE TRAFFIC 20

separate and repeated events[6][8]. The concept of locality and traffic was explored in

greater detail in section 2.3.1.

2.6 Analysis of Network Telescope Traffic

Traffic observed by network telescopes could be explained as either a miss configuration of

host hardware or software, backscatter produced by spoofed source addresses (most likely

the event of a Distributed Denial of Service (DDoS) attack), scanning from worms or

other types of probing[14]. The raw packet data obtained by network telescopes would be

of little use if there were no method to distinguish the specific threats. There are however

various techniques[27][21] that are used to infer these types of traffic and they will be the

introduced in this section. By understanding the traffic and how it is generated it become

easier to identify it.

2.6.1 Distributed Denial of Service Attacks

The purpose of Denial of Service(DoS) attacks is to consume the resource of its target,

that being a host or network[27]. The result of which denies legitimate users access to

that resource. DoS attacks may be divided into two main categories, that of logic attacks

and that of flooding attacks. Logic attacks such as the ”Ping of Death” exploit existing

software vulnerabilities to crash or severely downgrade the service/availability of a remote

server[27]. Logic attacks are often executed by sending a few well crafted packets to a

vulnerable operating system or application and if the correct combination of packets is

sent the target service or host could stop or crash[23]. Flooding attacks on the other hand

focus on consuming as much of the targets CPU, memory or network resources. This is

achieved by sending large numbers of spurious requests and botnets are often used for

this purpose. Flooding attacks may be rather easily achieved by sending large volumes

of small packets as quickly as possible as this can overwhelm routers and NICs packet

processing capabilities. DDoS attacks create backscatter traffic that could be directed to

a network network telescope’s address range, this traffic is passive.

One of the best known DoS attacks is that of the SYN flood, the SYN flood is a type of

flooding attack that aims at immobilising a server by initiating as many TCP connections

with the target as possible. For every SYN request packet the victim receives, it has to

process that packet by going through a list of connections, if no match is found resources

2.6. ANALYSIS OF NETWORK TELESCOPE TRAFFIC 21

need to be allocated to the new connection. According to Moore et al.[27] ”even a small

SYN flood can overwhelm a remote host.” This shows how a single host may cause signif-

icant damage to a target, however often nefarious agents on the internet with make use

of multiple hosts to perform attacks. Attackers compromise multiple hosts and leverage

their combined bandwidth and processing power to mount more powerful attacks. These

compromised hosts are referred to as ”zombie” hosts and together make up is known as

a botnet. An example of a SYN flood is illustrated in more detail in Figure 5.2 found in

chapter 5.

In an attempt to conceal their location and create multiple connections in the case of a

SYN flood, attackers forge or ”spoof” the source addresses of each packet they send[27].

Due to the ”spoofed” nature of source addresses, they are also the cause of backscatter

detected by a network telescope. During a DDoS attack, the victim attempts to send

SYN-ACK or RST[29] replies to the ”spoofed” source addresses and if these addresses

happen to fall into the same address range of a network telescope they are observed.

Targeted hosts are not the only cause of backscatter from DDoS attacks, occasionally

network devices between the ”spoofed” address and the target send their own ICPM

messages[35] to the spoofed address. Table 2.2 illustrates common packet requests and

their responses.

Table 2.2: Packets requests and responses[27]
Packet Sent Response from victim
TCP SYN (to open port) TCP SYN/ACK
TCP SYN (to closed port) TCP RST (ACK)
TCP ACK TCP RST (ACK)
TCP RST No response
TCP NULL TCP RST (ACK)
ICMP Echo request ICMP Echo reply
ICMP TS request ICMP TS reply
UDP pkt (to open port) protocal dependent
UDP pkt (to closed port) ICMP Port Uncreachable

2.6.2 Inferring DDoS Attacks

Before attempting to infer DoS traffic one needs to make the following assumptions. Ad-

dresses spoofed by attackers need to be uniformly distributed across the entire IP address

space, that is the attacker needs to spoof the IP addresses at random. This assumption is

often effected by ISP’s that employ ingress filtering[18]. Ingress filtering monitors source

2.6. ANALYSIS OF NETWORK TELESCOPE TRAFFIC 22

addresses and drops packets with source addresses outside its client address range. This

can cause neither that all packets may arrive at their target nor that the IP addresses are

uniformly distributed. It’s possible to check if a set of observed addresses are uniform to

a network telescope range by calculating the Anderson-Darling(A2) test[16]. However as

discussed earlier in section 2.3 and 2.5, distributed network telescope results vary from

different address ranges. Although Moore et al.[27] still affirms that if the distribution

of source addresses is not random, then it would be impossible to calculate an un-biased

attack rate from the arrival rate.

The next assumption is that of reliable delivery, all attack traffic is assumed to have

been delivered to a victim and all backscatter to the network telescope without issue[27],

included in this assumption is that all packets elicit a response. These statistics are

needed to correctly interpret the rate of packet arrival and estimate the size of an attack.

Problems with this assumption include the volatile topology of the internet as discussed

in section 2.3.2. Again ingress filtering may hinder the packet arrival as could intrusion

detection software and firewalls that rate limit the packet arrival. These issues could

result in the under-estimation of results.

According to Moore et al.[27] the last assumption needed is that all unsolicited packets

received by the network telescope represent backscatter. Any host on the internet is free

to send packets to any other host, this includes host addresses in a network telescope’s

range. Another issue that faces the last assumption is that of nefarious agents and the

poisoning of telescope results as introduced by section 2.3. These assumptions where

used by Moore et al.[27] to infer DoS attack traffic from network telescope data. They

go on to say that their approach ”provides at worst a conservative estimation of current

denial-of-service activity”, as would be expected from the uncertainty presented by traffic

delivery on the internet.

2.6.3 DDoS Attack Classification and Metrics

Due to the vast number of approaches one could take to analyse network telescope traffic,

Moore et al.[27] has decided to focus on two classifications of traffic, flow-based and event-

based. By categorising denial of service attacks within one of these two categories, Moore

et al.[27] is able to determine the severity of attacks on short time scales with event-based.

While making use of flow based classification it is possible to learn the following metrics;

how many, how long and what kind[27].

2.6. ANALYSIS OF NETWORK TELESCOPE TRAFFIC 23

A flow was defined by Moore et al.[27] as ”a series of consecutive packets sharing the same

target IP address and IP protocol.” A flow is then considered to exist from the 1st packet

received until the last packet received within say a 5 minute gap from the second last

packet to be received, this timeout variable can affect end results. To ignore insignificant

backscatter any flow with less than a 100 packets or minimum duration of 60 seconds may

be ignored. Flows also need to contain packets that have been sent to multiple addresses

in the network telescopes range[27]. The following data was used by Moore et al.[27] for

flow based analysis:

• TCP flags, to determine what flows consist of.

• ICMP payload, from ICMP packets with TTL expired.

• Address uniformity, whether they pass the A2 test and are uniformly distributed.

• Port Settings, whether port range is fixed, for A2 uniformity test.

• DNS information, DNS address of the victims source address.

• Routing information, prefix mask and origin according to a local BGP table.

Event-based classification makes use of the victims IP address and notes details over a

fixed time window to examine time-domain qualities[27]. These qualities include the dis-

tribution of attack rates or simultaneous attacks. The event-based analysis was achieved

by dividing the captured traffic into one minute intervals and noting the each attack

event during that one minute[27]. Attack events consisted of a victim sending at least ten

backscatter packets to the network telescope in that minute.

These two methods, flow and event categories are just two examples of classification used

during the analysis of network telescope traffic. Many other metrics may be extracted

with different means. Arrival times discrepancy is introduced by Harder et al.[21], they

show that inter arrival time of backscatter and normal traffic differ due to ”distinctive

peaks around 10 and 120 milliseconds are missing”[21].

2.6.4 Worm Propogation

Worms operate by spreading over a network to different hosts by exploiting vulnerabilities

in the host operating system or in application level software[43], exploiting there vulnera-

bilities allows the worm to execute code and become self replicating. Worms scan ranges

2.7. SECURITY METRICS 24

of network addresses for vulnerable hosts that they can exploit and in so doing are able

to propagate and spread by themselves.

At any time there is a steady flow of background traffic on the internet caused by

worms and viruses this traffic flow also includes port scans and backscatter from DDoS

attacks[21]. This traffic will be visible to any routable, un-firewalled host connected to the

internet. Furthermore it has been shown that many worm propagation (target selection)

strategies are biased towards local addresses[43]. By targeting local addresses the worm

is able spread at a faster rate, due to smaller network distances, common administrative

practices and also exploitation of an already breached firewall. Examples of such worms

include Code Red II[10], Nimda[11] and Blaster[12].

The existence of this never ceasing background traffic caused by worms does bring concern,

that this traffic can pose a serious threat to the usability of the internet and do in fact

cause instability during their epidemic stages. With increasing bandwidth speeds[44]

and more devices being connected to the internet the platform for worms to spread is

increasing. The main purpose of network telescopes when it comes to the observation of

worms is defined by their configuration. Passive network telescopes only record packet

traffic from worms and do not respond to any requests, their port scans can be detected

and a good visual example of detected port scans are illustrated by van Riel, J.P., Irwin,

B.[42] with the InetVis research. Actively configured network telescopes on the other

hand are able to respond to some worm requests to obtain additional information and as

such are able to identify TCP and UDP based worms.

Some concepts and terminology surrounding computer based worms include: worm vir-

ulence refers to the extent to which a worm generates traffic and which paths (routers)

become most congested by it[7]. Worm demographics refer to the number of hosts infected

the geographic and topological placement of hosts. The worm demographics also refer to

infected host attributes such as operating systems, available bandwidth and application

level software that was exploited (if any). Figure 2.4 shows a graph indicating the three

phases of the Blaster worm life cycle.

2.7 Security Metrics

Security Metrics can be described as metrics derived by comparison of two or more mea-

surements that had been taken over a time to a predetermined baseline[30]. Metrics are

generated from analysis, as opposed to measurements which are generated by counting.

2.7. SECURITY METRICS 25

Figure 2.4: A snapshot of Blaster worm showing the three phases of the worm lifecycle[7].

Jaquith extends this definition by abstracting Security Metrics to ”an emerging field of

study” that is ”Drawing from examples in fields like manufacturing, logistics and finance”

he finished his definition by stating that Security Metrics ”put numbers around activities

that safeguard information resources”.

Metrics quantify particular characteristic of data to facilitate insight in the chosen sub-

ject area. Good metrics should be consistently measureable, repeatable, specific, cheap

to gather, expressed as a cardinal number or percentage and have at least one unit of

measurement[22][30]. Security metrics thus determine what information one is interested

in learning and providing empirical data and understanding on. The outputs of which

should provide useful information and interpretation that can be used in conjunction with

risk analysis and threat mitigation. Network telescopes are used to gather data and if

there is any consideration for obtaining sensible information from that data useful and

practical security metrics need to be determined that will be used to analyse the data.

Raw data needs to be processed to produce information, information then needs to be

analyzed to yield insight. Insight into the data is what is accomplished by using correct

security metrics visualization techniques. A multitude of analytical methods exist that

can be used to transform data into something that explains itself and this section will

attempt to explain some of them as listed below.

• Average (Mean)

• Median

2.7. SECURITY METRICS 26

• Standard Deviation

• Grouping and aggregation

• Time series analysis

2.7.1 Average(Mean)

Calculating the average value from a dataset is a standard aggregation technique[22] used

to give an overview of a data set. The average is calculated by adding all the values from

a set of elements and then dividing that sum by the total number of elements. While

using averages is a good method of aggregating results it does however cause problems

for some data sets. Outliers are obscured and the richness of underlying data is lost.

For this reason[22] states that ”means are a poor choice for aggregating highly variegated

data sets.” he continues by adding elaborating the means have a tendency to ”obscure

hidden insights and often steamroll over spikes and valleys that an analyst might consider

interesting.” Arithmetic means are however acceptable to use with certain data sets when

the scope of data represented is narrow[22].

2.7.2 Median

The median is different from the mean as it denotes a value and proportion. The median

represents the number that separates the top 50% of elements from the bottom elements

and is calculated by sorting a dataset in descending order and then choosing the ele-

ment in the middle of the dataset. The median is often used instead of the mean, as it

can give better insight to data that has strong outliers and has said to offer significant

advantages[22] over means in respect to measuring performance.

2.7.3 Standard Deviation

Standard deviation reflects the dispersion of a dataset from its mean. A high standard

deviation could indicate irregular or unpredictable data, while a low standard deviation

would indicate a high degree of data clustering around the mean. The standard deviation

is calculated by first calculating the mean for the data set. Then square the difference

of each element from the mean, add together all the squared differences and divide the

2.7. SECURITY METRICS 27

result by the number of elements and this produces what is known as the variance, the

square root of which gives the standard deviation.

2.7.4 Grouping and Aggregation

Grouping and aggregation of data is one of the methods used to transform a large quantity

of raw data into useful information[22]. Grouping refers to the organization of similar

and complementing data from the same scope of analysis onto a combined unit. While

aggregating refers to the calculation of summary statistics for each group of data, examples

of which could include the sum, mean, standard deviation, minimum and maximum values.

Grouping and aggregation can break down large data sets into meaningful ”chunks” that

are easily understood and might even bring to light underlying relationships between data.

2.7.5 Time Series Analysis

A very important analysis technique that is used in conjunction with network telescope

traffic is that of Time Series Analysis as it is used during the inference of denial of

service attacks[27], worm propagation[21] and load calculations[28]. Time series analysis

is explained by[22] as attempting to understand the evolution of a dataset over time and

will contain a series of observations for a particular attribute that have been taken at

regular intervals.

2.7.6 Automation of Metric Calculations

By automating the generation of security metrics, it is possible to improve the aspects of

repeatability and increased measurement frequency with minimal if any ongoing effort.

This is achieved by automating the process of data gathering, computation and presen-

tation. As part of this thesis is concerned with the development of a network telescope

dashboard that will be capable of performing automated periodic analysis, it is important

to explore the automated process of metric calculations.

Some of the benefits from automating metric calculations include added accuracy, repeata-

bility, increased measurement frequency, reliability, transparency and audit ability[22].

Characteristics and considerations of an automated metric system includes the following.

2.8. INFORMATION DASHBOARDS AND VISUALISATION 28

A real time focus, this could be based in days, weeks, months[22]. If the information is

represented over to fine an interval too much time will pass before it could be made use

of, too large and it abstracts details. Automating the metric calculations also allow for

the aggregation of aggregated results, that is observed events could be further aggregated.

2.8 Information Dashboards and Visualisation

Stephen Few defines a dashboard in Information Dashboard Design: The Effective Visual

Communication[19] as follows:

A Dashboard is a visual display of the most important information needed to achieve one

or more objectives; consolidated and arranged on a single screen so the information can

be monitored at a glance.

As an integral part of this thesis is concerned with the production of an information

dashboard for a network telescope it is important to outline a clear and concise definition

thereof. The network telescope information dashboard will have to provide a concise and

high level visual representation of relevant information derived from the analysis of the

network telescope traffic.

According to Few a dashboard should be displayed only on a single screen[19], this severely

limits the amount of information that could be displayed. As such great consideration

should be taken to select relevant and complementing information. It has been shown

in section 2.1 and 2.6 that the amount of information obtained from a network telescope

could be great and as such could easily overwhelm an observer or even obfuscate important

information. Thus Few explains how a dashboard should scale the available information

in an attempt to provide an aggregated overview which allows relevant information to be

conveyed and indicate what would require further drilling down.

The concept of an information dashboard is not new and has been used extensively in the

fields of finance and management. Any field where mission critical choices depend on large

combinations of constantly updated information will benefit from the use of dashboards.

The volume of data obtained from network telescopes can easily overwhelm observers and

allow information to become lost within the data, to avoid this different mechanisms are

used to interpret and display data. Some data can easily and very effectively be repre-

sented by purely numerical means, other information however is much better interpreted

when presented in a visual manner.

2.9. SUMMARY 29

The following guidelines were provided by Andrew Jaquith[22] who believes they should

always be considered when generating visual representations such as graphs and charts.

Graphics need to be kept simple, colours might imply extra meaning or spark biases and

as such they should be avoided. Furthermore Jaquith states that empirical data should

always be indicated clearly and graphs should always be observed in context of their data.

It should be noted that the negative perception of colour and its ability to distract, as

illustrated by Jaquith is contrasted by Few, who explains that colour can more easily help

distinguish attributes such as those used in a pie graph with its legend. Both of their

view points hold merit and care should be taken to choose neutral colours unless the aim

is to biased or more strongly outline a certain piece of information.

By using the correct and relevant visualisation techniques during the development of a

dashboard it is possible to create a concise summary of information that is easily under-

stood and conveyed to the observer with little effort on their part.

2.9 Summary

Network telescopes have proven to be a useful tool in the capture of nefarious network

traffic. The data they collect provides an indication of large and small scale network

events such as worm lifecycles and denial of service attacks. By analysing raw traffic

obtained from network telescopes and using reputable metrics, it is possible to extract

useful and accurate information. Using that information and transforming it into a visual

representation to provide insight is an invaluable asset. The purpose of a dashboard is to

convey meaning and understanding at a glance. By conveying network telescope data onto

a dashboard one is able to visualise potentially malicious activity and more easily identify

trends. The next chapter will detail the design process of an information visualisation

framework that can be used to visualise information obtained from a network telescope.

Chapter 3

Information Visualisation

Framework Design

The design of the information visualisation framework involved detailed planning and re-

quirements analysis. The framework was named Ember as it shares certain characteristics

of coal embers left after a fire has burnt out. A metaphor where the flames represent data

and the residual heat left in the embers lingers long after the flame is gone represents the

information that is displayed and conveyed to the user.

The first steps in planning was to identify the main objectives of the framework, secondary

and complementary objectives also had to be identified so that a clear design plan could

be constructed that would allow for future extensions and ensure a modular design. The

systems development life cycle involved rapid prototyping which helped to identify the

advantages and constraints of multiple languages and libraries that would be used during

development.

The rest of this chapter is outlined as follows:

• Section 3.1 provides an overview of the entire Ember framework and explains how

the different components that are addressed in the chapters following the overview

are used.

• Section 3.2 details the container components which are used to navigate and manage

multiple charts.

• Section 3.3 explains how graph scripts are used in the Ember framework to construct

charts.

30

3.1. FRAMEWORK OVERVIEW 31

• Section 3.4 looks at the Dashboard Generator class which is responsible for gener-

ating the HTML and JavaScript a browser requires to render Ember frameworks

components.

• Section 3.5 addresses the two libraries that were used in the Ember framework.

• Section 3.6 serves as a chapter summary.

3.1 Framework Overview

The framework core is made up of two very important classes, the XML Parser and

the Dashboard Generator Class. These classes are responsible for the generation of a

dashboard as defined by an XML configuration file. This allows the Ember framework

to be used to create any type of dashboard that will be able to represent information of

any kind. As will be detailed in the next Chapter 4, the Ember framework was used to

construct a network telescope dashboard, which would be able to monitor the status of a

specific network telescopes and display analysed information. The choice of PHP allowed

for rapid development and the added benefit of platform independent deployment.

The main goals of a dashboard as was detailed in Chapter 2.8 was that of conveying

information and understanding to a user, not overwhelm a user and not biases information

in a negative or obtrusive manner. These attributes of a dashboard had to be kept in

mind when deciding the objectives of the Ember framework and the network telescope

dashboard that would be created with it.

The Ember framework would be responsible for the generation a dashboard, it must

thus be able to generate any kind of dashboard. This objective places allot of focus on

the modularity and the generic design principles of the dashboard components. These

components should be able to be used with any kind of information that needs to be

displayed in whichever way deemed fit by the user, within reasonable constraints of course.

Development and testing was done with Mozilla Firefox other browsers are not explicitly

supported and as a result the rendering of components might not work as intended. Object

oriented design principles and the model-view-controller principle were used during the

design of the Ember framework. The structure of a dashboard using the Ember framework

is illustrated in Figure 3.1.

3.2. CONTAINERS 32

Figure 3.1: Ember framework structure when integrated into a dashboard.

Before any further discussion is entered it should be noted that the word graph and

chart are used interchangeable throughout this work and both have the same meaning in

that they are form of graphic that embodies information and their purpose is to convey

understanding and correct interpretation of that information to a user.

3.2 Containers

Containers are used to display charts in the Ember framework, each container can hold

multiple graphs and offers various means of interacting with their respective graphs. In-

teraction such as zooming in on a specific graph or obtaining a textual description of a

specific graph is thus controlled by the containers. Containers also allow for the naviga-

tion and selection of different graphs, this can either be done manually or automated by

the use of a toggle cycle function. Figure 3.2 illustrates a container object and its various

components.

Each container has its own container ID so that it can be referenced from within JavaScript,

containers also use an array of chart ID’s that are contained in the JavaScript Object

Representation of the dashboards. These ID’s allow the container to differentiate be-

tween charts and target specific charts. The rest of this section will briefly describe the

functionalities of a container object in the Ember framework.

3.2. CONTAINERS 33

Figure 3.2: An example of a container that contains four charts and is currently displaying
a bar chart.

3.2.1 Zoom

The zoom function located on the top right hand corner of each container allows the

currently selected graph to be full screened. The zoom icon resembles a magnifying glass

for easy identification. When a chart has been zoomed in, that chart will no longer cycle.

If the automated cycle was turned on, until such time as the zoomed state has stopped

the displayed chart will not change. The main use of the zoom function is to focus on a

specific graph, this could be used during a presentation if attention needed to be drawn

to a single chart.

3.2.2 Description

The description function located also on the top right hand corner of each container

displays a small pop-up window which contains a general description of all the charts

managed by that container. This description is defined in the backing graph script for

each chart and is retrieved from that graph script by using a HTML GET request. The

description normally motivates the use for that specific chart and data combination, de-

scribes any assumptions on the data and provides additional information to help interpret

a chart correctly.

3.3. GRAPH SCRIPTS 34

3.2.3 Navigation

The containers contains a navigation icon for each chart it can display, the icons are blue

squares and are positioned in the bottom left of the container. At any given time one of

the navigation icons will be green, this indicates the currently active and displayed graph

in the container. Selecting a different navigation icon will replace the current graph being

displayed in the container. The replacement is done via JavaScript code that modifies

values stored in the Document Object Model. This is done by replacing the graphID

variable and backing graph script location on the Flash object in the browsers memory,

the order in which these attributes are modified is important as the wrong order would

result in anomalies when the chart is displayed.

3.2.4 Toggle Cycle

The toggle cycle functionality in the container allows one to automate the processes of

navigating through the charts held in a specific container. The Toggle cycle button is

located in the bottom right hand corner of the respective container and is illustrated by a

blue thumb pin icon. Once the toggle cycle icon is clicked, it changes its colour to green,

just as the navigation icons had. Once the icon is green it means that that container is

currently in its cycle state and as such it will automatically cycle through all the graphs

contained in it, displaying each one for a pre-defined time. Initial benchmarking has

shown 8-10 seconds is sufficient to see and interpret the results contained on the chart.

This ability allows the dashboard to stand alone without interaction and still be able to

show a large amount of data without overloading an observer with all the information

at once. The cycle function is handled in JavaScript with the window.setInterval()

function, an anonymous function is created with an existing function to handle the logic

of cycling though a container and is passed to the setInterval() along with a time in

milliseconds. The JavaScript source code to start/stop cycling can be found in Appendix

A.1, along with updating the state of that container and the modification to the CSS

class to update the thumb pin that is displayed.

3.3 Graph Scripts

The graph scripts in the Ember framework form the basic building blocks of the dashboard

that will be generated, they are self contained classes and for each graph that is to be

3.3. GRAPH SCRIPTS 35

displayed in the dashboard a backing graph script has to exist. The graph scripts are

written in PHP and require a unique name for each graph, their purpose is to define all

the characteristics of that graph. The graph scripts also output a correctly formatted text

string that the Open Flash Chart 21 library uses to construct a flash object. OFC2 will

be discussed in greater detail in section 3.5.1, for now it suffices to say that the library

only requires a text string to draw a given graph from.

Each graph script is made up of a class with private variables, a constructor and multiple

accessor methods, sample code for a graph script is illustrated in Appendix A.2

The open-flash-chart.php script is required to construct the actual chart object that

will later be called with a the toPrettyString() method which returns a well formatted

text string which is used by the Flash object to display the chart. Each graph scripts class

variables hold information pertaining to the graph and can be obtained via two methods.

The first method is used by calling the graph scrips accessor functions, this is the same

method employed by the Dashboard Generator class; which is detailed in section 3.4.

The second method of attaining these attributes is through a HTML GET request and is

illustrated in Appendix A.2.

The datasets used by a chart can be directly coded into the graph script or fetched from a

database. PHP allows for simple database access through the use of a PDO2 connection.

Once data has been obtained for a graph script it is used to define the chart through

functions provided by OFC-2 which is detailed in Appendix A.3.

Each OFC-2 chart object has multiple cosmetic settings such as background colour, tooltip

labels, alpha fills and default styles which allow for deep customisation of the look and

feel for each chart. In addition to the aforementioned attributes each chart object is also

given a SWFscript declaration which needs to be added to the HTML page where the

Flash object will be displayed, this is detailed in Appendix A.4.

The dashboard generator class creates objects for each of these graph scripts that it uses

to construct the HTML and JavaScript that is used by a browser to render a dashboard.

The dashboard generator will be discussed in section 3.4. Graph scripts can be used to

display one of two special chart types, namely static or animated charts. These chart

types are explained in the following section.

1Open Flash Chart 2 - http://teethgrinder.co.uk/open-flash-chart-2/
2PHP Data Objects - http://php.net/manual/en/book.pdo.php

3.4. DASHBOARD GENERATOR 36

3.3.1 Static Charts

Static charts are charts that illustrate a single dataset and are displayed as a static chart,

ie it does not change over time. Static graphs are incapable of showing data over a dynamic

timeline and thus are more suited towards illustrating data that is not greatly influenced

over time. While static charts are useful they are thus very limited in the information

they can convey to a user and because of this it was decided to include the ability for a

chart to change or evolve over time, this required a more complex graph script and was as

such decided to separate the two types of charts. A template for static charts is provided

within the Ember framework to simplify the process of creating new charts.

3.3.2 Animated Charts

Animated charts are able to show data over a time interval, changing the shape of charts

dynamically and are used to display multiple datasets in a single chart. An example

of this could be a horizontal bar graph that changes its values every couple of seconds

to illustrate data sets over a pre-determined time frame. By being able to dynamically

illustrate changes in data, it greatly enhances the ability of a graph to convey the evolution

of data over time, adding a new dimension to the information. This also allows one more

easily identify sudden change or linear advance in the information being displayed and

thus allows for easy identification trends and anomalies. A template for animated charts

is provided within the Ember framework to simplify the process of creating new charts.

3.4 Dashboard Generator

The dashboard generator class is the core of the Ember framework, it is responsible

for dynamically generating the actual HTML, JavaScript and embedded Flash required

for rendering a particular dashboard in the browser. It does this by making use of an

XML constructor class which creates a PHP dashboard object representation from details

specified in a configuration file. This includes the number of containers, number of graphs

in each container, the backing graph script location and a dashboard title. The source code

for the XML constructor is provided in Appendix A.5. Figure 3.3 provides an overview

and sequence of operation between the XML constructor, dashboard generator and graph

script classes. The rest of this section will look in detail at the XML configuration file

3.4. DASHBOARD GENERATOR 37

Figure 3.3: Overview of the dashboard generator, XML constructor and graph script
classes.

and the XML Parser class responsible for constructing the dashboard object from the

configuration file.

Sequence of operation, detailed in Figure 3.3

1. The XMLConstructor.php parses the config.xml file, which contains the names

and path locations of all the GraphScript.php files.

2. The XMLConstructor.php then calls and initialises the GraphScript.php files, using

the objects to create a PHP object representation of the dashboard.

3. The DashGen.php script then takes the object representation of the dashboard and

starts building up the HTML, JavaScript and CSS required to display and handle

the required logic for a dashboard.

4. When called from a browser the DashGen.php script outputs the web page it had

generated.

3.4.1 XML Constructor

The Ember framework makes use of an XML Constructor class which is responsible for

parsing the configuration file and constructing a partial representation of the dashboard

which is then passed on to the dashboard generator class for further use. The object

representation of the dashboard that is created by the XML constructor is illustrated in

Figure 3.4.

The Dashboard object contains enough information so that the dashboard generator class

can complete the construction of the dashboard object. The XML parser that the XML

3.4. DASHBOARD GENERATOR 38

Figure 3.4: The object representation of a dashboard.

Figure 3.5: Example of the XML configuration file used to define part of a dashboard.

constructor class uses is a simple XMLReader3 object found within PHP, it reads through

the elements and attributes in the configuration file and inserts the information in the

object outlined in Figure 3.4.

3.4.2 Configuration file

The Ember framework makes use of XML to specify the attributes of a dashboard, it

does this by keeping an XML configuration file which defines the construction of the

dashboard. An example of an XML configuration file used by the Ember framework is

shown in Figure 3.5.

The root element in the file is the dashboard which has a title attribute and contains a

containers element. The xml configuration file also illustrates the hierarchy between the

different elements of a dashboard; the containers and the graphs they contain. Multiple

3XMLReader - http://php.net/manual/en/book.xmlreader.php

3.5. LIBRARIES 39

container elements are then found, each of which stipulates the number of graphs contained

in that container and then graph elements which keep track of the location for the backing

graph script. The graphs active attribute is used to indicate whether or not a given graph

is currently active in a container and thus if that container should be able to display that

graph or not.

By abstracting part of a dashboard attributes to an xml configuration file, it makes

it possible to easily modify the configuration file and then simply call the dashboard

generator class to parse it again and thus reconstruct a given dashboard. This helps

the Ember framework to be used in a versatile manner and insures modularity. The

backing graphs scripts are queried for additional information once their pathname has been

extracted from the configuration file; this information is then used to all the additional

properties required for the dashboard object representation.

3.5 Libraries

Two different libraries have been used in the construction of the Ember framework, the

most notable of which was the OFC-2 library which was created by John Glazebrook . The

use of these libraries was largely motivated by the amount of time required to develop a

framework by the extensibility provided by them. These libraries were also used to reduce

development time. This allowed us to not only leverage high quality software but also

avoid re-inventing the wheel and enabling more time to be spent on the core characteristics

of the Ember framework. The rest of this section is dedicated towards the two libraries

used in the Ember framework, namely OFC-2 and Shadow Box. It will explain how these

libraries fit into the framework and give some details towards their capabilities.

3.5.1 Open Flash Chart 2

Open Flash Chart 2 is a open source library used to create various types of flash charts.

It supports languages such as Java, PHP, Perl and Python that may be used to construct

the data files used by the library to create the flash charts. OFC-2 was used to create all

the charts found in containers.

OFC2 supports the construction of the following charts:

• Line charts

3.6. SUMMARY 40

• Bar charts

• Horizontal charts

• Stacked bar charts

• Candle charts

• Area charts

• Pie charts

• Scatter charts

• Radar charts

3.5.2 Shadowbox

Shadowbox is a web-based media viewer application, its written in JavaScript and CSS

and can be customised to a user’s needs. Shadow box was used to implement the zoom

function found in the Ember framework containers. Due to the way Open Flash Charts

produce the flash charts embedded in the containers, shadow box was unable to work

properly with the magnification of flash objects.

A work around solution is however suggested, but due to partially implementation code in

the OFC-2 library the work around could not be implemented at this time. It is however

listed for future implementation.

By clicking on the magnifying glass icon the currently active graph in the container should

be magnified to double its original size and centred on the screen. Due to limitations

imposed on flash objects by ShadowBox this does not work, however if a chart is output

to as an image file it could be passed to ShadowBox in a similar manner, in which case

the magnification would work correctly. OFC-2 supports the output of charts as images

but during testing it was discovered that this is not the case, hopefully the next version

of OFC-2 would include this.

3.6 Summary

This chapter provided a detailed overview of the Ember framework and its components.

The concept of a container was introduces and it was shown how a container could be

3.6. SUMMARY 41

used to manage multiple charts. It was shown how the Ember framework makes use of

a configuration file to define containers and charts. The concept of graph scripts were

introduced and it was shown how they were used by the Dashboard Generator class.

The Dashboard Generator class is responsible for dynamically creating the HTML and

JavaScript used by a browser to render the Ember frameworks components. It was shown

how an information visualisation framework such as Ember can be used to display a large

amount of data in a small space by utilising the chart cycling function. The next chapter

will detail the design of a network telescope dashboard that makes use of the Ember

framework.

Chapter 4

Network Telescope Dashboard

Design

The primary design goal for the network telescope dashboard was to provide a concise

and high level visual representation of relevant information that had been derived from

the analysis of the network telescope traffic. This was accomplished by making use of

the Ember framework and other components which had not been included in the Ember

framework. Motivation for the additional components found in the network telescope

dashboard was a result of the Ember frameworks limitations imposed by the constraints

that were required to allow Ember to be used as a generic information visualisation frame-

work. The additional components were added to complement the dashboard and allowed

for specialised data visualisation and vitally important geopolitical data visualisation.

The dashboard was created to monitor traffic collected by the Rhodes University network

telescope (RUscope) and was thus named the RUscope Dashboard.

Figure 4.1 illustrates the component layout that was chosen for the RUscope dashboard,

the layout is only presented now as a means of providing a general overview of what

the dashboard would look like and illustrate how the various components that will be

addressed in this chapter fit together.

This chapter will start by introducing the data manager script which was responsible for

obtaining, manipulating and saving all the information that was visualised by various

components found on the dashboard. After the data manager has been introduced the

chapter will detail the two separate databases that where used for the RUscope dashboard.

It will then look at how the Ember framework was incorporated into the dashboard and

42

4.1. DATA MANAGER 43

Figure 4.1: Dashboard component layout.

illustrate the various charts that were chosen for the dashboard. The various components

used to extend the dashboard will then be detailed. These components include gauges,

sparklines and a geopolitical flash map animation. Once the additional components have

been outlined the chapter will briefly introduce the additional libraries that were used to

create the components. The chapter is then concluded with a summary.

4.1 Data Manager

One of the most import components added to the RUscope dashboard is the data manager,

a python script responsible for all the data management of the dashboard. The data

manager script includes a set of functions that query the Rhodes University network

telescope, manipulate data that is returned and populates the dashboard’s local SQLite

database. The motivation for writing the DataManager script in python is because python

is a platform independent language and can run on any architecture as long as a python

interpreter has been installed.

The data inserted into the local SQL ite database is used by the OFC-2 charts, sparklines,

gauges and Ammap Flash map. The use of the local SQLite database is required as

queries to the network telescope database can take from a few seconds to several minutes

to execute. Since a dashboard is a tool that needs to be used in real-time it cannot afford

to wait for long periods of time to retrieve datasets. The local SQLite database thus acts

as a data cache for information extracted from the actual network telescope database. The

data manager script is also responsible for generating an XML data-file used by Ammap

to create the traffic density animation displayed on the dashboard.

4.2. LOCAL DATABASE 44

Figure 4.2: Data manager interaction with network telescope database and local SQLite
database.

As the dashboard was responsible for displaying the most recent information relating data

inserted into the telescope database, the data manager script needs to repopulate the local

dashboard database whenever new data is inserted. This is achieved by setting the data

manager script up as a batch process which runs every 6 hours, when it starts to execute

it first queries the network telescope database for the data of the last packet to have been

inserted into the database. If this date is newer than the last latest date found in the

sqlite database, the data manager script will execute all of its queries and repopulate the

local SQLite database with the new datasets. Figure 4.2 illustrates the data manager

script and its relationship with the two databases.

4.2 Local Database

It was shown section 2.2.2 and 2.6 that a network telescope was capable of collecting vast

amounts of traffic overtime, this of course was dependant on the sensor size of the network

telescope. Since RUscope captured traffic from a /24 address block, the average amount

of packet data captured according to Table 2.1 would be 7Kbps. This amount may seem

trivial but it quickly adds up to a sizable collection of packets. The dashboard needed to

perform multiple and often complex queries on the network telescope database to gather

the data required to display the charts and other visualisations it contained. This created

a problem; a dashboard is a tool that needs to be used in real-time. It was required to

always have information which could be displayed with little or preferably no delay. This

made the way in which data was manipulated, stored and retrieved for the operation of

the dashboard slightly more complex than it would have been for a dashboard operating

on small datasets that could have been queried when needed.

The problem of waiting for a long period of time while the queries were executed was

4.3. NETWORK TELESCOPE DATABASE 45

solved by making use of a local dashboard database. The local database was populated

with only the information that was necessary to display the various visualisations in the

dashboard. This allowed for fast queries from the dashboard to its own local database.

The local database schema is illustrated in Figure 4.3.

Figure 4.3: Database schema for the local dashboard database.

SQLite1 was chosen for the local dashboard database because it doesn’t require the config-

uration of a database server, is platform independent and all the data is stored in a single

file. There are some tradeoffs when using SQLite, such as a page-based disk structure

that is read from disk to cache as its needed. This results in performance problems when

working with large datasets, however the amount of information that was being kept in

the local SQLite database will not be enough to cause any problems.

4.3 Network Telescope Database

The Rhodes University network telescope (RUscope) records traffic in the form of pcap

files which are then parsed by a script that extracts defined values and inserts them

into a database. Currently the RUscope database contains just over 65 million packets.

This database is then queried by the data manager script and used to populate the local

dashboard database. The database structure is outlined in Figure 4.4.

1SQLite - http://www.sqlite.org/

4.4. USING EMBER 46

Figure 4.4: Database schema for the RUscope database.

4.4 Using Ember

The Ember framework was used to generate the charts that made up the core of the dash-

board, these charts are found in top centre of the dashboards display. Only two containers

were used for the dashboard, each contained four of the same charts but operated on dif-

ferent datasets according to their container. The charts obtained their datasets through

the use of a PHP PDO database connection the he local dashboard database. The left

container’s dataset contained data from the last four weeks, the left container’s dataset

contained data from the last seven days. It should be noted that the latest date used to

obtained data from might not be the current date as the network telescope database is

only updated every few weeks.

The main goal of the charts that have been used in the dashboard is to display the

evolution of results in such a manner as to encourage observers to find similarities or

anomalies in the datasets. As mentioned section 3.2.4 the charts inside each container

may be set to cycle or remain on one specific chart.

The following Figures show the different charts that where used in the RUscope dashboard,

a detailed explanation is given in chapter 5 on how the traffic was analysed.

4.5. ADDITIONAL COMPONENTS 47

Figure 4.5: Protocol Breakdown, pie chart showing the proportion of TCP, UDP and
ICMP packets captured over two intervals.

Figure 4.6: Operating System(OS) Breakdown, bar chart showing the top 5 OS’s by
packet count over two intervals.

Figure 4.7: Conficker traffic, bar chart showing the normalised packet count of traffic
caused by Conficker over two intervals.

Figure 4.8: DDoS traffic, bar chart showing the normalised packet count for DDoS traffic
over two intervals.

4.5 Additional Components

The additional components added to the dashboard were chosen to complement and enrich

the information displayed by the Ember framework charts. The components also made

4.5. ADDITIONAL COMPONENTS 48

it possible to show information from changing datasets in an animated fashion. The rest

of this section will give a brief outline of each of these components and elaborate on how

they have been used.

4.5.1 Gauges

Gauges are instruments of measurement often found on mechanical devices that need to

convey some sort of measurement to a user. A common places where gauges are found

are motor vehicles, which motivates how useful they are at conveying information to a

user at a glance. As one of the main goals of a dashboard is to convey information at a

glance the use of gauges on the RUscope dashboard are highly appropriate. The gauges

implemented in the dashboard are from the Open Flash Gauges 2 library. The gauges are

represented as Flash objects JavaScript is used to update their data variables. All of the

gauges that were used are animated and updated over time a pre-defined time interval

(3-5 seconds). Half of the gauges used also display information pertaining to a specific

day in a 30 day cycle. The gauges used in the dashboard are detailed below:

Resource Meter The resource meter gauge was used to show the normalised traffic per

day over a period of 30 days as a percentage of total traffic over that time period.

The values were then increased by a factor of 20 to illustrate them more clearly on

the resource meter. The resource meter can be found in Figure 4.9.

Duel I/O Gauges The dual I/O gauge was used to illustrate the percentage of active

versus passive traffic observed during the currently displayed day in the 30 day

cycle. ”IN” represented Active and ”OUT” represented Passive traffic. The dual

I/O gauge can be found in Figure 4.9.

Digital Readout Two digital readouts were used, the first to show the total number of

packets recorded over the last 30 day period and the second to indicate the total

number of packets that had been captured in one of those days (this number was

updated to reflect a different day in the 30 day cycle every three seconds. digital

readout can be found in Figure 4.9.

4.5. ADDITIONAL COMPONENTS 49

Figure 4.9: Three gauges components; the resource meter, dual gauges and digital readout.

Percentage Bars Three percentage bars where used to show the breakdown of traffic

by protocol for one of the days during the 30 day cycle, these percentages were

normalised over the total packet count for that day. The three percentage bards are

shown in Figure 4.10.

Figure 4.10: Three percentage gauges; TCP, UDP and ICMP.

4.5.2 Sparklines

Spark lines were created by Edward Tufte[41] and are best explained as small, word sized

info graphics that are often used in line with a body of text. They add context and

historic value to a form of measurement. For this very reason they are often included

in text as the add value and context to what would normally just have been a numeric

representation of a value. They also allow for easy comparison of data and help show

trends and correlations between multiple data sets. Spark lines also have indicators such

as min or max value detailed by a coloured dot and normal ranges by lightly colouring a

range over the sparkline. The spark lines used in dashboard were positioned in a column

on the far right of the dashboard display.

The sparklines where divided into two categories, one for TCP and another for UDP.

Under the TCP category five sparklines were used and for UDP only two. The sparklines

that were used on the dashboard made use of datasets over an interval of the last 7

days, the values they displayed were also normalised based on that specific metric being

4.6. LIBRARIES 50

displayed in each individual sparkline. Table 4.1 shows a table summarising the types of

sparklines used on the Dashboard.

Table 4.1: Sparklines used for dashboard
TCP (over 7 days) UDP (over 7 days)
Total TCP traffic Total UDP traffic
Backscatter (TCP SYN/ACK + RST) SQL Slammer (UDP to port 1434)
Portscans (TCP SYN to any port)
Conficker (TCP SYN to port 445)
Blaster (TCP SYN to port 135)

4.5.3 Geopolitical Mapping

The Ammap2 library was used to create geopolitical maps with data overlays as they

provided an effective means at conveying information through a source that we know and

understand; such as a world map. A heat map signature illustrating the number of packets

received from each country was created for each of the last 7 days of recorded traffic. A

high density of packets was indicated with dark blue and moving towards light grey with

lower density traffic. Countries were coloured white if there were no packets recorded for

them during that day. Each Ammap interactive Flash map has settings file that is used

to enable certain characteristics of the Flash animation. The settings file of the flash

map had been configured to allow a user to navigate the map, pause the animation and

manually move a slider at the bottom of the map which control the animation’s interval.

For each day that was displayed in the animation, the date was provided and a total

count of packets for that day also displayed. This allowed a user to put packet counts

from specific countries into context. To view the total number of packets received from

a given country during a frame in the animation, a user simply had to hover their mouse

over the country, Figure 4.11 illustrates one frame. An animation for the dashboard is

shown in Chapter 5.

4.6 Libraries

The two additional libraries that were used during the development of the dashboard

allowed for a much richer dashboard display and enabled the dashboard to more easily

2Ammap - http://www.ammap.com/

4.6. LIBRARIES 51

Figure 4.11: Russia is highlighted in one day, of a 7 days geopolitical traffic density
animation.

display geographic based information. The Ammap library was used to create detailed

flash maps to illustrate data based on geopolitical locality in a simple and easy to un-

derstand manner. The JQuery sparklines3 library that was used to display the various

sparklines found on the dashboard allowed for easy data comparison and trend observation

by a user.

4.6.1 Open Flash Gauges

Open Flash Gauges is a flash library that allowed for the construction of the gauges

gauges illustrated in section 4.5.1. The gauges object created by the library worked by

receiving data from Javascript and using that data to update a particular gauge object.

The dashboard generator class that was introduced in section 3.4 was modified so that is

could output the JavaScript required by the Open Flash Gauges 2 library.

4.6.2 Ammap

Ammap is an interactive flash map library primarily used to create geographic and geopo-

litical flash maps and animations. It was used in the dashboard to create a heat map sig-

nature animation of a world map to show traffic density by origin country. Maps created

by Ammap require the following 3 files:

3JQuery Sparklines - http://omnipotent.net/jquery.sparkline/

4.7. SUMMARY 52

• ammap.swf

• data-file.xml

• settings-file.xml

The ammap.swf is a Flash ShockWave file which contains the vector graphics and Action

Script required by Flash to handle the graphics and logic embedded in the map. The

data-file.xml contains the data displayed in the Flash map, it also specifies the location

(path) of the settings-file.xml relative the path specified in the HTML where the

Ammap Flash object is embeded. The DataManager script included a function that

would generate an Ammap data-file. The settings-file.xml allows a user to set various

attributes that specify how the map should be rendered.

During prototyping it was discovered that the data-file.xml gets cached and thus to

load a new data-file.xml the browsers cache needs to be cleared and the page refreshed

before the new data would be reflected by the Ammap Flash map.

4.7 Summary

This chapter detailed the design and implementation of a network telescope dashboard

for the Rhodes University Network telescope. The Ember framework was used in the

dashboard along with other libraries. It was shown how the dashboard generator class

can be extended to incorporate external components such as gauges, sparklines and flash

maps. The problem of latency from complex queries was solved by making use of a local

dashboard database that acted as a data cache for the larger network telescope database.

The network telescope dashboard that was developed in this chapter is used in a case

study for the next chapter. The next chapter will explore the various traffic analysis

techniques that where used for the RUscope dashboard and discussion will take place

which details the observations after using the dashboard.

Chapter 5

RUscope Dashboard Case Study

The goal of the RUscope Dashboard was to allow for easy and continuous monitoring of

activity on the network telescope. The Dashboard also had to assisting in the identifi-

cation of events and trends which might warrant further investigation. While advanced

techniques of traffic analysis exist and have proven to be very effective[6][21][27][29], for

the implementation of traffic analysis in the RUscope Dashboard a simplified approach

to analysis was chosen. The RUscope Dashboard is show in Figure 5.1.

Figure 5.1: RUscope Dashboard.

53

5.1. DEPLOYMENT 54

This chapter will show how the RUscope Dashboard, which was constructed with the help

the Ember framework and additional libraries was used to monitor traffic on the Rhodes

University network telescope. It will explain the reasoning behind the techniques used for

traffic analysis and discusses results and findings after using the RUscope dashboard.

5.1 Deployment

The RUscope dashboard was deployed on a host running Microsoft Windows 7. A dump

file from the Rhodes University Network Telescope was used to populate a database on

a Postgres database server. Wamp1 was used the web server on which the RUscope

Dashboard was deployed. Finally the data manager script from chapter 4 was set to

execute every 6 hours using the Microsoft Windows Task Scheduler.

5.2 Metrics and Traffic Analysis

The traffic collected by a network telescope provides a large dataset that needs to be

analysed, to accomplish this one needs to summarise the data into manageable sets that

contribute to the information you are after. This can be done by identifying the character-

istic of data that contribute to your desired results. Attributes such as packet size, arrival

rate, port related traffic and packet compilation can all attribute to the identification of

specific events and illustrate metrics. Through the use of effective visualisation one is

able to easily identify significant variations in these metrics which could be indicated by a

substantial deviation in the values of traffic attributes and the likely observation of a ma-

licious event. The rest of this section will examine the analysis techniques used to identify

events in network telescope traffic which was then modelled into various visualisations to

be displayed on the RUscope dashboard.

5.2.1 Distributed Denial of Service(DDoS) Detection

A simple approach was taken for the detection and modelling of DDoS attack traffic on the

network telescope. Only SYN Floods would be considered as DDoS traffic, as they have

been shown to be the most prominent type of DDoS attacks[27][29]. Any TCP SYN/ACK

1WampServer - http://www.wampserver.com/en/

5.2. METRICS AND TRAFFIC ANALYSIS 55

or TCP RST packets received on the network telescope would be count towards DDoS

traffic. This is also considered as backscatter[27] and for use in the I/O gauge it was

considered as passive traffic.

A typical SYN Flood starts when a botnet’s command and control initiates an attack on

a target[15], zombie hosts (or bots) in the botnet periodically check in with the command

and control for attack vectors or updates. Once they receive the attack vector they start

sending TCP SYN requests to the target from spoofed IP addresses. The purpose of these

SYN requests is to create a large amount of half open TCP connections and effectively

tying up all available connections to that host. After receiving each SYN request the

victim response with a SYN/ACK reply, since the SYN packets came from spoofed IP

addresses they are not likely to be received by bots and are in turn routed out onto the

internet. A network telescope is able to receive these SYN/ACK replies when the spoofed

IP addresses fall into the same range as what it is monitoring on. Figure 5.2 illustrates a

typical SYN Flood.

Figure 5.2: Example of a Distributed Denial of Service attack in the form of a SYN flood.

5.2.2 Worm Detection

Self propagating worms are responsible for the majority of traffic observed on the Rhodes

University network telescope, this is identified by analysing the telescope traffic for known

characteristics of these worms. As we cannot model each and every different worm found

on the internet it was decided to choose two worms which have enjoyed prosperous growth

5.2. METRICS AND TRAFFIC ANALYSIS 56

over the last few years. Conficker was chosen for TCP and the SQLslammer worm was

chosen for UDP.

Port 445 is used by Windows systems for Common Internet File System(CIFS)[2] over

TCP which is also known as Microsoft Directory Service. Many windows services make

use of CIFS and as a result there are many exploits available for it[29]. One of the

most well known worms to exploit vulnerabilities on this service is Conficker[39] which

exploits the Microsoft Windows vulnerability MS08-67. Conficker along with Blaster[1]

and Nimda[1] was monitored by the RUscope dashboard by looking for packets that sent

TCP SYN requests to port 445 on the network telescope with no other TCP flags set.

The Blaster worm was discovered in August 11, 2003[37]. The worm exploited a Microsoft

Windows DCOM RPC Interface Buffer Overrun Vulnerability by connecting to TCP port

135 and then by sending a sufficiently large amount of data to overrun the buffer. Blaster

was also responsible for denial of service attacks in the form of SYN[37]. To extract

Blaster traffic from the network telescope traffic, all TCP packets with a destination port

of 135 and a SYN flags set were taken.

SQL Slammer[38] was first discovered on the 24th of January, 2004. The worm targeted

systems running Microsoft SQL Server 2000 and Microsoft Desktop Engine (MSDE) 2000.

It spread by exploiting a service over UDP port 1434 which is used as the SQL Server

Resolution Service Port[38]. Traffic targeting this port over UDP was extracted from the

network telescope database and displayed in the dashboard as SQL slammer traffic.

5.2.3 Port Scan Detection

Port scanning is a method often employed by malicious entities to find vulnerable hosts

on the internet. The technique for conducting a port scan is done by sending a packet to

a host and waiting for a response. Table 2.2 in section 2.6.1 illustrates common responses

for different types of packets sent. The response received can be used to determine if the

status of a port and in some cases can even be used to infer the host operating system.

To extract port scan traffic for the RUscope Dashboard, only TCP traffic with the SYN

flag set were used, SYN packets to port 445 that had previously been used to identify

Conficker traffic was excluded from port scan traffic.

5.2. METRICS AND TRAFFIC ANALYSIS 57

Figure 5.3: Distribution of packet types among port scans[24].

5.2.4 Active and Passive Traffic Detection

Network traffic can be classified and grouped under various categories; this is done an

attempt to more easily identify correlations and anomalies in the traffic. Now that we

have shown in more detail what traffic we choose to extract for the Dashboard we can

group the metrics further as either active or passive. It was mentioned in chapter 1 and

2 that we had classified active traffic as any type packets that expect or solicit a reply

of some kind. While on the other hand passive traffic expected no kind of response and

was simple sent and forgotten. This however means that UDP is very nearly impossible

to classify as either active or passive as it is a stateless protocol. There are however

assumptions one can make in attempt to classify it, such as UDP payloads that match

known malicious entities or source, destination and packet size inferences. These assump-

tions have however been simplified down in favour of applicable method suitable for a

proof of concept implementation. All traffic that was not considered as active traffic, was

considered as passive. This assumption allowed us to forego extracting different kinds of

active and passive traffic and instead just count the amount of active traffic, which most

of the visualisations already made use of. Passive traffic observation was thus a result of

subtracting active traffic counts from the total traffic observed for some given interval.

5.3. DISCUSSION 58

5.3 Discussion

As the RUscope dashboard was constructed in such a manner as to easily compare historic

and more recent traffic. The two Ember container objects each contain four charts, each

of these 4 charts in both containers make up a pair. These pairs of charts operate on the

same metric but make use different data sets. The container on the left shows data from

the last four weeks while the container on the right only shows data from the last 7 days

that had been inserted into the network telescope database. This allows for relatively

easy correlation and anomaly detection. The gauges container represents data over an

interval of the last 30 days and gives a breakdown of per day statistics. The sparklines

container and geopolitical traffic animation only operates on the last 7 days of traffic. Note

that during the use of the RUscope dashboard for this case study the network telescope

database that was used only contained packets captured up until the 29/09/2009. During

the rest of this chapter any reference to current day refers to the latest date found in the

network telescope database, that is to say the 29th of September 2009.

5.3.1 Ember Containers

The first chart found in each of the Ember containers were used to show a brakedown of

UDP, TCP and ICMP protocols over the given time interval as illustrated in Figure 5.4.

A slight increase in TCP and decrease in UDP traffic between the last 4 weeks and the

current week is seen in Figure 5.4(a) and Figure 5.4(b). These values are also illustrated

in Table 5.1 and Table 5.2. When looking at the Figures in Figure 5.4 one could see a

clear increase in TCP traffic and a decrease for UDP. When the results were compared

it showed an increase of 1.8% in the proportion of TCP traffic and a decrease of 1.78%

in UDP, with ICMP changing only by a meagre 0.02%. This is also a good example of

how useful information visualisation is, with small percentages as observed above it would

have been difficult to note a difference if looking at table showing the packet count, this

difference is however relatively clear when comparing the two pie charts.

Table 5.1: Values for protocol distribution chart in Figure 6.4(a)
TCP 95.36%
UDP 4.2%
ICMP 0.44%

Figure 5.5(a) and Figure 5.5(b) illustrates a set of bar charts which show the top 5

5.3. DISCUSSION 59

(a) Protocol distribution over last 4 weeks. (b) Protocol distribution over last 7 days.

Figure 5.4: Two pie charts showing protocol distribution.

Table 5.2: Values for protocol distribution charts in Figure 6.4(b)
TCP 97.16%
UDP 2.42%
ICMP 0.42%

Operating Systems(OS) that had sent traffic to the network telescope. P0fv22 is a passive

OS fingerprinting tool that was used to analyse this traffic. The percentages in these

bar charts has been arranged in descending order over the interval specified for each of

their containers. Some of the longer OS names overlap and make it difficult to read,

there is unfortunately nothing that can be done to stop this. It was however possible to

highlight the text and copy it to a clipboard to view if it was obstructed. Both Figure

5.5(a) and 5.5(b) show that a large proportion of traffic that had been recorded was

from Windows 2000 and Windows XP SP1+ hosts. According to the Conficker Working

Group[20] Windows 2000, Windows XP, Windows Vista, Windows Server 2003, Windows

Server 2008, and Windows 7 Beta are all vulnerable to Conficker. An additional source[34]

mentions how Microsoft Windows XP, SP1, SP2 and SP3 are vulnerable if the security

patches for Conficker has not yet been applied. As the largest majority of TCP traffic

received is a result of Conficker it can be assumed that most of the hosts that are still

infected with Conficker are running on 2000 SP4, XP SP1+ and that their proportion

had not had any significant change over the last 4 weeks.

2P0f v2 - http://lcamtuf.coredump.cx/p0f.shtml

5.3. DISCUSSION 60

(a) Operating System distribution over last 4
weeks.

(b) Operating System distribution over last 7
days.

Figure 5.5: Two bar charts showing Operating System distribution.

(a) Conficker packet traffic distribution over
last 4 weeks.

(b) Conficker packet traffic distribution over
last 7 days.

Figure 5.6: Two bar charts showing the packet traffic distribution from Conficker.

Furthermore the rate at which Conficker traffic was been detected on the network telescope

over the last 4 weeks has stayed relatively consistent as can be seen in Figure 5.6(a). A

drop in traffic observed during the last week, 09/23 in Figure 5.6(a) shows a slight decrease

of 4% in the proportion of Conficker traffic for that week. This decrease can actually be

5.3. DISCUSSION 61

seen better figure 5.6(b) during the interval between 09/27 and 09/29. Across all the

visualisations a drop of traffic is observed during this period. The average packet count

(of all traffic, including Conficker) over those 3 days was 54353, which translated into an

average decrease of 32% for that period.

It should be noted that around this time in 2009 there had been multiple power failures

and network outages at the network telescope’s location and this might have influenced

the drop in traffic. Another possibility as mentioned in section 2.3.2 is the loss of traffic

through routing anomalies and congestion. If it was congestion it could possibly have

been caused during the growth phase of a new worm, however we did not notice any

significant increase in traffic before the decline which makes it unlikely.

Essentially the bar charts in Figure 5.6(a) and Figure 5.6(b) indicated that the traffic

the network telescope had been receiving from Conficker was remaining constant, which

could mean that conficker had reached its persistent state and that it’s next life cycle will

bring on a decline in its numbers.

(a) DDoS packet traffic distribution over last
4 weeks.

(b) DDoS packet traffic distribution over last
7 days.

Figure 5.7: Two bar charts showing the packet traffic distribution from DDoS attacks.

The set of charts in Figure 5.7 showed the proportion of DDoS attacks detected by the

network telescope, these are once again broken down into two data sets, with Figure 5.7(a)

over the last four weeks and Figure 5.7(b) over the last 7 days. The dataset representing

the last four weeks in Figure 5.7(a) shows a steady decrease in DDoS traffic leading up to

the present week. Figure 5.7(b) which shows DDoS traffic from the last 7 days indicates a

5.3. DISCUSSION 62

slightly larger but still fluctuating amount of DDoS traffic over the first four days (09/23

- 09/26) and then drops slightly over the remaining three days. Using a calendar we

determined that the 09/26/2009 was a Friday at GMT-5. This could indicate that during

a working week DDoS attacks are more prevalent than over weekends. The assumption

holds if you consider that the monetary loss a business during working hours, if the

business is offline would be greater than the monetary loss during non-operating hours.

Further analysis would however be required as the traffic represented in these charts are

over a global time period and do not represent traffic from a single location over a specific

time period.

5.3.2 Sparklines

The sparklines found on the Dashboard only represented traffic over a the last 7 days.

They were primarily used as a method for simple comparison on traffic composition over

multiple metrics and were dived into two categories namely TCP and UDP traffic over the

last 7 days. The values in all of these sparklines are normalised to show the proportion

based on only that specific metric being displayed in each individual sparkline. Each

sparkline uses indicators in the form of blue and black dots, one of the black dots indicate

the maximum and the other the minimum values over the given time interval, the blue

dot indicates the latest day.

Figures 5.8(a) and (b) show the TCP sparklines, the first sparkline in Figure 5.8(a)

indicates the total proportion of TCP traffic over the last 7 days allowing it to be used

as a baseline for comparison with the remaining TCP sparklines. As it has been noted

in the previous charts there is a definite drop in traffic during the last 3 days. The

second sparkline in Figure 5.8(a) shows the proportion of backscatter traffic (SYN/ACK

and RST) over the last 7 days while the 1st sparkline in Figure 5.8(b) indicates the

proportion of port scanning activity. The 2nd sparkline in 5.8(b) shows the proportion

of Conficker traffic over the 7 day period, when comparing the total TCP traffic and

Conficker traffic sparklines it is evident that they are very similar and one cant thus

again assume that Conficker is responsible for the majority of TCP traffic captured by

the Rhodes University network telescope. The last of the TCP sparklines shown in Figure

5.8(b) represents traffic from the Blaster worm over the last 7 days. The sparkline starts

with a strong spike in Blaster traffic, which then subsides and stays relatively low over

the remaining 6 days as compared to the first.

The second category which is used for UDP traffic only contains two sparklines and is

5.3. DISCUSSION 63

(a) TCP, total traffic and
backscatter.

(b) TCP, port scans, Con-
ficker and Blaster.

(c) UDP, total traffic and
SQL Slammer worm.

Figure 5.8: Sparklines from the RUscope Dashboard

shown in Figure 5.8(c). The first sparkline as before with the TCP sparklines indicates

the total proportion of UDP traffic over a period of 7 days. The second sparkline shows

the traffic of the UDP based SQL Slammer worm. The sparkline graph for Slammer is

also very similar to that of the total UDP traffic and it can be rightfully assumed that

Slammer is responsible for the majority of the UDP based traffic.

It has been shown that from these sets of sparklines that both UDP and TCP traffic are

dominated by a single worm; Conficker for TCP and SQL Slammer for UDP. If it was

possible to stop or slow down the spread of these two worms, we would severely stunt

the quantity of malicious traffic on the internet. There are techniques that may be used

to slow down the spread of TCP based worms such as tar pitting which is employed by

LaBrea[4], it does however have limitations and its effectiveness is not always guaranteed

against more advanced malicious entities.

These sparklines as mentioned before only show normalised traffic flow of each individual

traffic, which is to say that the maximum value found on each sparkline is used as the

maximum value for the y-axis. The minimum y-axis value however has been set to 0, as

opposed to the default for JQuery sparklines which uses the minimum value in the data

set as the minimum value for the y-axis. This means that each sparkline is used to show

only the flow of traffic for the respective metrics and not the proportion of traffic out of

the total for either TCP or UDP.

5.3.3 Gauges

The various gauges used in the Dashboard helped to visualise traffic over a period of 30

days and also provide some insight on day to day patterns of that traffic. The Resource

5.3. DISCUSSION 64

Meter gauge in Figure 5.9 shows a tightly stacked together bar graph which was used to

illustrate traffic flow over the last 30 days. The bar chart was animated and displayed a

new bar from the right of the Resource Meter and once the 30th day had made its way to

the left of the Resource meter it would be redrawn on the right again, constantly cycling

through the traffic. The traffic for each day was normalised over the entire month. As

a result of the normalisation the y-axis which is labeled from 0 to 100% each day only

attributed 2-3% of the traffic. This did not make the visualisation as effective in showing

the flow of traffic. It was decided to multiple the normalised values for each day with a

contestant to effectively ”zoom” into the graph. This worked well the only concern left

was the ”100” that labeled the maximum y-axis value, but until we acquire the Flash

source files for the gauges we are unable to do anything about their actual appearance.

Figure 5.9: Gauges resource meter showing the distribution of traffic over the last 30 days,
a drop of 25% in the average traffic is shown.

The Resource meter also shows the drop in traffic over the 3 day period that leads up

to the current day. The next interesting thing to note about the resource meter is that

it detected a sudden spike in traffic that was reasonably high above the average for the

month.

Figure 5.10: Gauges digital readout indicating the number of packets captured by RUs-
cope on the 4th of September 2009.

Further investigation showed that on this day the Digital Readout in Figure 5.10 showed

the packet count jump up from approximately 80 000 packets per day to 112537. On that

same day the TCP and UDP percentage bars in Figure 5.11(a), which normally show

around 96% TCP and 4% UDP for each the day, suddenly showed 70.5% TCP and 29.5%

UDP which is a relatively significant change of 25%. As this day was outside of the latest

5.3. DISCUSSION 65

7 days, the Dashboard held no additional information surrounding it and any further

investigation into the sudden spike of UDP traffic would have to be completed manually

by querying the network telescope database.

(a) Two percentage bars
showing the percentage of
TCP and UDP traffic.

(b) Dual gauges show-
ing the percentage of
Active(IN) and Pas-
sive(OUT) traffic.

Figure 5.11: Percentage bars and Dual gauges showing traffic for the 4th of September
2009.

Lastly the I/O Gauges component shown in Figure 5.11(b) which was used to indicate the

levels of Active and Passive traffic stay consistent for most of the month with an average

around 4% for active traffic and a standard deviation of 2%. Active traffic is denoted by

the gauge that reads ”IN” and passive is denoted by the gauge that reads ”OUT”, we did

not acquire the source code for the gauges and were unable to edit the static text they

displayed.

5.3.4 Geopolitical Map Animation

The geopolitical traffic density animation can be seen in figure 5.12. The animation works

over 7 frames, each frame showing global traffic density for that day and in so doing

animating the flow of traffic from a geopolitical perspective over the last 7 days. Darker

colours symbolise more traffic while lighter colours indicate less traffic, no traffic was

observed from countries that were coloured white. Figure 5.12 only shows the animation

at each second day, the decline in traffic over from the 27/09 and 29/09 period is still

very evident. Strangely though traffic from Russia did not slow down at all during the

seven days and they managed to send an average of 10533 packets each day, with a

minimum of 10116 and a maximum of 11093 packets. Traffic received from Africa was

minimal, fluctuating over the 7 day period but not showing anything significant. The

5.4. SUMMARY 66

North America, South America and China where responsible for the majority of traffic

after Russia, they however also showed a big decline in traffic after 26/09.

5.4 Summary

Deployment of the dashboard was relatively easy as cross platform languages such as

PHP, Python and SQLite were used during the development of the Ember framework and

RUscope dashboard. The chapter then outlined the various techniques used for traffic

analysis in the RUscope dashboard. The traffic analysis techniques were simple and

relied heavily on the prior knowledge of traffic characteristics. Methods for DDoS, worm

and port scan identification were outlined and active and passive traffic was revisited

and formally defined for use in the RUscope Dashboard. A discussion followed wherein

observations from using the RUscope dashboard were highlighted. Several observations

were detailed and their meaning inferred. The next chapter will provide possible future

extensions of the Ember framework as well as exploring possible applications for the Ember

framework and the design decisions used during the creation of the RUscope Dashboard.

67

(a) Traffic density for the 23rd of September 2009, high amount
of traffic observed from Russia and China.

(b) Traffic density for the 25th of September 2009, high amount
of traffic observed from Russia and China.

(c) Traffic density for the 27th of September 2009, drop in global
traffic excluding Russia.

(d) Traffic density for the 29th of September 2009, sustained low
traffic globally excluding Russia.

Figure 5.12: Geopolitical traffic density animation showing the density of traffic by source
country.

Chapter 6

Conclusion

6.1 Future Extensions

The ember framework was designed to be modular and allow for easy implementation of

future extensions. This was done by separating the construction of a dashboard from the

datasets it would require. The number of container objects and graphs in each container

are defined in an external configuration file. The configuration file also contained the

location of graphs scripts that were used to construct charts. This separation makes it easy

to add additional charts. It was also illustrated in chapter 4 that the dashboard generator

class could easily be extended to accommodate additional libraries. The remainder of this

section will highlights two possible extensions for the ember framework and then detail

possible real-world application of the Ember framework and the RUscope Dashboard

design principles.

6.1.1 GUI for Dashboard Construction

While the construction of the dashboard is done dynamically from a configuration file and

supporting graph scripts, coding is still required for each graph script and the configura-

tion file. The first possible extension to the Ember framework would be the creation of a

complementary tool that would allow for a graphical construction of the dashboard and

the graphs contained in each container. The proposed tool would be a simple Microsoft

C# application that allows a user to add charts to a container by specifying the chart

type and importing a data set. The application would then automatically generate the

68

6.2. SUMMARY 69

PHP graph script file. This tool should also be able to create and modify configuration file

used to define a dashboard. In so doing a user could specify the number of containers and

which graphs should be contained in each container through a graphical user interface.

This tool would further simplify the construction of dashboards and allow for novice users

to create dashboards without any programming knowledge.

6.1.2 Data Aggregation and Visualisation Framework

The second possible extension would involve modifying the data manager script to allow

for the aggregation of data between multiple sources. This is made easy be the use of the

local dashboard database as the modification to aggregate the data would only have to

transform the data for insertion into the local database. The local database already has a

schema that can be used to store almost any kind of information. Aggregating data from

sources such as honeypots and intrusion detection systems would also complement the

information displayed from a network telescope. The Ember framework is extensible and

able to make use of multiple libraries and data sources without a great deal of modification.

6.2 Summary

The main goal of this thesis was to develop an extensible information visualisation frame-

work that could be used for the construction of tools that require large datasets to be

summarised, managed and effectively visualised. This was achieved by the construction of

the Ember framework detailed in chapter 3. It was then shown that the Ember framework

could be used to construct a network telescope dashboard, through the development of

RUscope in Chapter 4. This was done by extending the data manager script to also gen-

erate the code required to manage gauges, sparklines and a geopolitical map animation.

RUscope was then used in a case study in Chapter 5 and it was shown that it effectively

conveyed information, helped observe similarities and anomies in traffic and provided an

automated means of generating metrics.

The main achievements of this thesis are now summarised.

Developed a Visualisation Framework: The Ember framework was developed to sim-

plify the process of creating multiple visualisations using multiple data sets. It is

capable of maintaining state over various charts, navigating through charts and

6.2. SUMMARY 70

providing additional information regarding charts contained in dashboards created

with it.

Created a Network Telescope Dashboard: The Rhodes University network telescope

(RUscope) dashboard was created. The dashboard is capabable of analysing net-

work telescope traffic and visualising the results. It employs a cache database to

solve the problem of latency when querying a large telescope traffic database. The

RUscope dashboard is also able to visualise and assist in the discovery of DDoS

attacks and monitoring worm activity.

Simplified Traffic Analysis Metrics: For use in the RUscope dashboard, multiple

metrics where identified. The metrics for identifying worms included Conficker[39],SQL

Slammer[38] and Blaster[12]. Metrics to identify traffic from a SYN flood and port

scans where also identified.

Network security is of increasing concern and by utilizing network telescopes we are able

to get a glimpse of the nefarious side of network activity. When the information obtained

from the traffic analysis of network telescope data is appropriately visualised it becomes

a great tool for learning and understanding. This allows us to better understand not only

the frequency of malicious activity, but also discover patterns, similarities and anomalies

found in potentially malicious traffic. By using what we have learnt we are able to better

prepare our network to face the ever increasing onslaught of malicious entities circulating

the Internet.

Bibliography

[1] Branch router QoS design. http://www.cisco.com/en/US/docs/solutions/Enterprise/

WAN and MAN/QoS SRND/BranchQoS.html (last visited October 2010).

[2] Internet file system. http://www.snia.org/tech activities/CIFS/CIFS-TR-

1p00%20FINAL.pdf (last visited October 2010).

[3] Nepenthes - detecting malware. http://nepenthes.carnivore.it (last visited June

2010).

[4] Labrea: ”sticky” honeypot and ids, 2010. http://labrea.sourceforge.net/labrea-

info.html (last visited May 2010).

[5] Aben, E. Conficker/conflicker.downadup as seen from the ucsd network telescope,

February 2009. http://www.caida.org/research/security/sco-dos/ (last visited Au-

gust 2010).

[6] Bailey, M., Cooke, E., Jahanian, F., Myrick, A., and Sinha, S. Practi-

cal darknet measurement. In 40th Annual Conference on Information Science and

Systems (March 2006), pp. 1496–1501.

[7] Bailey, M., Cooke, E., Jahanian, F., Nazario, J., and Watson, D. The

internet motion sensor: A distributed blackhole monitoring system. In In Proceedings

of Network and Distributed System Security Symposium (NDSS 05 (2005), pp. 167–

179.

[8] Bailey, M., Cooke, E., Jahanian, F., Provos, N., Rosaen, K., and Wat-

son, D. Data reduction for the scalable automated analysis of distributed darknet

traffic. In IMC ’05: Proceedings of the 5th ACM SIGCOMM conference on Internet

Measurement (Berkeley, CA, USA, 2005), USENIX Association, pp. 21–21.

71

BIBLIOGRAPHY 72

[9] Barnett, R. J., and Irwin, B. Towards a taxonomy of network scanning tech-

niques. In SAICSIT ’08: Proceedings of the 2008 annual research conference of the

South African Institute of Computer Scientists and Information Technologists on IT

research in developing countries (New York, NY, USA, 2008), ACM, pp. 1–7.

[10] CERT. Cert advisory ca-2001-19 ”code red” worm exploiting buffer overflow in iis

indexing service dll. http://www.cert.org/advisories/CA-2001-19.html (last visited

September 2010).

[11] CERT. Advisory ca-2001-26 nimda worm. Advisory, September 2001.

http://www.cert.org/advisories/CA-2001-26.html.

[12] CERT. Cert advisory ca-2003-20 w32/blaster worm. Advisory, August 2003.

http://www.cert.org/advisories/CA-2003-20.html.

[13] Cooke, E., Bailey, M., Jahanian, F., and Mortier, R. The dark oracle:

perspective-aware unused and unreachable address discovery. In NSDI’06: Proceed-

ings of the 3rd conference on Networked Systems Design & Implementation (Berkeley,

CA, USA, 2006), USENIX Association, pp. 8–8.

[14] Cooke, E., Bailey, M., Mao, Z. M., Watson, D., Jahanian, F., and

McPherson, D. Toward understanding distributed blackhole placement. In WORM

’04: Proceedings of the 2004 ACM workshop on Rapid malcode (New York, NY, USA,

2004), ACM, pp. 54–64.

[15] Cooke, E., Jahanian, F., and McPherson, D. The zombie roundup: under-

standing, detecting, and disrupting botnets. In SRUTI’05: Proceedings of the Steps

to Reducing Unwanted Traffic on the Internet on Steps to Reducing Unwanted Traffic

on the Internet Workshop (Berkeley, CA, USA, 2005), USENIX Association, pp. 6–6.

[16] D’Agostino, R. B., and Stephens, M. A., Eds. Goodness-of-fit techniques.

Marcel Dekker, Inc., New York, NY, USA, 1986.

[17] David Moore, C. S. Sco offline from denial-of-service attack, November 2003.

http://www.caida.org/research/security/sco-dos/ (last visited October 2010).

[18] Ferguson, P., and Senie, D. Network ingress filtering: Defeating denial of service

attacks which employ ip source address spoofing, 2000.

[19] Few, S. Information Dashboard Design: The Effective Visual Communication of

Data. O’Reilly Media, Inc., 2006.

BIBLIOGRAPHY 73

[20] Group, C. W. Home page. http://www.confickerworkinggroup.org/wiki/ (last

visited October 2010).

[21] Harder, U., Johnson, M. W., Bradley, J. T., and Knottenbelt, W. J.

Observing internet worm and virus attacks with a small network telescope. Electron.

Notes Theor. Comput. Sci. 151, 3 (2006), 47–59.

[22] Jaquith, A. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-

Wesley Professional, 2007.

[23] Kurose, J. F., and Ross, K. W. Computer Networking: A Top-Down Approach.

Addison-Wesley Publishing Company, USA, 2009.

[24] Lee, C. B., Roedel, C., and Silenok, E. Detection and characterization of port

scan attacks. vol. 2004, 2003. San Diego, CA.

[25] Mell, R. B. P. ntrusion detection systems. NIST special publication, Novem-

ber 2001. http://permanent.access.gpo.gov/lps72073/sp800-31.pdf (last visited June

2010).

[26] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and

Weaver, N. Inside the slammer worm. IEEE Security and Privacy 1, 4 (2003),

33–39.

[27] Moore, D., Shannon, C., Brown, D. J., Voelker, G. M., and Savage, S.

Inferring internet denial-of-service activity. ACM Trans. Comput. Syst. 24, 2 (2006),

115–139.

[28] Moore, D., Shannon, C., Voelker, G. M., and

Savage, S. Network telescopes: Technical report.

http://www.cs.unc.edu/̃jeffay/courses/nidsS05/measurement/moore-

telescopes04.pdf.

[29] Pang, R., Yegneswaran, V., Barford, P., Paxson, V., and Peterson, L.

Characteristics of internet background radiation. In IMC ’04: Proceedings of the 4th

ACM SIGCOMM conference on Internet measurement (New York, NY, USA, 2004),

ACM, pp. 27–40.

[30] Payne, S. C. A guide to security metrics:.

http://www.sans.org/reading room/whitepapers/auditing/guide-security-

metrics 55 (last visited June 2010), 19 June 2006.

BIBLIOGRAPHY 74

[31] Provos, N., and Holz, T. Virtual honeypots: from botnet tracking to intrusion

detection. Addison-Wesley Professional, 2007.

[32] Shannon, C., and Moore, D. The spread of the witty worm. IEEE Security and

Privacy 2, 4 (2004), 46–50.

[33] Shinoda, Y., Ikai, K., and Itoh, M. Vulnerabilities of passive internet threat

monitors. In SSYM’05: Proceedings of the 14th conference on USENIX Security

Symposium (Berkeley, CA, USA, 2005), USENIX Association, pp. 14–14.

[34] Softpedia. Vulnerable windows machines sitting ducks for the conficker worm.

[35] Song, D. X., Song, D., Perrig, A., and Perrig, A. Advanced and authenti-

cated marking schemes for ip traceback. In INFOCOM 2001. Twentieth Annual Joint

Conference of the IEEE Computer and Communications Societies (2001), pp. 878–

886.

[36] Spitzner, L. Honeypot farms, August 2003.

http://www.symantec.com/connect/articles/honeypot-farms (last visited June

2010).

[37] Symantec. W32.blaster.worm. http://www.symantec.com/security response/writeup.jsp?docid=2003-

081113-0229-99&tabid=2 (last visited September 2010).

[38] Symantec. W32.sqlexp.worm, February 2007.

http://www.symantec.com/security response/writeup.jsp?docid=2003-012502-

3306-99 (last visited October 2010).

[39] Symantec. W32.downadup, July 2010. http://www.symantec.com/security response/writeup.jsp?docid=2008-

112203-2408-99 (last visited October 2010).

[40] TechNet, M. Microsoft security bulletin ms08-067 critical, October 2008.

http://www.microsoft.com/technet/security/bulletin/ms08-067.mspx (last visited

September 2010).

[41] Tufte, E. Beautiful Evidence. Graphics Press, 2004.

[42] van Riel, J.-P., and Irwin, B. Inetvis, a visual tool for network telescope traffic

analysis. In AFRIGRAPH ’06: Proceedings of the 4th international conference on

Computer graphics, virtual reality, visualisation and interaction in Africa (New York,

NY, USA, 2006), ACM, pp. 85–89.

BIBLIOGRAPHY 75

[43] Weaver, N., Paxson, V., Staniford, S., and Cunningham, R. A taxonomy

of computer worms. In WORM ’03: Proceedings of the 2003 ACM workshop on

Rapid malcode (New York, NY, USA, 2003), ACM, pp. 11–18.

[44] Zou, C. C., Gong, W., and Towsley, D. Worm propagation modeling and

analysis under dynamic quarantine defense. In WORM ’03: Proceedings of the 2003

ACM workshop on Rapid malcode (New York, NY, USA, 2003), ACM, pp. 51–60.

Appendix A

Source Code

The source code appendix contains snippets of code from the Ember framework. The

code blocks have however been edited and most function bodies have been removed. The

full source code will be made available on request to Rhodes University.

A.1 Toggle Function

function startCycle(contID)

{

tmpPin =’pinID_’+contID;

tmpCycleName = ’cycle’+contID;

if (dashboard.containerList[getContainerIndex(contID)].toggleState)

{

dashboard.containerList[getContainerIndex(contID)].toggleState = false;

document.getElementById(tmpPin).className = "pinimg";

window.clearInterval(window[tmpCycleName]);

}

else

{

dashboard.containerList[getContainerIndex(contID)].toggleState = true;

document.getElementById(tmpPin).className = "pindown";

window[tmpCycleName] = window.setInterval

(

76

A.2. GRAPH SCRIPT 77

function() {cycle(contID);}, 8000

);

}

}

A.2 Graph Script

// This is sample code,

// function bodies have been removed

class GS_protocol_1

{

private $title = "Protocol brakedown over 4 weeks";

private $chartID = "GS_protocol_1";

private $description = "

<h3>Protocol Breakdown</h3>

<p>

This pie chart ilustrates the

traffic captured by the network

telescope according

to protocol type. 3 Protocols

have been selected, nameley

TCP, UDP and ICMP.

</p>

";

private $SWFscript;

private $chart;

private $numDataSets = 1;

function GS_protocol_1()

function getTitle()

function getDescription()

function getSWF()

function getID()

function getChart()

function getNumDS()

A.3. OFC-2 CHART CONSTRUCTION 78

}

$thisChart = new GS_protocol_1();

$PARAMS = $_GET;

foreach($PARAMS as $key=>$value)

{

if ($key == ’req’)

{

if ($value == ’chart1’)

echo $thisChart->getChart();

elseif ($value == ’title’)

echo $thisChart->getTitle();

elseif ($value == ’swf’)

echo $thisChart->getSWF();

elseif ($value == ’id’)

echo $thisChart->getID();

elseif ($value == ’desc’)

echo $thisChart->getDescription();

}

}

A.3 OFC-2 Chart Construction

// This is sample code,

// Shows how the OFC-2

// Chart object is made

$query = "SELECT Data.value, Data.label

FROM (Chart JOIN Data ON Chart.ID = Data.ID)

WHERE Chart.textID = ’GS_protocol_4week’

";

$values = null;

$labels = null;

$arr = null;

A.4. EMBEDDED SWF 79

if ($result = $db->query($query))

{

$table = $result->fetchAll();

for($i = 0; $i<sizeof($table); $i++)

{

$values[] = $table[$i][0];

$labels[] = $table[$i][1];

}

}

$db = null;

$pie = new pie();

$pie->set_start_angle(60);

$pie->set_animate(true);

$pie->set_tooltip(’#val# of #total#
#percent# of 100%’);

$pie->set_colours(array(’#5551’,’#0001’, ’#9991’)); //

$pie->set_values(array(new pie_value(floor($values[0]),$labels[0]),

new pie_value(floor($values[1]),$labels[1]),

new pie_value(floor($values[2]),$labels[2])));

$this->chart = new open_flash_chart();

$this->chart->add_element($pie);

function getChart()

{

return $this->chart->toPrettyString();

}

A.4 Embedded SWF

<script type="text/javascript">

swfobject.embedSWF

(

A.5. XML CONSTRUCTOR CLASS 80

"libraries/openflash/open-flash-chart.swf", "GS_protocol_1",

"460", "400", "9.0.0", "expressInstall.swf",

{"data-file":"graph_scripts/right/GS_protocol_2.php?req=chart1"}

);

</script>

A.5 XML Constructor Class

// This is sample code,

// function bodies have been removed

class Graph

{

public $active; // indicates if graph is enabled in the container

public $php_script_location;// location of script that produces the data

// required by open flash chart 2 to draw the graph

// also contains aditional information that is

// kept in the DashBoard ($db) object

public $title; // Graph title that will be displayed

public $ID; // Script file name, must be unique, ID EXCLUDES .php extension

public $description;// Description of graph

public $swf; // SWF script required for flash

public $numDataSets;// Number of datasets, more than 1 for animated graphs

}

class Container

{

public $containerTitle;

public $containerID;

public $numGraphs;

public $graphs = array();

}

class DashBoard

{

A.5. XML CONSTRUCTOR CLASS 81

public $DBTitle;

public $numContainers;

public $containers = array();

}

class XML_Constructor

{

private $db;

private $reader;

function XML_Constructor()

{

$this->db = new DashBoard();

$this->reader = new XMLReader();

$this->reader->open("test.xml");

//** Ommited Code *** //

// Parses XML file //

}

// Function strips out path and file extension,

// getGraphID("foler/folder/GraphScript.php") => "GraphScript"

function getGraphID($pathStr)

function getDB() // return DashBoard Object

}

