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Abstract

This literature review takes a brief look at the research into human computer interaction

with gloves, followed by an investigation into vision-based interaction, gesture recognition

and some of the hardware used in the Wii3D System. A look at related work will then

conclude the review.
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Chapter 1

Literature Review

The Association for Computing Machinery de�nes human computer interaction as �a disci-

pline concerned with the design, evaluation and implementation of interactive computing

systems for human use and with the study of major phenomena surrounding them�[15]. It

also states that the design and implementation of a human computer interactive system

should draw on the relevant aspects from both humans and computers.

1.1 Human Computer Interaction using Glove Systems

Historically, gloves have been an interesting focus of research for human computer inter-

action. The �rst of the gloves started appearing in the late 1970's[25, 28].

The process of tracking a hand generally involves calculating some of the properties of the

hand - position, orientation and pose. There are several documented methods for position

tracking when using glove-based input[25]:

� Optical tracking (using marker systems or silhouette analysis)

� Magnetic tracking

� Acoustic tracking

� Circuitry tracking

4
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1.1.1 Optical tracking

There are two main ways to achieve optical tracking - markers and silhouettes. The

marker system uses multiple cameras to detect the markers. These markers are either

infra-red LEDs that can either be constant or �ash in a pattern. The silhouette method

uses edge detection to extract the silhouette of the gesture. An analysis of the silhouette

is used to determine the position and orientation of the elements of the hand[25].

The marker approach hinges on the ability to triangulate the three dimensional position of

the markers in real time. The substantial processing power needed to make the necessary

calculations at a rate that is su�cient for real time applications makes this approach

di�cult. The accuracy of the detection of the markers depends on the number of cameras

used. However, as the number of cameras increases, the complexity of the calculation

increases as there are more components in the linear algebra system[25].

A great deal of work has been done on natural gestures that are free from gloves, al-

lowing the user a more liberated experience with computer interaction[19]. However, the

silhouette approach still has several inherent issues[25]:

� The resolution of conventional video cameras is not high enough to capture the

detail required for each individual �nger and cover the �eld of view necessary for

large motions

� The framerate of conventional video cameras (30 or 60 frames per second i.e. 33.33Hz

or 16.67Hz) does not allow for the capture of rapid movements, while other devices,

such as the Wii Remote have frequencies of up to 100Hz[31] and Selspot or Optotrak

can operate at above 300Hz

� Parts of the hand can occlude other parts - the occlusion problem cannot be solved

with a single camera

� Matchmaking (the ability to map objects in a scene to a three dimensional model)

is an inexact science that is still in its infancy

These problems detract from the silhouette's freedom and often ensure researchers taking

an alternate approach.
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1.1.2 Magnetic Tracking

The magnetic tracking approach uses a source device that generates a magnetic �eld. A

sensor reports its position and orientation in relation to the source. Multiple source and

multiple sensor con�gurations allow the tracking to be more accurate. The magnetic sys-

tems that have been developed support polling frequencies of up to 100Hz. The primary

advantage of this approach is that line of sight is not necessary for tracking purposes.

However, objects with much higher magnetic permeability, such as metals, can cause in-

terference in the magnetic �eld or �elds that are generated by the source device or devices.

This can lead to inaccuracies with the positions and orientations of the sensors[25].

1.1.3 Acoustic Tracking

Acoustic tracking is achieved by sending ultrasonic sounds from a source device, mounted

on points of interest on the hand, and using receivers in the environment to measure

the time taken for the sound to reach them. From this data, the tracking system can

triangulate the position of the sources. Unfortunately, this approach requires line of sight

from the sources to the receivers and acoustically re�ective surfaces can cause interference

with the system[25].

1.1.4 Circuitry Tracking

This technique uses hard-wired circuitry to detect touches, bends, and inertia etc. changes

by monitoring the sensors built into the glove[25].

1.1.5 Glove Systems

There have been many gloves developed for use with a computer, each with its own merits

and downfalls for a wide variety of applications [25, 28].

1.1.5.1 Sayre Glove

Richard Sayre postulated that a glove that used �exible tubes (not �bre optics), with a

light source at one end and a photocell on the other could measure the extent to which



1.1. HUMAN COMPUTER INTERACTION USING GLOVE SYSTEMS 7

a �nger is bent. The reported voltage across the photocell is correlated to the �nger

bending[25, 28]. Thomas DeFanti and Daniel Sandin developed such a glove, which is

both inexpensive and lightweight[29].

1.1.5.2 MIT LED Glove

The MIT Architecture Machine Group used a camera focused on an LED-studded glove

to track limb position for real-time computer graphics animation. This glove, however,

was designed and used for motion capture rather than a control device[25].

1.1.5.3 Digital Data Entry Glove

This glove used hard-wired circuitry that consisted of bend, touch and inertial sensors.

Although not commercially developed, this system was developed to recognize 80 unique

combinations of sensor readings mapped to a subset of the 96 printable ASCII characters

from the gestures de�ned in the Single Hand Manual Alphabet for the American Deaf[10,

25, 28].

1.1.5.4 DataGlove

The DataGlove, developed by Thomas Zimmerman, used optical �bres to measure the

angle of the bend in 10 of the �nger joints of the hand to give a description with 6 degrees

of freedom (position and orientation) of the hand gesture. The glove was constructed

from Lycra and optical �bre that ran along the back of the �nger joints. Each glove was

calibrated at a per-user level, and this calibrated glove would then solve the con�gurations

of the �ngers using the analogue attenuation of the light in the optical �bres in the 10

�ex sensors. The glove used a magnet that detected the orientation of the hand in three

dimensional space. The glove uses a serial cable to transmit the �ex and positional

information to a computer[5, 25, 28].

This glove had several key advantages over its predecessors - it operated in real-time, did

not require line of sight to a camera, and was lightweight and unobtrusive to the user. This

glove was made commercially available by VPL Research at a reasonable cost, and resulted

in quite widespread use around the world[25]. The accuracy of the glove's �ex sensors

was rated at 1º, but research showed that it was closer to 5º or 10º[4]. Furthermore, the

operating frequency of 30Hz was not su�cient for precision gestures[25].
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1.1.5.5 Dexterous Handmaster

This input device, developed by MIT for the control of Dexterous Hand robot, was far

more accurate than the data glove[28], with its 20 degrees of freedom measured (4 per

�nger) by Hall E�ect sensors as potentiometers at the joints[25]. However, the accuracy

gained by the glove was at the expense of comfort, made of an intricate aluminium ex-

oskeleton that was attached to the joints throughout the hand[28]. The glove accurately

measures the bend of each of the joints in the �ngers, the relative rotation of the each

�nger in relation to the hand and the complex motion of the thumb at 200Hz within 1º

of �exion[25].

1.1.5.6 Power Glove

Nintendo, inspired by the VPL DataGlove, designed a glove for its gaming consoles that

was constructed from moulded plastic and Lycra to allow �exible movement, with one

resistive ink sensor per �nger for �ex detection. The glove used an acoustic unit mounted

on the hand to track the glove in three dimensional space to one quarter of an inch using

a television mounted acoustic sensor, with further trackers to determine the rotation of

the hand[25].

The Power Glove was not particularly accurate, but its crude gesture recognition abilities

were su�cient for the gaming application for which it was designed[25, 28].

1.1.5.7 CyberGlove

The CyberGlove was designed to translate American Sign Language into verbal English. It

was constructed from 22 thin foil strain gauges sewn into thin fabric. The analogue signal

are processed and converted into a digital streaming signal that is sent to a computer

using a serial connection. The observed performance of the glove was smooth and stable,

while retaining accuracy within 1º of �exion[25].

1.1.5.8 Space Glove

Virtual Entertainment Systems, a company in the development of arcade games, devel-

oped a glove for use with its arcade games that measure the �exion of the �ngers using
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sensors that measure 1 degree of freedom per �nger and 2 degrees of freedom on the

thumb. This, in conjunction with the magnetic tracker in the back of the glove that

tracks the gloves position in three dimensional space, is used for the gaming interface

with other Virtual Entertainment Systems (previously W. Industries) arcade games[25].

1.2 Vision-Based Interaction

Gunnar Grape presented a system for computer vision which maps a hierarchy of features

using a two dimensional prototype. The prototype models that were used were various

projections of the three dimensional objects as a camera views them from a several dif-

ferent locations. The items in the scenes were limited to planar faced, convex objects.

The objects that are recognized are then matched to generalizations of the prototype

models [9]. This paper deals with many of the concepts of two dimensional vision-based

interaction.

1.2.1 Stereoscopic Depth Perception

The ability of an organism to perceive depth is achieved using the composition of multiple

perspectives of the same scene. Human vision has two perspectives that are processed

by the brain to resolve an estimate of the third dimension[30], which is important, but

not essential, to a human's function. Since the mid twentieth century, researchers have

documented investigations into depth perception and judgments of distances in the real

world[8, 16].

The stereoscopic depth perception problem is solved by deriving the points in three di-

mensional space relative to some prede�ned point in the space. In the world of computer

vision, the methods for resolving points using stereo vision are[26]:

1. Production of a camera model: the position and orientation of cameras in three

dimensional space

2. Position of matching point pairs: loci of corresponding features in the two pictures

3. Computation of the point in three dimensional space for each point pair

4. Presentation of the resultant depth information
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A great deal of research into matching areas in stereo images has been done. Marsha

Hannah[13] discusses measures of match which are suitable for the stereo vision matching

of areas. She goes on to describe several methods for pruning the search space.

1.2.1.1 Triangulation

The linear triangulation of a point in R3 from two projections, whose views are known, is

simple in a non-noisy environment using geometry[14]. Using Figure 1.1, for triangulation

in 2 dimensions, let:

� A be Observer 1

� B be Observer 2

� S The observed point

� l The line between A and B

� d The perpendicular distance from the line between A and B and the S

� α The angle between the l and
−→
AS

� β The angle between l and
−→
BS

Figure 1.1: Triangulation[34]

Using Pythagoras' theorem:
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l =
1

tanα
+

1

tan β

Therefore, d can be de�ned as:

d =
l(

1
tanα

+ 1
tanβ

) =
l · sinα · sin β
sin(α + β)

This can be extended into the third dimension using both horizontal triangulation and

vertical triangulation to calculate an estimate of an object's position in R3.

1.2.2 Matching Point Pairs

Hannah [13] described several ways to �nd the loci of two corresponding features in the

stereo images. In the event of few similar features in each image, it is su�cient to simply

do a permutation of pairwise operations on the points and choosing the pairs based on

the minimization of the distance between the corresponding points.

1.2.3 Point Tracking

The study by Tziritas[11] shows methods of predictive interpolation by estimating the

motion and structure of three dimensional objects from a sequence of images. The study

discusses the estimation by using a recursive predictor based on the velocity vectors of a

point in the three dimensional space. This predictor is based on a mixture of the previous

velocities of the point in question.

In another paper[27], Tziritas goes on to investigate the problem of discontinuity detector

which deals with occlusion and algorithmic discontinuities. This detection is attained by

checking the errors between the predicted values and the observed values. The detection

of such a discontinuity error results in the resetting of the system to start tracking the

points from a newly initialized state. The point tracking system is summarized in Figure

1.2.
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Figure 1.2: Predictive Interpolation

1.3 Gesture Recognition

Humans use gestures, especially hand gestures, for day to day communication. The

gestures that humans use are ingrained from childhood, and gestures therefore have an

inherently high level of intuitiveness. The use of gestures in computer software gives the

user the ability to interact with a computer in a more natural and intuitive fashion.

Fu[7] states that:

The problem of pattern recognition usually denotes a discrimination or clas-

si�cation of events.

A gesture recognizer uses the spatiotemporal changes as the gesture progresses for its

discrimination/classi�cation process[25]. A recognizer generally has three components:

� Encoding - the representation of the gesture

� Classi�cation - the injection of the supported gestures into the recognizer using ideal

situations and randomization or by example

� Recognition - the matching of observations to gestures

1.3.1 Encoding

The encoding (representation) of a gesture is important as the optimal transformation can

result in a very e�cient system. The recognition of shapes in gesture recognition can be
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achieved by encoding the data in such a way that the resultant encoding is a pattern that

matches a speci�c gesture. The separation of gestures into categories, or families, allows

a system to represent that family of gestures based on common features of the family[7].

1.3.1.1 Size Functions

Frosini[6] proposed a theory that sign language could be recognized by representing the

shapes using size functions. The recognition of sign language has been successfully im-

plemented by these representations[21].

A size function is generated by mapping the observations to some measurement system.

The importance of choosing the correct measuring system is evident in the possibility of

mapping di�erent gestures to the same size function. The possibilities of observed gesture

data are inherently in�nite and the ability of the classi�er to recognize a gesture depends

on the size function's ability to map the 'same' gestures to the same encoding. Due to

the physical nature of the system, the 'same' gesture can vary, globalized and localized,

in its displacement, rotation and scale. These variances need to be taken into account

by a process of normalization of the gesture[21]. A simple example of a size function is a

mapping of all of the gesture's coordinates' distances from a reference point.

In Figure 1.3, an example of a decomposition of a gesture into a size function is shown.

Figure 1.3(a) is the graph of some measuring function, ϕ. The shaded regions in Figure

1.3(b) and (c) identify the set of points with ϕ ≤ x and ϕ ≤ y in each of their graphs. In

Figure 1.3(d), the darker shaded regions identify the set of points where ϕ ≤ x and ϕ ≤ y

- the union of graphs (b) and (c). Figure 1.3(e) shows the resultant size function for all

possible values of x and y. The labelled regions in the size function identify the value of

the size function within the underlying region[21].
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Figure 1.3: Size Function Example

1.3.1.2 Approximate Directional Vectors

The approximate directional vectors are simply the directional vectors between the point

at times pt and pt−1 rounded to the prede�ned principal directions.

1.3.2 Finite State Automata

The use of Finite State Automata for template matching is the simplest approach to

recognizing gestures[28]. The gestures are recognized by simply comparing the observed

values with the template values, and transitions between the states to a known output

results in a gesture being recognized.

1.3.3 Hidden Markov Models

A three dimensional gesture may be recognised and processed using a Hidden Markov

Model[18], which is a simple dynamic Bayesian network. This spatiotemporal model,
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which is de�ned below, reduces the 3 dimensional complexity of the hand gesture into

a two dimensional problem, and analyses and categorizes these gestures using a state

machine. This model has been employed, with success, in speech [24] and handwriting

recognition [12].

The HMM can be de�ned as such[24]:

� states: S = {s1, s2, . . . , sN} where the state at time t is qt and N is the number of

states in the model

� symbols: V = {v1, v2, . . . , vM} where M is the number of distinct observation sym-

bols per state

� probability vector (state transition probability distribution): A = {aij} where aij =
P (qt+1 = sj | qt = si) 1 ≤ i, j ≤ N

� observation state probability distribution in state j: bj(k) = P (vk at t | qt = sj)

1 ≤ j ≤ N 1 ≤ k ≤M

� initial state distribution: π = {πi} where πi = P (q1 = si)

The resultant Hidden Markov Model can be visualized as shown in Figure 1.4, where:

� x states

� y possible observations

� a state transition probabilities

� b output probabilities

Sets of Hidden Markov Models are grouped into statistical classi�ers. These are statistical

methods that map n-feature vector to a point in that same n-space.

1.3.3.1 Learning

The learning task of the Hidden Markov Model is an intractable problem that uses a

maximum likelihood approach to determine the best set of state transition and output

probabilities, given an output set of sequences. However, the Baum-Welch algorithm is

often used to e�ciently derive a local maximum likelihood[17].
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Figure 1.4: Hidden Markov Model[33]

1.3.3.2 Recognition

The recognition process tackles the problem of deciding whether an observed set can be

described by the Hidden Markov Model. This is achieved by calculating the probability

of the observed set, given the parameters of the model. If this probability is above a

prede�ned threshold, the gesture is recognized as part of the model[17].

1.3.4 Other Methods

1.3.4.1 Arti�cial Neural Networks

Arti�cial neural networks are computational models that simulate aspects of a biological

neural network. As shown in Figure 1.5, arti�cial neural networks are built up as a

collection of node layers[1]:

� An input layer

� A series of hidden layers

� An output layer
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Figure 1.5: Arti�cial Neural Network[32]

The outputs between states are based on weights are learnt using back propagation

through examples. The neural network does not generally perform as well as the more

specialized Hidden Markov Models, but this approach has been used with some success in

the recognition of sign language gestures in a paper demonstrating the use of size functions

used an arti�cial neural network approach[21].

1.3.4.2 Statistical

Statistical methods of gesture recognition use classi�ers, just as the Hidden Markov Mod-

els do. Other approaches include:

� Bayesian classi�ers

� Hidden Markov Model with Gaussian distributions

Due to the requirement of large training sets and the in�exibility of Hidden Markov Models

classi�cation, the Bayesian approach might be preferable, as a study in head gesture

recognition showed[35]. The sparse classi�cation model used in that study demonstrated

the �exibility of the Bayesian approach.

The Hidden Markov Models can be modi�ed to emit continuous distributions, which

would be useful for continuous data rather than transforming the observed values into

discrete observations[23, 17].
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1.4 Hardware

1.4.1 Nintendo Wii

Although the Nintendo Wii is a proprietary product, and Nintendo has attempted to keep

much of its hardware information from the general public, there has been some detailed

information released about the products since the game console's inception[31].

1.4.1.1 Technical Speci�cations

The Nintendo Wii console's hardware has a PowerPC-based "Broadway" CPU, clocked

at 729 MHz accompanying an ATI �Hollywood� GPU with a clock speed of 243MHz[2].

The console has 88MB of main memory, of which 24MB is internal 1T-SRAM integrated

into graphics package and 64 MB is external GDDR3 SDRAM[3]. It connects to up to 16

Wii Remotes using Bluetooth[22].

The Nintendo Wii Remotes have a 16KB EEPROM chip that allows data and calibration

information to be stored, accessed and modi�ed. The Wii Remote camera contains a

Charged Coupled Device and an infra-red �lter with a hardware resolution of 128x96 pix-

els, with a reported virtual resolution of 1024x768 pixels at 100Hz[2]. The camera tracks

up to four infra-red blobs, whose information, including the blob coordinates and relative

sizes, is sent to its paired device using Bluetooth, instead of ine�ciently transmitting the

data for the entire resolution. Any light that the camera detects whose wavelength is

greater 800nm is detected. The camera best detects light sources that have high lumi-

nescence and small active areas. The removal of the infra-red �lter allows the camera to

pick up any high luminescence (bright) objects[36].

1.5 Related Work

Since the release of the Nintendo Wii, there has been a great deal of experimentation into

what can be accomplished with the Wii Remotes.
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1.5.1 Johnny Chung Lee's Wii Projects

Johnny Chung Lee has developed several applications that use the Nintendo Wii Remotes

for interaction with a computer using a Bluetooth connection[20]:

� Tracking Your Fingers with the Wiimote

� Low-Cost Multi-point Interactive Whiteboards Using the Wiimote

� Head Tracking for Desktop VR Displays using the Wii Remote

The projects developed are built using the WiimoteLib library.

1.5.1.1 Tracking Your Fingers with the Wiimote

The tracking of �ngers in two dimensions allows a user to have a pointer interface with

which interaction with a computer can be achieved by using the Wii Remote's ability to

track infra-red blobs, as shown in Figure 1.6.

Figure 1.6: Finger Tracking with the Wiimote

This project uses one Nintendo Wii Remote, an array of infra-red LEDs and infra-red

re�ectors which are attached to the �ngers. The infra-red array is positioned behind

the Wii Remote's camera, enabling the users to simple have re�ectors attached to their

�ngers[20].
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1.5.1.2 Low-Cost Multi-point Interactive Whiteboards Using the Wiimote

Custom made pens with infra-red lights installed in the tips of the pens are used to track

the pens' positions using one Nintendo Wii Remote. This project uses the Wii Remote's

two dimensional infra-red blob tracking capabilities. A possible schematic for the pens

was suggested, as shown in Figure 1.7[20].

Figure 1.7: Whiteboard Pen

The pen allows a user to use the momentary switch to turn the infra-red light in the pens

on or o�.

1.5.1.3 Head Tracking for Desktop VR Displays using the Wii Remote

This implementation uses the Wii Sensor bar, mounted on the user's head, to track the

user's head. The demonstration application renders targets on the screen based on the

position of the Nintendo Wii Remotes, resulting in a more immersive experience, as shown

in Figure 1.8.

Figure 1.8: Desktop VR
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The illusion of depth and space that is created by the rendering engine could add to the

quality of computer games and other perspective applications[20].

1.5.2 Design and Implementation of a Hand Tracking Interface

using the Nintendo Wii Remote

This project investigated the use of two Nintendo Wii Remotes to track hands in three

dimensions for a speci�c task - molecular visualization applications. The Wii Remote's

camera properties were explored, and a hand tracking interface with six degrees of free-

dom was implemented and tested. The investigator found that this technique was an

acceptable method for the visualization of complex molecules, and could be extended to

other Computer Aided Design (CAD) applications[36].

1.5.2.1 Camera Details

Wronski[36] experimentally determined the Wii Remote's intrinsic properties necessary

for the stereoscopic triangulation calculation by measuring the changes in the horizontal

and vertical viewing ranges as the distance from the camera. The results of the experiment

are summarized in Figure 1.9
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Figure 1.9: Wii Remote Camera Viewing Ranges

Wronski[36] found that viewing angles were 41º horizontally and 31º vertically. The

detected near viewing plane and far viewing plane were found to be 10cm and 3m for

the infra-red LEDs used in his investigation. Furthermore, he inferred that due to the

relatively linear graphs, that there was negligible lens distortion.

1.5.2.2 Implementation

The con�guration of the system developed by Wronski entailed a single �nger glove, as

shown in Figure 1.10, and a layout of Wii Remotes that were placed parallel to each other

and 20cm apart[36].
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Figure 1.10: Wronski Glove

Wronski's[36] implementation made use of the molecular visualization software package,

Avogadro, was used in the investigation due to its easily extensible plugin architecture.

The plugin that was developed received tracking data from the two Wii Remotes and

modi�es the translation, rotation and scale of the viewport in the Avogadro software. He

de�ned several gestures:

� Moving hands closer together/further apart zooms into/out of the molecule

� Moving both hands up, down, left or right simultaneously pans horizontally and

vertically

� Moving the left hand down and right hand up, or vice-versa rotates the molecule

about z-axis (roll)

� Moving left hand forward and right hand backward, or vice-versa rotates the molecule

about y-axis (yaw)

� Moving both hands forward or backward simultaneously rotates the molecule about

x-axis (pitch)

1.5.2.3 Outcome

The implementation of the hand tracking interface was found to be an acceptable interface

for the manipulation of the Avogadro application viewport. The gestures were successfully

recognized and the user experience when using the interaction technique was improved.

Wronski investigated the cost of such a setup, and discovered that the hardware, excluding

a computer, comes to approximately ZAR2500 (about US$350) [36].
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1.6 Summary

There are a multitude of methods for tracking the hand in space, each with its own pros

and cons. A great deal of work has been invested in the algorithms involved in hand

tracking and their associated approaches to the recognition of gestures. The array of

choice in this respect allows researchers and developers to choose an approach that best

suits their particular strengths and their systems inherent function and design, while still

giving a wide scope in terms of resources required.

The low cost con�gurations generally yielded lesser quality devices with low accuracy, and

those with a higher cost yielded high quality devices with high accuracy. The Wii Remote

con�guration appears to balance cost, quality and accuracy.
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