HIV Testing Site (HTS) Locator: Applying
Current Computing Trends to Voice Applications

Mathe Maema' and Alfredo Terzoli?
Department of Computer Science
Rhodes University
Grahamstown, South Africa

E-Mail: 'mathe@rucus.ru.ac.za 2a.terzoli @ru.

Abstract—The potential of voice interactions with machines,
independent on the visual modality or the possibility to signify
intentions through the movement of parts of the body, means
that voice applications of different kinds will continue to play
an important role in the future. This paper provides a simple
design, in the context of telephony, based on current trends in
technologies that shows how future voice applications will be
built. The design is aligned to the VoiceXML specification and
demonstrates a move towards use of rules and ontologies for
structuring and building a rich back-end.

Index Terms—Ontologies, Rules, VoiceXML.

I. INTRODUCTION

HE use of self-service is recognised by many sectors of
Tthe economy as beneficial. Over the years, the use of
IVR self-service, in particular, has raised a delicate question
about where the balance of interest lies between users and
service providers. On the one hand, due to benefits that may
translate to reduction in operational costs, service providers
have promoted and encouraged self-service. On the other
hand, users have expressed frustration and dissatisfaction
with this service [5].

Despite this, anecdotal evidence suggests that IVR self-
service and the general use of voice applications will con-
tinue to increase. The simple reason for this is that voice
communication remains good for many situations where
visual communication may not be appropriate. For example,
voice, as opposed to visual communication, may be better
for delivering services to the semi-literate users. Also, it is
certainly better for users whose eyes and bodies are engaged
in other tasks such as the case when driving a car. As a case-
study, this paper will discuss the implementation of a voice
application that is aligned particularly to the former context
of use.

The case-study application, named HIV Testing Site (HTS)
Locator, is an IVR self-service system designed to help
individuals locate information about service providers that
offer HIV testing. The system was intended specifically for
use by all members of Rhodes University community, as part
of reinforcing the ‘know-your-status drive’.

Besides representing a context that favours voice modality,
HTS Locator was designed to provide a moderately futuristic

The authors would like to acknowledge the financial support of Telkom
SA, Comverse SA, Stortech, Tellabs, Amatole Telecom Services, Bright
Ideas 39, and THRIP through the Telkom Centre of Excellence in the
Department of Computer Science at Rhodes University.

Lorenzo Dalvit
Department of Education
Rhodes University
Grahamstown, South Africa

ac.za E-Mail: 1dalvit@gmail.com

view of next-generation IVR applications. Based on obser-
vations of current trends in computing, in addition to using
VoiceXML specification, they will be influenced heavily by
developments in the field of Artificial Intelligence. At a
minimum, they will have explicit representation of relevant
knowledge as their back-end, with inference engines for
reasoning with that knowledge.

This knowledge may pertain, for example, to the dialog, the
task at hand or the domain, so it is important to note that
different reasoning mechanisms may be required for each
type of knowledge and so different specialised engines may
be used. To illustrate this idea, for the implementation of
the case-study application two different types of inference
engines are used: a rule engine and a reasoner. Basically, the
rule engine is used for processing rules needed for generating
dialog; and the reasoner is used for processing domain related
knowledge for answering user queries.

The rest of the paper is structured as follows. Section II
will provide context by discussing related work. Section
will provide the architectural design of the entire system.
Section IV will then briefly discuss the front-end and its
implementation. The back-end will be discussed in Section
V. This will be followed by the conclusions in Section VI.

It should be noted that in this paper, front-end refers only to
what is rendered while back-end is used loosely to describe
all that literally happens in the back, beyond the interface
with the user. Therefore, what would otherwise be referred
to as the middle tier when using architectural design patterns
such as n-tier architecture, is qualified as part of the back-
end. This is done to simplifying the presentation of the paper
and is by no means a reflection of lack of separation of
concerns in the implementation.

II. RELATED WORK

Much of the work relevant to this paper can be gleaned by
broadly looking into trends in computer science and what
is fuelling them. The shift to the Internet Protocol (IP)
driven networks and the ever growing access to computing
processing resources (Moore’s Law) are among the two
drivers for the progression of voice applications. Arguably,
these two factors hold true for all other advances within
the broad industry of computing. Nonetheless, both are
useful in pointing out that the move is toward rich back-end
driven voice applications, developed no differently than web
applications. In fact, through use of VoiceXML the back-end
for voice and web applications will be shared.



According to Schoeller [17], the adoption of VoiceXML as a
standard, influenced by the movement to the IP network, is
driving “the evolution toward a more fully web-application-
oriented stack”. Although this was said a few years ago, this
remains true and with the soon to be released VoiceXML
3.0 [13], the full alignment may not be that far. As an im-
provement to previous versions, VoiceXML 3.0 encourages
robust separation of concerns. For example, it offers clear
separation of flow from presentation in that the presentation
layer is not tangled with <gofo> logic. This is important
because separation of concerns enables an application to
be built or extended quickly and cost-effectively, since the
building process is necessarily modular.

In as far as the processing resources are concerned, an
argument has been put forth that also has implications for
improving user satisfaction with the use of voice applications
and IVR applications in particular. This argument pertains
to development of intelligent dialogs. According to authors
like Flycht-Eriksson et al. [8], practical implementation of
intelligent dialogs requires a back-end with multiple process-
ing engines for reasoning with specific types of knowledge
that need to be represented. In essence, they are suggesting
that a dedicated processing engine be available for reasoning
with either domain knowledge, task knowledge, generation
knowledge or any other knowledge represented within a
dialog based system. As it may be deduced, whilst this
setup may increase the computational power of the entire
system, it comes at a cost. In the past, the cost might have
been prohibitive, but today this not necessarily the case
(precisely because of Moore’s law, which roughly translates
to a growing trend of more computational power being
availed at a lesser cost).

Artificial Intelligence (AI), a field of study dedicated to
machine intelligence, has identified knowledge representa-
tion as one of the key ingredients in understanding and
generating intelligent behaviour. As a consequence, there has
been a lot of ongoing research in this area. The research has
provided many forms of representation. However, ontologies
in comparison to other forms of representation have received
more popularity within Al and other disciplines of computing
[6]. As a result, current trends indicate a move towards a
broad adoption of ontologies in any system that enables
knowledge and/or information exchange.

III. SYSTEM OVERVIEW

Figure 1 provides a picture of the architecture used for
the HTS Locator system. This architecture is based on
the architectural model proposed for use with VoiceXML
applications, as described in [7]. To provide clarity on how
the various components of the architecture interact with each
other, a use case for the system is discussed below.

When a call is received, the telephony platform handles
the processing details of the call such as interactions with
the telephone network (PSTN). The call is then forwarded
to the VoiceXML browser. As shown in the figure, IONET
VoiceXML browser called VXI* [2] is used. It was selected
primarily because it provided easy integration with iLanga
(an Asterisk based platform developed at Rhodes University
[16]). An initial experiment integrating VXI with iLanga is
reported in [11][12].

(c> <——>| Telephony Platform

1

VoiceXML Browser
(VXI* Browser)

$ Static VoiceXML
|| | Pages, Template
Web Server Files, etc.

Domain
Ontology
| e

Query Invoker
Servlet

Dialog Generator
Servlet

Knowledge Base

Figure 1. Overall System Architecture

After the call is forwarded, the browser maps the number
called to the URI of the initial document to fetch. A request
is then sent to the web server for the initial document. In
line with the request, the web server sends the document
to the browser. The browser then interprets the document
and renders it appropriately using services offered by the
telephony platform.

The result of the interpretation is a welcome message that
prompts the user for relevant criteria for locating a suitable
HIV testing facility. Assuming the caller does not hang up,
he/she will provide the criteria as numeric input (DTMF).
This input is used to generate a query to the knowledge base
via the inference engine following a process that is identical
to an HTML form being submitted to a servlet. The only
difference is that VoiceXML is used and not HTML.

To briefly articulate this process, when the dialog is com-
pleted for collecting user input, the form is submitted and the
Query Invoker servlet is invoked to process the user’s input.
In this case, this involves querying the knowledge base and
forwarding the results to the Dialog Generator servlet. This
servlet is responsible for deciding what to send to the user as
a response. This decision is governed by rules for generating
dialogs, which will be discussed in Section V.

Overall, as it may be deduced from the use of servlets, java
was used as the glue for making the various components of
the system work together. Java was chosen precisely because
of trends that indicate that we are steadily moving into a
generation of Java based tools especially within telephony.
This can be evidenced by the growing adoption of platforms
like Mobicents, a popular open source VoIP platform that is
based on efforts by the Java community [19].



IV. FRONT-END IMPLEMENTATION

The most important thing in implementing the front-end
of voice applications is the design of conversations (di-
alogs) that the user will have with the computer. These
conversations effectively qualify as the user interface for the
application.

There are a number of strategies based on voice user interface
design principles that can be followed to ensure that these
conversations do not lead to user frustration. The broad
objective of these strategies is to ensure that the short-
term memory of users is not overloaded nor is their time
wasted. With this in mind, the conversations for different
scenarios were written out in a drama script format to
simulate communication by the user and the system.

On the basis of the produced scripts, pages based on
VoiceXML 2 were created. An example page is shown below.
Essentially, this page includes two dialogs represented within
form tags. The first dialog greets the user and the goto tag
moves it to the options dialog. Within the options dialog, the
user is asked to make choices that would aid in locating a
suitable provider. These choices are submitted to a servlet
on the web server for further processing.

7>
xmlns="http ://www.w3.0rg/2001/vxml"

<?xml version="1.0"
<vxml version="2.1"
>
<l——Error handling logic —>
<l——Variable declaration—

o =

3
4
5
6| <!—— Start
;
8
9

initial dialog —
<form id="greeting">
<block>
<audio src="">

10 <l—— Welcome message ——>
1 </audio>
12 <goto nexi="#options"/>
13 </block>

14 </form>

16| <l——Present user with options —>

17 <form id = "options">

18 <l-—Determine cost preferance —>

19 <field name ="costParam" type="boolean?y=1;n=2;">
20 <prompt>Are you interested in a free or low cost

testing site? Press 1 for yes and press 2
for no.</prompt>

21 <filled >

22 <if cond="costParam=="true ">

23 <assign name="cost" expr=""lowCost’"/>

24 <elseif cond="costParam=='false '"/>

25 <assign name="cost" expr="'moderateCost’"/>
26 </if>

27 </filled >

28 </field >

29
30| <l—-—Determine distance preferance —>
31
32 <|——Submit user selection —

33 <block>

34 <submit next="http ://localhost/voiceLocApp/query"
method="post" namelist="distance cost"/>

35 </block>

36| </form>

37| </vxml>

In this section, details of the generation of the pages was
not discussed. To an extend, this is because the task itself is
not complicated. It is however worth mentioning that these
pages were either generated statically or dynamically by the
back-end.

Provider

hasProfile

isProviderOf Service Profile

describes charges
Service hasWorkday | hasCost
isOfferedOn
Workday Cost

startTime \endTime

Start Time End Time

Figure 2. High-level Conceptual Model

V. BACK-END IMPLEMENTATION

As it has been alluded to before, the back-end of HTS
Locator is driven by two inference engines. Although the
engines work together, each performs its own designated
tasks. This section will discuss the overall approach followed
for their integration into the application.

A. Interfacing with the ontology knowledge base

Over the years, the process for maintaining data has evolved
from using a flat file structure to use of databases. Currently,
we are at a turning point moving towards wide use of
ontologies.

Although numerous definitions exist for what an ontology is,
the most widely used definition describes an ontology as “an
explicit specification of a conceptualisation” [9]. The process
of building an ontology is a non-trivial one [14]. It is iterative
and demands careful analysis, feedback and redesign through
each stage of the development life cycle.

This process and its ‘grounding’ will not be discussed in
detail within this paper. However, for purposes of clarifying
what is meant by specification of conceptualisation, Figure 2
captures the high-level conceptual model yielded through the
construction process. As the figure shows, there are concepts
such as Provider, Service Profile, Service and Cost. These
concepts are related to each other via binary relations such
as hasProfile, describes and isProviderOf. Also shown is that
binary relations can exist between concepts and attribute
values. In the figure, this idea is represented by binary
relation startTime, which links concept Workday to a start
time value, represented in the figure using a parallelogram.

Further, the figure illustrates that there are at least two types
of binary relations. There are simple relations, which have
been represented using solid arcs. These explicitly state that
two concepts are related to each other. The second variety
are composite relations and these have been represented



Laboratory Practice
is-a

) ) is-a ) )
Private Practice Multiple Doctor Practice

HIV Test Provider Is-a

Hospital One Doctor Practice

is-a
VCT Provider

Figure 3. Inferred Model for HIV Test Providers

using dashed arcs. These relations indicate how deductions
can be made in order to conclude that a relation exists
between connected concepts. For example, isProviderOf is
a composition of hasProfile and describes (i.e. hasProfile o
describes). This means that if some provider X has profile
Y that describes some service Z, then it can be deduced that
X is provider of Y.

From the definition, it can be gleaned that conceptual mod-
elling is the main activity within the ontology construction
process. Indeed, this is true, due to the availability of tools
for automating the conversion of the conceptual model to one
that is executable by the computer. Protégé-4 [1], a free and
open source ontology editor was used for this purpose. We
chose Protégé primarily because it is regarded as a leading
ontological engineering tool that enables easy creation of
ontologies that can be represented in various formats.

Following this, the ontology was instantiated i.e. instances
(individuals) and their attributes were added in order to
produce a working knowledge base (since without instances
the concept of knowledge base does not exist). The produced
ontology was then rendered as an XML document.

With the knowledge base created, the next vital step was
building a small application that would act as an interface to
it and a reasoner so that user queries may be processed. The
purpose of the reasoner is to perform tasks such as checking
for consistency and answering queries. Pellet [18] reasoner
was chosen for use based on two reasons. First, at the
time of construction, it showed a high degree of conformity
with Web Ontology Language version 2 (OWL 2). This was
important in that, inadvertently, a commitment was made to
produce OWL 2 ontologies by selecting to use Protégé-4 and
its features. Second, as a reasoner, it is reported to perform
reasonably well for many use cases. (In some cases other
reasoners may out-perform it [18]).

OWL API [3], [10], a high level Application Programming
Interface (API) for working with OWL 2 ontologies was
chosen for the construction of HTS Locator. Using this API,
the application was built to carry out the tasks of loading the
ontology, setting up the reasoner and processing queries.

As a strategy for bringing efficiency, a decision was made
to allow only queries that pertain to core objectives of the
IVR application, which in this case, is to locate HIV test
providers. This translated in grounding the operation of the
interface to the IVR, but this was not deemed to be a negative
thing; given that with voice, it is not possible to present
information in parallel.

To put into context how this grounding effect was achieved,
in loading the ontology, only the inferred model relating to
HIV test providers is loaded into the working memory of the

O start

Mumber of results?

more than 3

Y

[ Refine dialog j

[Pmcess user selectionj

3 orless

Y
Proceed

I

[ Results dialog

I

m End

L

Figure 4. Process flow for generating VXML dialogs

reasoner. This model can be visualised as a taxonomy tree, as
shown in Figure 3. From the perspective of the interface, all
the answers are captured within this tree. Therefore, the act
of answering any query, amounts to traversing the tree using
algorithms provided by the reasoner. It should be noted that
based on some specified criteria, the reasoner can reconfigure
the tree as part of refining an answer.

B. Dialog Processing with rules

Given that it can never be predicted how many results will
be generated by a query, and that with voice only one result
can be given at a time, a question of presentation arose. This
question was: how can results be presented to users without
taxing their short-term memory?

The answer was to either present the results in batches to
the user or find some criteria that could be used to shorten
the list. With regard to not overloading the users’ short-term
memory, the latter was preferred. Based on this decision, a
dialog flow (see Figure 4) was generated to capture how the
implementation would be achieved. As shown, if the number
of results produced is less than or equal the thresh-hold
value, which is three in this case, the results are presented
to the user i.e. VoiceXML page for the results is generated
and delivered to the user. Otherwise a VoiceXML page is
generated to ask the user for criteria to be used to refine the
results. After the user has provided an answer, the results are
refined and presented to the user.

For all the pages generated, StringTemplate [15] was used.
StringTemplate is a rendering engine that distinguishes itself
by its ability to enforce separation of generation logic from
the output format.

Processing the results with provided criteria could have
been achieved by matching criteria with if-then statements.



However, current trends are moving away from imperative to
declarative programming, where rules are used. The former
focuses on how to perform a task while the latter focuses
on what to do. As cited in [4], the primary benefit of this
shift of if-then to when-then, is that in separating knowledge
from implementation, maintenance costs are reduced in a
sense that a change in the rules does not lead to a change in
the source code. There are many other benefits that include
easy representation of knowledge (business logic) in manner
that is readable and easy to update by non-technical users.

Given the benefits, the next question was which rule engine
to use? A number of alternatives were considered including
using Pellet used above for implementing the ontology pro-
cessing engine. However, after due consideration, we decided
to use a different engine to show how multiple technology
offerings can be used together to enrich service development.
We selected Drools (JBoss Rules) [4] based on evidence of
community support and the fact that is free.

In line with the process flow in Figure 4, the necessary
implementation using Drools was done such that the rule
engine is invoked after the user has submitted their criteria
for refinement. Then rules stored in repository are fired
and matched against the criteria. Following this, the refined
results are presented to the user.

rule "Match criteria 1 — Alphabetic sort

salience 3

when
$c:Criteria(userSelection==Criteria.CRITERIA_1)
$q:QueryResultMap ($map: resultMap)

then
storeResultsMap = new TreeMap ($map) ;
$q.setResultMap (storeResultsMap) ;
$q.setRefined (true);

O 9 U B W —

10 end

The rules authored for use in Drools are represented in
form shown above. As shown, the example rule matches
criteria 1 which is alphabetic sort. This rule is matched
when user selection is CRITERIA_I and the query result map
(QueryResultMap) exists. When this conditions are satisfied
the rule fires and the query result map is put into a tree map,
which performs the sorting and the results are stored in the
storeResultsMap variable. Within the engine, the instance of
the query result map ($¢) is updated with stored results map
and the refine variable is set to true.

VI. CONCLUSIONS

Although voice applications may have a limitation of present-
ing information serially, they offer a powerful alternative for
contexts where visual modality may not be appropriate. For
this reason, there is no doubt that the development of these
applications will continue to rise. The question, however, is
how the development will evolve?

In this paper, through a simple voice application in which
users query a knowledge base for information, we demon-
strated how the development of voice applications might look

in the future.
REFERENCES

[1] Protégé. Online: http://protege.stanford.edu/ [Last accessed: 8 April
2008].

[2] VXI* VoiceXML Browser Manual. Online: http://www.ibnet.com/
support/documents/ [Last accessed: 9 Feb 2008].
[3]1 The OWL API: A Java API for Working with OWL 2 Ontologies, 2009.
[4] Paul Browne. JBoss Drools Business Rules. Packt Publishing, 2009.
[5S] Dwane H. Dean. What’s wrong with IVR self-service. Managing
Service Quality, 18(6):594-609, 2008.
[6] Gasevi¢ Dragan, Djuri¢ Dragan, and Devedzi¢ Vladan. Model Driven
Architecture and Ontology Development. Springer, 2006.
[7] Jim Ferrans, Brad Porter, Steph Tryphonas, Bruce Lucas, Peter
Danielsen, Daniel C. Burnett, Andrew Hunt, Scott McGlashan,
Ken Rehor, and Jerry Carter. Voice Extensible Markup Language
(VoiceXML) Version 2.0. W3C recommendation, W3C, March 2004.
http://www.w3.0rg/TR/2004/REC-voicexml20-20040316/.
Annika Flycht-Eriksson and Arne Jonsson. Dialogue and domain
knowledge management in dialogue systems. In Proceedings of
the Ist SIGdial workshop on Discourse and dialogue, pages 121—
130, Morristown, NJ, USA, 2000. Association for Computational
Linguistics.
[9] T. R. Gruber. Towards principles for the design of ontologies used
for knowledge sharing. In N. Guarino and R. Poli, editors, Formal
Ontology in Conceptual Analysis and Knowledge Representation,
Deventer, The Netherlands, 1993. Kluwer Academic Publishers.
Matthew Horridge and Sean Bechhofer. Igniting the owl 1.1 touch
paper: The owl api. In In Proc. OWL-ED 2007, volume 258 of CEUR,
2007.
Adam King. Constructing a low-cost, open-source, VoiceXML Gate-
way. Master’s thesis, Rhodes University, 2007.
Adam King, Alfredo Terzoli, and Peter Clayton. Creating a low cost
VoiceXML Gateway to replace IVR systems for rapid deployment of
voice applications. In Southern African Telecommunications, Networks
and Applications Conference (SATNAC), pages 131-136, September
2006.
Scott McGlashan, Daniel C. Burnett, Rahul Akolkar, RJ Auburn,
Paolo Baggia, Jim Barnett, Michael Bodell, Jerry Carter, Matt Oshry,
Kenneth Rehor, Milan Young, and Rafah Hosn. Voice Extensible
Markup Language (VoiceXML) 3.0. Online: http://www.w3.org/TR/
2010/WD-voicexml30-20100304/ [Last accessed: 2 May 2010].
N.F. Noy and D.L. McGuinness. Ontology development 101: A guide
to creating your first ontology. Technical report, Stanford University,
2001.
Terence John Parr. A functional language for generating structured
text. Online: http://www.cs.usfca.edu/~parrt/papers/ST.pdf [Last ac-
cessed: 5 March 2010], 2006.
[16] J.Penton and A. Terzoli. iLanga: A next generation VOIP-based, TDM-
enabled PBX. In Southern African Telecommunications Networks and
Applications Conference (SATNAC), 2004.
Art Schoeller. Voice Self-Service Aligns with Web Architectures
to Reduce TCO, Increase Flexibility and Ensure Content
Consistency. Technical report, YANKEE Group, 2006. Online:
http://www.cisco.com/en/US/prod/collateral/voicesw/custcosw/
ps5694/ps1006/prod_white_paper0900aecd8051711b.pdf[Last
accessed: 7 May 2010].
Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical owl-dl reasoner. Journal of Web
Semantics, 5(2):51-53, 2007.
Mosiuoa Tsietsi, Alfredo Terzoli, and George Wells. Mobicents
as a Service Creation and Deployment Environment for the Open
IMS Core. In Southern African Telecommunications, Networks and
Applications Conference (SATNAC), 2009.

[8

[

[10]

[11]
[12]

[13]

[14]

[15]

(171

(18]

[19]

Mathe Maema completed her BSc(Hons) at Rhodes University. She is
currently reading towards an MSc degree at the same institution. Her
research interests are in the area of telephony and knowledge management.

Alfredo Terzoli is Professor of Computer Science at Rhodes University,
where he heads the Telkom Centre of Excellence in Distributed Multimedia.
He is also Research Director of the Telkom Centre of Excellence in
ICT for Development at the University of Fort Hare. His main areas of
academic interest are converged telecommunication networks and ICT for
development.

Lorenzo Dalvit is a lecturer in Education, where he is responsible for
Information Communication Technology (ICT), both at an academic and
practical level. He also works in close collaboration with the Telkom
Centre of Excellence in Distributed Multimedia; with the South Africa-
Norway Tertiary Education Development Programme and with the NGO
Translate.org.za.



