
MoBill: a framework for billing in next

generation networks

Submitted in partial ful�lment

of the requirements of the degree of

Bachelor of Business Science

of Rhodes University

Moses Thizwilondi Nkhumeleni

Grahamstown, South Africa

November 1, 2010

Abstract

Convergence of voice, video, and data has led to the development of more complex services

that combine di�erent media. These services are commonly referred to as next generation

services. Traditional billing frameworks are inadequate for next generation services. In

part this is because an application may be composed of di�erent services. Furthermore,

the use of di�erent media adds additional complexities to traditional time-based charging.

Hence, next generation services require new innovative billing.

The project aims to investigate billing for next generation services. In this project we

identi�ed event, time, volume, and subscription as core charging models. Reward and

�exible charging models were extended from the core charging models. Ericsson Diameter

API implements the Diameter protocol which is used to perform accounting of resource

usage. As proof of concept for these charging models (core and extended charging models),

we developed a billing component called MoBill. MoBill was implemented using the

Ericsson Diameter API. Mobicents was used as a service development platform. Mobicents

examples were used to test MoBill. These examples essentially demonstrated how we can

implement di�erent charging models using MoBill.

ACM Computing Classi�cation System Classi�cation

Thesis classi�cation under the ACM Computing Classi�cation System (1998 version, valid

through 2010):

C.2.1 [Network Architecture and Design]: Packet-switching networks

D.2.3 [Coding Tools and Techniques]: Object-oriented programming

D.4.7 [Organization and Design]: Real-time systems and embedded systems

Acknowledgements

This research project has been exhaustive and at times required a lot of support. It would

be unfair of me not to mention some of the people and sponsors that contributed to the

success of this project.

Firstly I would like to thank my supervisors, Professor Alfredo Terzoli and Mr Mosiuoa

Tsietsi. Thanking Professor Alfredo for all the structural and high-level support to my

research. In addition, I would also like to thank him for assisting me in my career aspi-

rations and motivating me to do Computer Science honours. I have learnt a lot from just

knowing Professor Alfredo. Thank you very much for being a supervisor and a mentor. I

would also like to thank Mosiuoa for all the assistance he gave me throughout the year.

I cannot recall how many times I went to his o�ce saying, �but this thing just does not

work�. I would like to thank him for his valuable time that he sacri�ced to come sit and

help me with the technical concepts, proof reading my work and always being the �rst

person I consult with di�culties. Thank you Mosiuoa, you just an inspiration.

I acknowledge the support of the convergence group. One name which sticks out is Mathe

Maema for her tough love approach and at times for pushing us hard so that we can

achieve our potential. Yes, super woman indeed! Thanking Ray for his system and

support he gave me. Shange, Zelalem, Walter, Erasmus, Grace, and Gerhold have been

fantastic research group members for brainstorming ideas.

This research would have not been possible without the �nancial support. The �nancial

assistance from the Allan Gray Rhodes Prestigious Scholarship towards this research is

hereby acknowledged. I would also like to acknowledge the �nancial and technical support

of Telkom, Comverse, Tellabs, Stortech, Amatole Telecom Services, Bright Ideas 39 and

THRIP through the Telkom Centre of Excellence in the Department of Computer Science

at Rhodes University.

Last but certainly not least my family, friends and colleagues for all the support given to

me throughout the year. Through the hardship, through successes; my family has always

been there, at times believing in me more than I do myself. Above all, I thank God for

being faithful and carrying me thus far.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Goals and Scope . 2

1.3 Methodology . 3

1.4 Thesis Structure . 3

2 Literature Survey 5

2.1 Introduction . 5

2.2 Billing Concepts . 5

2.2.1 O�ine and Online Charging . 6

2.2.2 Account Types . 7

2.2.3 Business Models . 7

2.2.4 Di�erent Charges . 8

2.3 Charging Models . 8

2.3.1 Subscription-based . 8

2.3.2 Event-based . 8

2.3.3 Volume-based . 9

i

CONTENTS ii

2.3.4 Time-based . 9

2.3.5 Reward-based . 9

2.4 Pricing Strategies . 9

2.4.1 Flat-rate Pricing . 9

2.4.2 Responsive Pricing . 10

2.4.3 Paris-metro Pricing . 10

2.4.4 Expected Capacity Pricing . 10

2.4.5 Priority Pricing . 10

2.5 Examples of Implemented Systems . 11

2.5.1 Service De�nition Approach . 11

2.5.2 Call Di�erentiation Approach . 11

2.6 Diameter Protocol . 11

2.7 Charging Infrastructure . 12

2.7.1 O�ine Charging Function . 12

2.7.1.1 Charging Trigger Function 12

2.7.1.2 Charging Data Function 13

2.7.1.3 Charging Gateway Function 14

2.7.2 Online Charging Function . 14

2.7.2.1 Charging Trigger Function 14

2.7.2.2 Online Charging Function 15

2.7.2.3 Rating Function . 15

2.7.2.4 Account Balance Management Function 15

2.8 Summary . 15

CONTENTS iii

3 IMS Billing and Related Technologies 16

3.1 Introduction . 16

3.2 Factors A�ecting IMS Billing . 17

3.2.1 Variety of Services . 17

3.2.2 Quality of Service . 17

3.2.3 Service Composition . 17

3.2.4 Di�erent Service Providers . 18

3.2.5 Flexible Charging . 19

3.2.6 User Preferences . 19

3.3 IMS Charging Principles . 19

3.3.1 Quality of Service Requirements . 19

3.3.2 Location Considerations . 20

3.3.3 Charging Media and Services Separately 20

3.3.4 Upgrading a Session . 20

3.4 Suggested Charging Approach for Services 20

3.5 Related Technologies . 21

3.5.1 Mobicents . 21

3.5.2 Diameter APIs . 22

3.5.2.1 Open Diameter . 22

3.5.2.2 Ericsson Diameter API 23

3.5.3 Testing Emulator . 23

3.6 Summary . 24

CONTENTS iv

4 Designing MoBill 25

4.1 Introduction . 25

4.2 Design Approach . 25

4.2.1 Monolithic Design . 26

4.2.2 Service Building Block Approach 26

4.2.3 Component Design . 26

4.3 System Speci�cation . 27

4.4 System Architecture . 27

4.4.1 Mobicents . 28

4.4.2 MoBill . 28

4.4.3 Ericsson Diameter Emulator . 28

4.5 Selection of Charging Models . 29

4.5.1 Core Charging Models . 29

4.5.2 Extended Charging Models . 29

4.6 MoBill Class Diagram . 29

4.6.1 AbstractMoBill Class . 31

4.6.2 MoBill Interface . 31

4.6.3 MoBill Class . 31

4.6.4 DiameterListener Class . 32

4.6.5 MoBill's Public Methods . 32

4.7 Mobicents Examples . 32

4.7.1 Google Talk Bot Example . 34

4.7.2 SIPB2B UA Example . 34

4.7.3 Video on Demand Example . 34

4.8 Summary . 34

CONTENTS v

5 Implementation, Dynamic Analysis and Testing of MoBill 36

5.1 Introduction . 36

5.2 Using Ericsson Diameter API to Implement MoBill 36

5.2.1 Charging Based on a Single Event 39

5.2.2 Charging Based on a Session . 39

5.3 MoBill's Charging Models . 40

5.3.1 Event-based Charging . 40

5.3.2 Time-based Charging . 41

5.3.3 Volume-based Charging . 43

5.3.4 Reward-based Charging . 45

5.3.5 Flexible Session Charging . 45

5.4 Adding MoBill to a Mobicents Application 47

5.5 Testing Examples . 49

5.5.1 Google Talk Bot Example . 49

5.5.2 SIPB2BUA Example . 51

5.5.3 Video on Demand Example . 54

5.6 Summary . 56

6 Conclusion 59

6.1 Overview . 59

6.2 Revisiting Projects Objectives . 60

6.3 Possible Future Work . 60

CONTENTS vi

A System Class Diagram 64

A.1 Detailed Class Diagram . 64

A.2 Additional Methods Description . 64

A.2.1 DiameterListener . 64

A.2.2 AbstractBillingComponent . 64

A.2.3 BillingComponent . 64

A.3 SessionLevel enumeration . 66

B MoBill JavaDocs 67

B.1 MoBillInterface . 67

B.2 AbstractMoBill . 67

B.3 MoBill . 67

C Installations and Con�gurations 71

C.1 Con�guring the Mobicents server . 71

C.1.1 Downloading Mobicents . 71

C.1.2 Con�guring JBOSS . 71

C.1.3 Con�guring JAVA . 72

C.1.4 Con�guring ANT . 72

C.1.5 Con�guring Maven . 72

C.2 Adding MoBill's Jar File . 72

CONTENTS v

D Mobicents examples 73

D.1 Deploying Google Talk Bot Example . 73

D.1.1 Prerequisites . 73

D.1.2 Installing Google Talk Bot Example 73

D.1.3 Executing the Example . 74

D.1.4 Google Talk Client . 74

D.2 Deploying the SIPB2BUA Example . 74

D.2.1 Prerequisites . 74

D.2.2 Installing B2BUA Service . 74

D.2.3 Executing the Example . 74

D.2.4 Con�guring SIP Phones . 74

D.2.4.1 Counter Path X-lite . 75

D.2.4.2 SIP phone . 75

E Con�guring Ericsson Diameter Emulator 76

F DVD Contents 78

F.1 Thesis\ . 78

F.2 JavaDoc_MoBill_BillingComponent\ . 78

F.3 JavaDoc_EricssonChargingAPI\ . 78

F.4 Mobicents_Examples\ . 78

F.4.1 GoogleTalkBot_Example\ . 79

F.4.2 SIPB2BUA_example\ . 79

F.4.3 VoD_Example\ . 79

CONTENTS vi

F.5 Project_Proposal\ . 79

F.6 Software\ . 79

F.7 Poster\ . 79

List of Figures

2.1 O�ine Charging Function . 13

2.2 Online Charging Function . 14

3.1 Application Composed of Di�erent Services, adapted from [22] 18

3.2 Mobicents Plaform, adapted from [9] . 22

4.1 Proposed System Architecture . 27

4.2 MoBill Class Diagram . 30

5.1 Ericsson Diameter API . 37

5.2 Event-based Charging Model Sequence Diagram 40

5.3 Time-based Charging Model Sequence Diagram 42

5.4 Volume-based Charging . 44

5.5 Reward-based Charging . 46

5.6 Flexible Multi-session Charging Sequence Diagram 48

5.7 Adding a Dependency . 49

5.8 Google Talk Bot Sequence Diagram . 50

5.9 Google Talk Bot Example . 50

5.10 SIPB2BUA Example . 51

vii

LIST OF FIGURES viii

5.11 Sequence Diagram with SIPB2BUA Service 52

5.12 SIPB2BUA Example . 54

5.13 Video on Demand Sequence Diagram . 55

5.14 Video on Demand Example . 57

A.1 Billing Component Detailed Class Diagram 65

B.1 MoBillInterface (BillingComponentInterface) 68

B.2 AbstractMoBill (AbstractBillingComponent) 69

B.3 MoBill (BillingComponent) . 70

E.1 Ericsson Diameter Emulator Connection Settings 77

List of Tables

2.1 Service Charging Information . 11

3.1 Di�erent Services with Respective Charging Models 21

4.1 MoBill's Public Methods . 33

5.1 Classes Used for MoBill Implementation 38

ix

Chapter 1

Introduction

Billing is a fundamental function of a telecommunication network provider. The billing

operation must be performed accurately and reliably. IMS (IP multimedia subsystem)

is an architecture that allows easy deployment of multimedia services in next generation

networks [4]. Billing forms will be important with the introduction of IMS, since there

will be a number of new types of services presented to the user.

The convergence of voice, video and data allows developers to deliver rich services to

the user. Factors such as increased number of services, service composition, and the

quality of service o�ered are driving the search for innovative billing approaches. The

shift towards an all IP network allows developers to produce more sophisticated services

that require more complex charging models. For instance, if during a voice session the user

upgrades to video call with more network resources, charging should adjust accordingly.

Another example would be �exible location based charging, where the user might be billed

di�erently based on their location [26].

1.1 Problem Statement

Traditional charging models were primarily time-based. The time-based charging models

provided a su�cient solution for voice calls. The complexity of new services means that

more innovative billing strategies need to be investigated. More service development

due to the convergence of voice, video, and data leads to variety of services available to

the user. This variety translates to the requirements of more complex charging models.

Moving towards IP networks introduces issues with QOS (Quality of services). Traditional

1

1.2. RESEARCH GOALS AND SCOPE 2

billing approaches were not concerned with QOS since they operated on circuit switched

networks.

1.2 Research Goals and Scope

The Convergence Research Group at Rhodes University has been researching on a number

of IMS related services, such as IPTV, video on demand, and location based services. The

main objective of this project is to develop a billing system for next generation services.

Goals of the project are:

• Develop a billing system to provide billing for Mobicents services.

� The Ericsson charging SDK will be used to develop the proposed MoBill com-

ponent.

� The Ericsson charging SDK has a number of tools that allow developers to

incorporate charging into their systems.

• Test the billing system by using Mobicents applications.

� In order to test the billing system, we identify a number of di�erent examples

to demonstrate some of the concepts.

� These examples will be extended to incorporate the proposed MoBill Compo-

nent.

� The Ericsson Diameter Emulator is used to emulate a prepaid system consisting

of user accounts. The emulator handles and responds to charging requests. The

emulator extends our test bed for the billing operations.

• In pursuing the two goals above, we have loosely used an �IMS point of view�. That

is due to the fact that the environments for which we see the applicability of our

work are at the moment by and large IMS compliant.

1.3. METHODOLOGY 3

1.3 Methodology

The approach taken in developing the Mobicents based billing system was to �rstly develop

a billing component (MoBill) that interacts with the Ericsson server. The component

contains required parameters to setup a TCP connection to the Ericsson server and hence

be able to transmit Diameter messages. Once connections are established, the component

contains billing logic that is required to implement event, time, volume, reward and �exible

session charging models.

Following development, the second phase of the methodology was to test the charging

models by modifying example applications to use MoBill. This involves adding the com-

ponent to the Mobicents platform and modifying application in order to add billing code

required by each application. This involves linking MoBill to the services building blocks

(SBBs) used by the Mobicents platform. Due to the given time frame, we focused pri-

marily on charging models instead of the applications used to test these models. This

a�orded us the opportunity to develop more sophisticated charging approaches without

diverting the focus onto developing Mobicents applications.

1.4 Thesis Structure

The remaining chapters are structured as follows:

• Chapter 2 reviews literature around billing and billing implementation. Online

and o�ine charging functions are discussed as part of the charging infrastructure.

The Diameter protocol is discussed in detail as the base protocol that is used for

implementation.

• Chapter 3 discusses billing within IMS. Factors a�ecting billing and charging prin-

ciples are discussed as a guideline to developing billing systems. Also discussed are

tools that may be used to develop services and charging systems.

• Chapter 4 discusses the general design of the proposed MoBill Component. System

speci�cation, UML diagrams are used to elaborate on the functionality of the MoBill

Component.

• Chapter 5 focuses on the implementation and technical details of the system. Then

it discusses the cases used to test the system.

1.4. THESIS STRUCTURE 4

• Chapter 6 concludes the research conducted. We revisit the projects objectives and

goals. Possible future work and extension are discussed.

Chapter 2

Literature Survey

2.1 Introduction

Billing includes a number of concepts such as: online and o�ine, prepaid and post paid,

and real time charging. Charging models allow operators to generate revenue for services

o�ered. Subscription, time, event, volume, and reward based charging models will be

discussed in detail.

Diameter protocol performs Authentication, Authorisation, and Accounting. The diame-

ter protocol is important when transporting messages containing accounting information

and authentication information. Diameter will be discussed in detail since the proposed

billing system is based on it.

The charging architecture describes a logical layout of charging functions. The charging

architecture is composed of online and o�ine charging functions. We will discuss the

online and o�ine charging functions in detail as they are important when performing

both o�ine and online billing.

2.2 Billing Concepts

This section de�nes and highlights major concepts in billing. The objective is to introduce

terminology that will be used throughout the document.

5

2.2. BILLING CONCEPTS 6

2.2.1 O�ine and Online Charging

O�ine charging refers to charging that is conducted after resources are consumed. For

example, if a user initiates a call; the user would be billed after the call. This means that

the charging information gathered does not a�ect the actual service.

In o�ine charging, billing information is sent to an external billing system. The function of

this external billing system is not part of the 3rd Generation Partnership Project (3GPP)

standard nor is the transferring of data from the network to a billing system [2].

With online charging, the user account is checked to determine if there is enough credit

for the user to consume the service. To clarify this point further, online can be thought

of as an approach that has real time interaction with the service that is being o�ered.

Online charging is done making use of an online charging system that conforms to the

3GPP standard [2].

Direct debiting and Unit Reservation are two scenarios for online charging. With direct

debiting, the account is debited immediately after a charging event occurs. With unit

reservation, units are reserved on the account of the user. When the user completes using

the resources the remaining credits are returned to the users account.

In both online and o�ine charging there are two main approaches to charging:

1. Event-based charging

• With event-based charging, an event is raised with a single transaction per-

formed by a user, such as sending a multimedia message.

• Event-based charging results in a creation of a single CDR (Charging Data

Record) [2]. CDR's are collection of charging information about an event.

2. Session-based charging

• A characteristic of session-based charging is the establishment of a user session,

such as a phone call.

• Session-based charging results in multiple charging events that could result in

multiple CDRs [2].

2.2. BILLING CONCEPTS 7

2.2.2 Account Types

There are two primary types of accounts that are used by users, namely prepaid and

post-paid accounts. With a post-paid account, the user receives a bill listing the charges

that have been incurred after a certain period. This allows for a simple billing system

to be implemented. A contractual agreement is required between the network operator

and the customer for a post-paid account. Prepaid account requires no contract; however

before using services o�ered by the network provider, the user must have credit in his/her

account.

A trend has shown that there has been an increase in the number of prepaid users [14].

The major reason for this is that pre-paid account requires less administration compared

to post-paid account, which usually requires a contract to be signed between the user and

the service provider. Network operators o�ering prepaid to customers have experienced

huge growth with the number of customers and the revenue [13]. Prepaid function is

based on alarms, whereby the user is able to use services up until a certain threshold [14].

For instance, the number of credits the user has would translate to the number of seconds

that can be used. If the numbers of credits run-out; an alarm is raised.

2.2.3 Business Models

A business model is de�ned as the relationship between a business and the service it

provides [5]. There are three main business models in the telecommunications industry,

namely content providers, service providers and network operators.

• Content providers focus mainly on delivering downloadable content such as music.

• Service providers focus on the delivery of services to the users.

• Network operators provide access to the network.

Businesses may combine two or more of these business models. Network operators of-

ten take the role of service providers or content providers [5]. With the convergence of

telephony and IP networks, network operators will be required to move towards service

delivery models in order to remain competitive[25].

2.3. CHARGING MODELS 8

2.2.4 Di�erent Charges

There are number of di�erent charges that telecommunication primarily focuses on, mainly

service charges, tari� charges, and content charges.

• Service charges are for using particular services.

• Tari� charges are for accessing the network.

• Content charges are charges based on the content downloaded by the customers.

2.3 Charging Models

Charging models are used by service providers in order to recover costs and to generate

revenue. It is imperative to have a suitable charging model for the service or content

provided. In this section we will review some of the charging models we identi�ed.

2.3.1 Subscription-based

With subscription-based charging model, the users pay a �xed amount over a period of

time. Subscription-based model encourages more of resource usage since the customer

pays a �xed amount which is independent of the amount of resources used. Subscription-

based model is most popular in charging for internet access, the users pay a �xed amount

based on the access channel they prefer [8]. The main advantage with subscription-based

model is that users can predict their charges.

2.3.2 Event-based

Event-based charging is based on chargeable events that occur. A chargeable event is a

single transaction, e.g. sending an MMS. Furthermore, event based charging uses a single

CDR [2].

2.4. PRICING STRATEGIES 9

2.3.3 Volume-based

In volume-based charging model, the user is billed according to the amount of data trans-

ferred. The advantage of this model is that the users are only charged for the amount of

content that they have received or sent.

2.3.4 Time-based

Time-base charging is based on the units of time the user consumes. This is a popular

traditional billing approach used by telecommunication companies. With the introduction

of IMS (IP Multimedia Subsystem) this charging model will be unable to cater for the

variety of services that users will be able to access.

2.3.5 Reward-based

Reward-based charging model is based on the users selected criteria of use. This model

is useful for creating brand loyalty. For example the more the user consumes a services,

the price is reduced as they continue to consume that particular service.

2.4 Pricing Strategies

There are a number of pricing strategies available. Pricing strategies are used by service

providers to put a price on their services. Ozianyi et al. [23] identi�es a number of these

pricing strategies namely: Flat-rate pricing, Paris-metro pricing, Responsive pricing, and

Priority pricing.

2.4.1 Flat-rate Pricing

Flat-rate pricing strategy is based on a �xed subscription amount the customer pays for

a service. Flat-rate allows the user to consume the services or resources over an agreed

period of time. In telecommunication networks, �at-rate pricing would allow users to use

resources in an unlimited manner; thus, it is the simplest pricing strategy to implement

[23].

2.4. PRICING STRATEGIES 10

2.4.2 Responsive Pricing

Responsive pricing is primarily based on the network tra�c. If there is high network

tra�c, the price is adjusted to a higher price and when there is low network tra�c the

price is reduced. This pricing strategy is e�ective at controlling the amount of tra�c on

the network, since the price sensitive users will delay their use to times when the price

is low. Responsive pricing strategy requires more network resources due to signalling

information [23].

2.4.3 Paris-metro Pricing

In Paris-Metro pricing, the network is partitioned into separate channels each with a

di�erent price [21]. Even though there is no bandwidth guarantee and the network still

o�ers best e�ort delivery, it is expected that the channel with higher price will have less

tra�c and channels with lower prices will have more tra�c. Similar to Responsive pricing

there is a trade o� between low quality of service and the price that the users pays for

the service.

2.4.4 Expected Capacity Pricing

With expected capacity pricing, the prices vary with the amount of capacity that is

expected on the network. The user is not limited to consume more resources when the

network is congested but does so at higher price [8]. This pricing creates incentives for

users to consume resources when the network is not congested by reducing the price.

Additionally this pricing scheme directly translates to the cost that the provider incurs.

2.4.5 Priority Pricing

This pricing strategy focuses on the priority that the user receives on the network struc-

ture. A higher priority would translate to higher price that the user will be charged.

Priority pricing can be used to create QoS pro�les since it relates directly to tra�c con-

trol [23].

2.5. EXAMPLES OF IMPLEMENTED SYSTEMS 11

Table 2.1: Service Charging Information
Application QoS Weight Price

app1 Q1 W1 P1
app2 Q2 W2 P2
...

appN Pn Wn Pn

2.5 Examples of Implemented Systems

In this section, we discuss two proposed solutions to billing for services in third genera-

tion's networks.

2.5.1 Service De�nition Approach

In order to overcome the complications associated with service composition as described

above, Oumina et al. [22] proposes a service de�nition approach. A table containing QoS,

weight, prices of each application is stored in a charging module as shown in Table 2.1.

The table is updated in real time when there are changes in the network. When charging

for an application, the table is queried in order to give a charging amount.

2.5.2 Call Di�erentiation Approach

In order to address issues with billing for services with QoS, Barachi et al. [4] proposed

a system which charges users di�erently based on the QoS of the call. Furthermore, the

user could subscribe to one of the following classes: silver, gold, or platinum. These

classes represent the Quality of service that the user has opted, silver represent low while

platinum represents high QoS. Higher QoS translates to a higher cost. Furthermore, the

system caters for emergency calls. Emergency calls do not have peremption because of

the critical nature of the calls [4].

2.6 Diameter Protocol

The Diameter protocol has been created to perform AAA (Authentication, Authorisation

and Accounting). Authentication is verifying the claimed identity of a subject, whilst

2.7. CHARGING INFRASTRUCTURE 12

authorization is focused primarily on access that the subject has. Authentication, Au-

thorisation and Accounting are linked and hence in order to account for the usage of

resources all tasks must be performed [7]. Accounting is focused on collecting information

with regards to the amount of resources being used. We are particularly interested in

accounting since it allows for billing to be conducted on resource usage information.

IETF (Internet Engineering Task Force) proposed Diameter as a replacement of RADIUS

protocol. RADIUS runs on unreliable UDP protocol. Diameter runs on TCP which o�ers

reliability and congestion control. There are a number of entities de�ned by diameter such

as Diameter client, Diameter server, realm, etc [7]. Diameter client is a located at the

edge of the network and mainly performs access control and Diameter server is primarily

used for authentication, authorisation, and accounting [7].

Diameter is a peer to peer protocol; therefore peers can send requests to other peers [7].

Diameter messages contain header information and a number of AVPs (Attribute value

pairs). AVPs can be considered as containers of data. AVPs can be used to transport

authentication information, in order for the user to be authenticated. AVPs can also

be used to transport resource usage information which is required for accounting. The

Diameter protocol can also be extended by de�ning new AVPs values, or by creating new

AVPs [6]. Diameter makes use of either request or answer commands. There are a number

of request and answer commands used by diameter, e.g. ACR (Accounting Request) and

ACA (Accounting answer) [6].

2.7 Charging Infrastructure

Depending on whether we are implementing an online or o�ine billing system, the charg-

ing architecture will change accordingly. This section describes o�ine and online charging

architectures.

2.7.1 O�ine Charging Function

2.7.1.1 Charging Trigger Function

The charging trigger function (CTF) creates charging events based on the network re-

source usage [2] . The CTF gathers information about charging and packages them into

2.7. CHARGING INFRASTRUCTURE 13

Figure 2.1: O�ine Charging Function

charging events, which are sent to the next function (Charging Data Function). The CTF

consists of the following functions:

• Accounting Metrics Collection

� This function simply monitors call signals, events, or sessions that users estab-

lish.

� This function would produce information that identi�es the user and the amount

of resources consumed.

• Accounting Data Forwarding

� This function receives the information and attempts to identify chargeable

events from the received information.

� The events are assembled and forwarded to the Charging Data Function (CDF).

2.7.1.2 Charging Data Function

This function receives charging events from CTF via Rf reference point as shown in the

diagram. These events are used to create CDRs (Charging Data Record). CDR contains

information such as time of call, duration of call, amount of data transferred, etc.

2.7. CHARGING INFRASTRUCTURE 14

Figure 2.2: Online Charging Function

2.7.1.3 Charging Gateway Function

The CDRs produced in the Charging Data Function (CDF) are transferred to the Charg-

ing Gateway function (CGF). The CGF therefore links the 3GPP network to the Billing

Domain; remembering that the Billing Domain is not part of the internal 3GPP network

structure. The CGF will receive CDR, validate, format and transfer CDR to the billing

domain.

2.7.2 Online Charging Function

2.7.2.1 Charging Trigger Function

This process is similar to CTF de�ned for o�ine charging, however information gathered

is di�erent. Additionally, since online charging requires permission to be granted to

resources before use, the CTF must be able to delay the use of resources until permissions

are granted [2]. Another di�erence with o�ine charging is that there is bidirectional

communication between CTF and OCF. The number of messages sent between the CTF

and OCF means there is more overhead as a result of charging [24].

2.8. SUMMARY 15

2.7.2.2 Online Charging Function

OCF contains two functions, namely: Session Based Charging Function(SBCF) and Event

Based Charging Function (EBCF). SBCF conducts online charging for user sessions such

as voice calls and IMS sessions [2]. EBCF is responsible for event-based online charging.

2.7.2.3 Rating Function

Rating Function (RF) is used to determine the value of the resource using the information

in the charging event. The RF output is monetary or non monetary units which are sent

back to the OCF.

2.7.2.4 Account Balance Management Function

This is a storage area containing the users account balance.

2.8 Summary

In this chapter, we have reviewed literature around billing. Di�erent billing concepts were

highlighted. The �ve identi�ed charging models were: event, time, volume, reward and

subscription based charging. Pricing strategies are closely related to charging models;

whereas pricing strategies focus primarily on how to price for services, charging models

are focused on how to implement charging. The Diameter protocol has been introduced

as a replacement for RADIUS protocol. Diameter is responsible for performing AAA

(Authentication, Authorization, and Accounting). Charging and billing is primarily fo-

cused on the accounting functions of Diameter. The choice between online and o�ine

billing will a�ect the architecture that is used when considering charging into systems.

We have discussed online and o�ine charging infrastructure in detail and highlighted

di�erent functions carried out within the infrastructure.

Chapter 3

IMS Billing and Related Technologies

3.1 Introduction

The concerns of network operators charging users by the amount of tra�c on the network

impose a challenge when charging various services. IMS (IP Multimedia Subsystem)

billing can be used to allow network operators to use more complex billing approaches

instead of just billing by the amount of tra�c on the network only. Billing for next

generation services will be the driving force behind releasing services into the market due

to high competition and the variety of services that will be available to the user. Being

able to deliver services to the user rapidly will allow service providers to have a competitive

edge over others. In order to achieve these requirements, there are a number of tools that

aid the development of IMS-compatible services such as the Mobicents platform.

The Diameter protocol discussed in Chapter 2 is used for accounting purposes. There

are a number of APIs that implement the Diameter protocol that can be used to develop

billing systems. In order to test our billing system, we need a server that responds to the

billing requests and performs debits and credits on user accounts. In this case, we use the

Ericsson Emulator Server which hosts user accounts and responds to Diameter messages

sent from the application.

In this chapter we introduce factors a�ecting billing for next generation services. Further-

more, we highlight why the current time-based charging model is insu�cient to cater for

the variety of services available. We continue by discussing the Mobicents platform and

the di�erent Diameter APIs.

16

3.2. FACTORS AFFECTING IMS BILLING 17

3.2 Factors A�ecting IMS Billing

With the introduction of third generation (3G) networks, the main idea has been to

merge cellular networks with IP networks. 3G networks operate using packet switching

and therefore allow the users to access the Internet via the IP protocol. However, the

IP protocol o�ers only best-e�ort delivery. There is no bandwidth guarantee that is of-

fered with data transfer. This means that services are available without guaranteed QoS

(Quality of Service). This presents additional concerns when o�ering real-time multimedia

services. IMS (IP Multimedia Subsystem) allows for synchronisation of session manage-

ment with QoS and hence this allows users to specify desired QoS [7]. In this section, we

summarise factors a�ecting billing and charging in 3G networks.

3.2.1 Variety of Services

IMS promises to deliver a number of di�erent services to its users such as voice, data,

video, conferencing and e-commerce services. These newly developed services impose a

challenge to the traditional time-based charging model. Variety of services is one of the

factors motivating the investigation into new innovative billing strategies.

3.2.2 Quality of Service

Quality of service (QoS) can be de�ned as the quality of transmission in a network that

the user receives based on various factors such as transmission rates and packet loss.

When providing services across IMS, the issue of QoS becomes important. The quality

of service should therefore be considered in the charging model. Service di�erentiation is

the ability to treat di�erent classes of tra�c di�erently based on their QoS [10].

The users should be able to select the quality of service that they prefer. Hence di�erent

QoS tiers should apply to di�erent rates to bring about service di�erentiation.

3.2.3 Service Composition

With the introduction of IMS, service composition has become attractive due to the ability

to deliver rich applications that combine di�erent media forms such as voice, data and

3.2. FACTORS AFFECTING IMS BILLING 18

video. There are a number of additional complications that are associated with service

composition. Namely, an application could make use of di�erent application servers and

third parties maybe involved in delivering services to the user [22].

Figure 3.1: Application Composed of Di�erent Services, adapted from [22]

These additional complexities give rise to a more complex charging system. For example,

if we have an application that consumes n di�erent services from di�erent service providers

as shown in Figure 3.1, each service is associated with a certain quality of service and

charge price. The overall quality of service will be dependent on the QoS of di�erent

services composed in the bundle. Additional complications can be added to the charging

model since all services may not necessarily be used at the same time. During the exe-

cution of the application, the service bundles will change and the QoS will vary. Services

in an application will have di�erent level of importance and therefore, an application can

also execute without some services [22]. If we have a charging approach that depends on

QoS, charging will vary with the change in time due to the factors mentioned above.

3.2.4 Di�erent Service Providers

IMS allows developers to combine a number of di�erent services to create a single appli-

cation. These services may be available from di�erent service providers. For example,

an application can use weather services from one service provider and news services from

another provider. This poses challenges to the charging model, since the service providers

will require their share of the amount that the user is billed for.

3.3. IMS CHARGING PRINCIPLES 19

3.2.5 Flexible Charging

In order for network providers to remain competitive, their pricing strategies will need

to be revised. The charging scheme must be �exible and cater for di�erent QoS tiers.

Flexibility means that pricing strategies should be subject to change based on the context

of the user. For instance, di�erent locations would result in users being charged with a

di�erent price. Quality of service and having �exible charging of services are fundamental

with the introduction of IMS [4].

3.2.6 User Preferences

Traditionally, network operators have proposed a billing model whereby a tari� is set

and rolled out to all customers. This means that all customers were charged in the same

manner. There was no personalised pricing strategy which considered the customers

preferences. Future billing models will need to consider users preferences when it comes

to billing for di�erent services [3]. So each user should be billed di�erently based on

their individual preferences. This means that network operators will need to reverse

the traditional billing approach and therefore, consider user's preferences or di�erent

parameters associated with the user. For example a user can have a tailored billing

scheme based on their preferences.

3.3 IMS Charging Principles

The complexity involved in IMS charging as discussed above requires following a few

guidelines and principles when developing billing services. 3GPP [1] suggests a number of

principles to follow when performing billing for next generation services. In this section we

highlight some of these suggested charging principles. Additionally, we use the examples

reviewed in Chapter 2 to help with the explanation of these principles.

3.3.1 Quality of Service Requirements

Di�erent levels of QoS should be charged di�erently. Depending on the quality of service

that the user receives, they should pay accordingly. For example, if the user is streaming

video at high quality, s/he should therefore pay more than another individual who is

3.4. SUGGESTED CHARGING APPROACH FOR SERVICES 20

streaming at lower quality. This approach becomes important when managing network

tra�c. The call di�erentiation example reviewed in Chapter 2 demonstrates how billing

a service with QoS can be done [4]. The user is billed di�erently based on the QoS they

receive on the call.

3.3.2 Location Considerations

There should be consideration for �exible location based charging, where the user might

be billed di�erently based on their location [26]. The user can be billed higher when

outside their local area. The location requirements mean that there should be di�erent

tari�s for use in di�erent locations.

3.3.3 Charging Media and Services Separately

The convergence of voice, video, and data media allows the developers to have services

using a combination of di�erent media. As a principle to follow, di�erent media should

be charged separately from others. Additionally, di�erent services should be charged

separately to cater for composed services. Multi-De�nition of Services in IMS example we

reviewed in Chapter 2 demonstrates charging an application with composition of services

[22].

3.3.4 Upgrading a Session

If the user upgrades a session, charging should change accordingly during the initial

session. For example, if the user was using a voice call and decides to upgrade to video

call, charging should change accordingly. With the call di�erentiation example the user

can upgrade a call to higher QoS and hence adjust billing accordingly.

3.4 Suggested Charging Approach for Services

In this section, we list di�erent IMS services with a suggested charging approach [1]. These

listing are captured in Table 3.1. As it can be seen, for each service, there is a charging

approach that is associated with a charging model. These services can be combined to

3.5. RELATED TECHNOLOGIES 21

Table 3.1: Di�erent Services with Respective Charging Models
Service Charging Approach Charging Model

Voice Charge the duration of the
session

Time-based charging

Video and
Audio
Streaming

Charge by the amount of content
downloaded. Irrespective of the
users usage criteria, charge the
user a �xed monthly rate.

Volume-based
charging and
Subscription-based
charging

Multimedia
Messaging

Charge per message. Charge by
the amount of content sent.

Event-based charging
and Volume based
charging

Location based
Services

Charge user for location
information received.

Event-based charging

Downloadable
Content

Charge by the amount of data
retrieved.

Volume-based
charging

produce a more sophisticated application that would result in a more complex charging

model.

3.5 Related Technologies

In this section, we discuss technologies for developing next generation services. Addition-

ally, we discuss the di�erent implementation APIs of the Diameter Base Protocol. The

two APIs we discuss in this section are Open Diameter and Ericsson Diameter Charging

API. We also motivate our selection of di�erent technologies that we used in developing

the billing system.

3.5.1 Mobicents

Mobicents is an open source service development platform for next generation applications.

Mobicents allows developers to create applications that combine voice, video and data.

The Mobicents platform is certi�ed as JAIN SLEE compliant. SLEE (Service Logic

Execution Environment) is a popular standard in the telecommunications industry. JAIN

SLEE is Java standard for SLEE. SLEE is similar to EJB (Enterprise Java Beans) but has

di�erent components [9]. Mobicents JAIN SLEE is built on top of the JBOSS application

server as seen from Figure 3.2.

3.5. RELATED TECHNOLOGIES 22

Figure 3.2: Mobicents Plaform, adapted from [9]

Mobicents JAIN SLEE compliments J2EE (Java enterprise) container features [9]. Mo-

bicents also facilitates the composition of SBBs (Services Building Blocks). The di�erent

SBBs available are: billing, call control, user-provisioning, administration and presence.

The use of resource adapters allows developers not to be concerned with the underlying

network technologies. Resource adapters act as wrappers that allow SLEE applications

to communicate with external resources using standard internet protocols [18]. Of par-

ticular interest to billing is the Mobicents Diameter Resource Adapter. The Diameter

Resource Adapter provides a development API for applications that implement billing.

The Diameter Resource Adapter is based on the Diameter protocol, which is described in

the next section.

3.5.2 Diameter APIs

In this section we discuss some of the implementations of the Diameter protocol. This

section discusses the di�erent APIs that are used to implement the Diameter protocol.

We motivate our preferred API used to develop MoBill by highlighting the advantages

and disadvantages of each API.

3.5.2.1 Open Diameter

Open Diameter is an open source implementation of the Diameter protocol. The Open

Diameter is implemented using C++. Open Diameter provides classes to perform AAA

3.5. RELATED TECHNOLOGIES 23

(Authentication, Authorisation, Accounting). The classes are grouped into two cate-

gories, client and server classes [12]. Client and server classes are further subdivided to

authentication, authorization, and accounting classes.

Open diameter has little documentation. However, the advantage with Open Diameter

is that source code is available. Open Diameter is not used for implementation, since

preference was given to a Java implementation of Diameter.

3.5.2.2 Ericsson Diameter API

The Ericsson SDK provides a high level implementation of the Diameter API with a

few layers of abstraction from the base API [20, 11]. The Ericsson Diameter API is

implemented in Java which complements the Mobicents platform that we are currently

working on. The Ericsson SDK provides a number of examples that demonstrate how to

develop billing applications. The Ericsson Charging API also provides an abstracted view

of base API with methods that allow developers to send and receive diameter messages.

The developer is not concerned with the underlying transport protocols when working

with the API. The disadvantage is that the entire source code for the Charging API is

not available to the user, since the API works with pre-compiled binary jar �les.

3.5.3 Testing Emulator

The Ericsson Diameter Emulator is a server application which acts as a potential prepaid

system. It responds to requests from the client. The developers can use the emulator to

test their systems. The emulator contains a database with all the accounts, currency, and

tari� records [?]. The option menu allows users to set log �les and additional connections

options. The users can create and edit account information such as balance, currency

and the account holder's name. Tari�s can be de�ned that a�ect how transactions will be

charged. Counters such as received and sent Diameter requests are shown in the emulator.

The emulator shows denied and faulty Diameter requests. Furthermore, the emulator also

allows us to view Diameter messages and help in debugging applications. Since we are

using the Ericsson Diameter API to develop MoBill, we have chosen to use the Ericsson

Diameter Emulator to avoid potential interoperability issues.

3.6. SUMMARY 24

3.6 Summary

In this chapter, we have discussed the factors that a�ect billing. We have explained

the complexities associated with billing for next generation services. We discussed some

of the principles to apply when implementing a billing system. Furthermore, we gave

practical examples to demonstrate core principles. Examples of services were given with

related charging models and description of how they can be charged. We indicated that

an application composed of di�erent services will lead to a more complex charging model.

Mobicents was discussed as the platform that can be used to develop next generation

services. The Mobicents platform is certi�ed as JAIN SLEE compliant. We discussed

di�erent APIs that implement the Diameter protocol. We motivated our choice of the

Ericsson Diameter API by highlighting the advantages and disadvantages. The Ericsson

Diameter Emulator was discussed as an application that can be used to test MoBill, since

it receives and replies to Diameter requests.

Chapter 4

Designing MoBill

4.1 Introduction

This chapter discusses system design of the MoBill and examples that we used to test it.

Mobicents examples were used; since they provide an opportunity to test various charging

models.

Firstly we will discuss the considered approach for developing the MoBill. We will continue

the discussion by stating the system speci�cations and requirements. Secondly we discuss

the general system architecture and describe how the proposed component (MoBill) will

be integrated into Mobicents. In the description of the system architecture we include

the class diagram describing the associated between classes.

4.2 Design Approach

The three approaches considered for developing MoBill are monolithic design, using service

SBBs (Service Building Blocks), and component design. The three approaches o�er both

advantages and disadvantages. We highlight the three approaches in this section and give

reasons for our preferred approach.

25

4.2. DESIGN APPROACH 26

4.2.1 Monolithic Design

Next generation services will be billed di�erently based on their requirements or the billing

strategies. One approach is to incorporate billing logic into a service. With reference

to mobicents, billing logic is added to the SBB that contains the code for the service.

Hence, we would have a monolithic application where the service and billing logic are not

separated. This gives programmers the ability to tailor a billing approach to a speci�c

application. The disadvantage with this approach is that it is not modular and billing logic

or processes are not separated from service logic. This adds additional di�culties such as

code maintenance and separation of code. Furthermore, if billing strategies change the

service needs to be edited. This is a problem since many services will use a combination of

time, event, volume, and subscription based billing. This means that using this approach

will replicate code with the obvious complications for each update. Finally, this approach

contradicts the component based approach of the Mobicents platform, where the design

approach is that services are developed by a composition of di�erent service building

blocks.

4.2.2 Service Building Block Approach

Another approach is to incorporate billing logic into specialised SBBs. The Mobicents

platform provides a �plug-and-play� architecture through the use of SBBs. SBBs are

service objects which can send and receive SLEE events; SBBs can therefore perform

logic based on the events they receive. SBBs cater for reuse of code and additionally,

SBBs can be organised into a graph to generate more complex services. The approach

of creating SBBs allows other developers who require billing in their system to use these

specialised SBB in order to perform billing. The use of SBBs allows for ease of extension

of the billing system since the developers can incorporate additional billing strategies and

make changes to con�gurations without modifying the services.

4.2.3 Component Design

The proposed approach is to develop an object in Java called MoBill that contains all the

billing logic required to implement di�erent charging models. The developer can simply

incorporate MoBill into their Mobicents application. The developer is provided with a

simple interface to MoBill and makes use of methods to add billing into their services.

4.3. SYSTEM SPECIFICATION 27

Figure 4.1: Proposed System Architecture

The component design o�ers similar advantages as the SBB approach with an additional

bene�t of simplicity. Implementing billing engine via Mobicents SBBs means that the

developed billing approaches are limited to Mobicents applications, whereas building a

Java object means that we can plug in the billing logic to di�erent platforms other than

the Mobicents platform.

4.3 System Speci�cation

MoBill has been proposed to demonstrate di�erent billing strategies that can be used by

developers in their services. The system should be able to cater for a number of di�erent

charging models, namely event, volume, time, and reward based billing. The system,

through the use of modular programming, should be easily extensible. The developers

should be able to plug in the component into their application and be able to access meth-

ods to commence on billing for their services. The system should provide a consistent

interface between the service and MoBill such that changes to the underlying charging

implementation should not require changes to the service. The system should allow de-

velopers with limited understanding of IMS billing and Diameter protocol to use intuitive

methods to perform billing.

4.4 System Architecture

In this section we describe the general system layout including the Mobicents platform,

MoBill and the Ericsson Diameter Emulator.

4.4. SYSTEM ARCHITECTURE 28

4.4.1 Mobicents

As it can be seen in Figure 4.1, from the left we have Mobicents platform. Mobicents

provides a platform where developers can create services that allow for the convergence of

voice, video, and data. Furthermore, the Mobicents platform supports IMS. The Mobi-

cents server will contain a number of services that are currently deployed. These services

are developed using a number of di�erent SBBs (service building blocks). The SBBs are

Java �les containing code that is used to create a service. This allows us to add additional

code to perform billing or to import objects such as MoBill that can be used to perform

billing.

As we move to the right we have MoBill and Ericsson Diameter Emulator. These will be

discussed brie�y in the next subsections.

4.4.2 MoBill

MoBill contains methods to implement di�erent charging models. MoBill has public meth-

ods that allow communication between the SBBs (service building blocks) in Mobicents

application. MoBill will be instantiated in a SBB that requires billing. Based on the

required charging model, di�erent methods will be called to perform billing functions.

For example, if we are conducting time-base charging model, the two methods that would

be used are charge_startSessionBilling(), and charge_stopSessionBilling().

4.4.3 Ericsson Diameter Emulator

As shown in Figure 4.1 we see that MoBill is connected to the Ericsson Diameter Emulator.

The communication between MoBill and the Ericsson Diameter Emulator is based on the

Diameter protocol. MoBill is developed in Java and uses the Ericsson Charging API in

order to send and receive Diameter messages. MoBill creates CCR (credit control request)

messages containing a number of AVPs (attribute value pairs). Furthermore, MoBill also

listens to the response messages from the Ericsson Diameter Emulator. The response

messages state the success of the requests that have been received.

4.5. SELECTION OF CHARGING MODELS 29

4.5 Selection of Charging Models

Charging models as described in the literature survey provide mechanisms for accounting

resource usage to enable providers to recover costs. Here we discuss the implemented

charging models and the reasons behind their selection.

4.5.1 Core Charging Models

The core charging models are event, time, subscription and volume based charging. So-

phisticated charging models such as reward, and �exible session based charging are ex-

tended from core charging models. We chose to implement core models since they can

also be combined to produce more sophisticated charging models. For instance, we were

able to combine event-based charging and time-based charging to come up with �exible

session based charging model. We have not bothered to implement subscription-based

charging since the user pays a �xed amount irrespective of the usage. This is a trivial

charging model to implement, hence it is omitted here.

4.5.2 Extended Charging Models

The extended charging models constitute of reward-based charging and �exible session

based charging model. As already suggested, extended charging models make use of the

core charging models to produce more sophisticated charging models. Furthermore, they

focus on providing billing where there is more interaction with the user. For instance, with

reward based charging the user can be billed di�erently based on their selected criteria of

use. Similarly if the user upgrades a session, e.g. requests higher QoS during a session,

we can adjust the charge price accordingly to accommodate the user's changes.

4.6 MoBill Class Diagram

Figure 4.2 shows the design class diagram, we have omitted parameters from the class

diagram. Parameters and additional method descriptions can be obtained in appendix A.

30

Figure 4.2: MoBill Class Diagram

4.6. MOBILL CLASS DIAGRAM 31

4.6.1 AbstractMoBill Class

The AbstractMoBill class contains a number of protected methods that are mainly for

returning various Objects such as UsedQuota, RequestedQuota, SessionProperties object.

Below is a brief explanation of these methods.

1. getSessionProperties � returns a SCAPSessionProperties object with connection in-

formation (realm and user account ID).

2. getRequestedQuota � returns a RequestedQuota object with money units used, and

currency.

3. getRequestedQuotaVolume � similar to 2 but used for volume based charging.

4. getRequestedQuotaReward � similar to 2 but used for reward based charging.

5. getUsedQuota - returns a UsedQuota object with money units and currency used.

6. getRatingParm � returns a RatingParameters object with information speci�c to

service such as time zone.

4.6.2 MoBill Interface

The MoBill interface contains all the public methods required to implement di�erent

charging models. These methods will be discussed in more detail in section 4.6.5 . The

interface allows us to de�ne public methods which the MoBill classt must implement.

4.6.3 MoBill Class

MoBill class implements the MoBillInterface and extends the AbstractMoBill class. Mo-

Bill is the main class that contains most of the logic to implement di�erent charging

models. MoBill contains a number of private methods to support the methods described

in the MoBillInterface. We will highlight some of the important methods here but for full

description of other methods please refer to the appendix A.2.3.

1. perSecondBilling method� contains timers to perform per second billing on a session.

4.7. MOBICENTS EXAMPLES 32

2. updateSession method � depending on the criteria speci�ed for billing, a session

needs to be updated when certain time lapses. For example, with per second billing;

every second a session is updated to debit the account.

3. initialises method � Sets up connection information to the Ericsson server.

4. debit_Event, debit_Volume, debit_Reward methods performs debits on respective

charging models.

4.6.4 DiameterListener Class

This is a listener class that is used to listen to responses from the Ericsson Diameter

Emulator. The class contains the following methods.

1. processAnswer � executes when the Credit Control Answer (CCA) message is re-

ceived. We simply display the answer.

2. txTimerExpired- used to perform tasks in case the speci�ed waiting time for the

response from Ericsson Diameter Emulator expires. An appropriate message is

displayed.

3. staReceived � used to perform a task when the STA (session Termination Answer)

message has been received. This occurs when a session has been terminated. We

display an appropriate message.

4.6.5 MoBill's Public Methods

The MoBill Interface contains a number of public methods. These public methods imple-

ment various charging models. The methods are described in Table 4.1, which shows the

methods and how they are grouped according to the charging model.

4.7 Mobicents Examples

To test the MoBill, we need a number of services to show di�erent charging models. The

emphasis is not on the complexity of the services but rather on demonstrating various

charging models as proof of concept.

33

Table 4.1: MoBill's Public Methods
Method Description Charging Model

charge_Event() When there is a single
action performed,
charge_Event() method is
called to bill that event.

Event-based
charging

charge_startSessionBilling() Used to start session billing
and to start the timer.

Time-based
charging

charge_stopSessionBilling() Used to stop session billing
and to stop the timer.

Time-based
charging

charge_Volume() Used to initiate volume
based charging. The
method calculates the
charge amount based on
the number of kilobytes
speci�ed.

Volume-based
charging

charge_Reward() Initiates reward based
charging and debits the
account.

Reward-based
charging

charge_Reward_Incentive() This is used to indicate the
usage criteria. Every time
when this method is called,
the number of incentives
performed is incremented.
Depending on the
threshold, the user can
receive a discount; hence
we perform a refund on the
users account.

Reward-based
charging

charge_startFlexibleMultiSession
Billing()

Starts session billing and
the required timer.

Flexible session
Billing

charge_stopFlexibleMultiSession
Billing()

Stops session billing and
the timer.

Flexible session
Billing

charge_�exibleMultiSessionLevel1() Sets the session level to
one, this is done in case of
downgrading from other
level. Each level has a
di�erent charge amount.

Flexible session
Billing

charge_�exibleMultiSessionLevel2() Similar to the point above
upgrades or downgrades
session to level two.

Flexible session
Billing

charge_�exibleMultiSessionLevel3() Upgrades session to level
three.

Flexible session
Billing

4.8. SUMMARY 34

4.7.1 Google Talk Bot Example

The Google Talk Bot example is a chat example that connects to the Google Talk service;

it is available as one of the Mobicents examples [16]. The Google Talk Bot example

provides a service that can be used to demonstrate event-based charging model. Originally,

the example appeared as regular Google talk user that interacts with Mobicents service

and responds with a message length of the characters the service received. However, we

have slightly modi�ed the example to respond with a text message, such that it acts like

a Chat Bot. The user is charged per transaction performed. This provides a suitable

example to demonstrate event-based charging.

4.7.2 SIPB2B UA Example

The SIP back-to-back user agent (SIPB2BUA) example is a call controlling service[15].

This example is also available with the Mobicents package. The SIPB2BUA service han-

dles SIP [27] messages between the sip user agents. The example separates the SIP

communication into two legs, allowing developers to add additional code to perform ac-

counting of resources and prepaid billing.

4.7.3 Video on Demand Example

To illustrate reward based-billing, we made use of Video on Demand Service developed

by Ray Musvibe, Rhodes University [19]. The System shows how we can use On-Demand

advertising. On-Demand advertising allows the user to chose when they want to watch

adverts. In order to encourage users to watch advertisements, an incentive is given to the

user by giving the user a discount if they watch x amount of adverts.

4.8 Summary

In this chapter we discussed the di�erent design approach for our system; highlighting the

advantages and disadvantages of each method. Furthermore, we motivated the reasons

why we chose to use the component design. Speci�cation and requirements of the system

were discussed. We emphasised the need to have a billing component (MoBill) that

contains di�erent charging models to cater for various billing requirements. The system

4.8. SUMMARY 35

architecture was discussed and we showed how MoBill interacts with both the Ericsson

Emulator and the Mobicents server.

We motivated the reasons why we chose various charging models to implement and showed

how we can derive extended models from the core charging models. We discussed the

class diagram and the interaction between di�erent classes. The chapter was concluded

by discussing the testing examples used for testing MoBill.

Chapter 5

Implementation, Dynamic Analysis and

Testing of MoBill

5.1 Introduction

MoBill is the proposed solution for combining di�erent charging models into one system.

MoBill is developed in Java and focuses on demonstrating event, time, reward, volume,

and �exible-session charging models.

In this chapter we discuss how MoBill is constructed. We show more details to how

each charging model is implemented. After the implementation details are discussed, we

explore the di�erent examples used for testing di�erent charging models.

5.2 Using Ericsson Diameter API to Implement MoBill

MoBill was developed in Java and made use of the Ericsson Diameter API [11]. The

Ericsson Diameter API provides a high level abstraction from the Diameter Base protocol.

The Ericsson Charging SDK contains a number of jar �les (based on Diameter) that can

be used to implement charging applications. These �les include:

• DiameterBaseApi.jar � This implements the Diameter Base protocol [6].

36

5.2. USING ERICSSON DIAMETER API TO IMPLEMENT MOBILL 37

Figure 5.1: Ericsson Diameter API

• DccApi.jar � It is based on Diameter Credit Control Application protocol [13] that

provides guideline to real time and credit control. DCC Api is placed on top of

Diameter Base Api.

• HighLevelApi.jar � It is a additional layer of abstraction that provides easier in-

terface to the Diameter Base Api. The High Level Api is placed on top of the

DccApi.

• Scapv2Api.jar � This limits High Level Api to SCAP (service context for the appli-

cation) and adds additional methods and parameters relating to SCAP.

Figure 5.1 shows the dependencies and the additional layers placed on top of the Diameter

Base API.

The jar �les contain a number of classes that can be used to develop a charging application.

Please refer to Appendix F.3 for a list of classes and description of classes available. In

Table 5.1 we give a brief description of the classes we have used to implement MoBill.

The �rst step (before performing charging) is to initialise the SCAPStack. We de�ne a

new SCAPStack with the originating URI, the original realm and a product ID. Once

these parameters are de�ned, we add a static route to the Ericsson Diameter Emulator.

For this we need the destination realm and the destination URI. Once attained, we start

the SCAPStack.

The next step is to create and de�ne a listener class that receives an answer once a credit

control request (CCR) message is sent. This class will capture the di�erent types of results

38

Table 5.1: Classes Used for MoBill Implementation
Class Name Description

MoneyUnit Used to describe unit type Money. Money is
described in terms of value, exponent and
currency code.

RequestedQuota We use RequestedQuota to represent the
requested quota that is sent with a CCR (credit
control request) message.

UsedQuota Represents the used quota that is placed in CCR
message.

SCAPEvent Contains doDirectDebit and doRefund which
allows us to perform a transaction based on a
single event.

SCAPSession Used for session based charging. Contains start(),
stop() , terminate(), update() to perform related
functions.

SCAPChargingFactory Allows the creation of SCAPEvent and
SCAPSession.

SCAPSessionProperties Represents services speci�c parameters as
AVP(attribute value pairs)

SCAPRatingParameters Used to provide SCAP settings such as the
destination realm.

SCAPStack A wrapper for the Diameter stack which provides
SCAP settings.

TimeZoneAvp AVP that holds time zone. We use this to de�ne
rating parameters.

5.2. USING ERICSSON DIAMETER API TO IMPLEMENT MOBILL 39

we receive. Hence, we need implement the processAnswer() method of the listener class

that captures response messages. The result code is stored.

Once we have initialised and started the stack, we can perform a debit or credit on

user accounts de�ned on the Ericsson Emulator. The Ericsson Charging API can provide

charging based on either a session or a single event. Below we describe the process followed

for each approach used.

5.2.1 Charging Based on a Single Event

For single event charging we need to de�ne SCAPevent class. The two main methods we

are interested in are doDirectDebit() and doDirectRefund(), which allow us to perform a

debit and credit respectively. When any one of these methods is used, a CCR message is

created and sent. The CCR message (Diameter message) will contain a number of AVPs

(attribute value pairs). AVPs are tuples containing an attribute name and associated

value. Below we have identi�ed two AVPs:

• CC-Request-Type AVP = EVENT_REQUEST

• Requested-Action AVP = [DIRECT_DEBITING | REFUND_ACCOUNT]

5.2.2 Charging Based on a Session

Session charging involves a number of additional steps namely start, stop, update and

terminate a session.

For session charging we de�ne a SCAPsession class. Firstly we start as session and after

certain duration we update a session. When the session has ended we stop the session.

Below we give more details to each method.

• The start() method will create and send a CCR message with CC-Request-Type

AVP set to INITIAL_REQUEST.

• The update() method will create and send a CCR message with CC-Request-Type

AVP set to UPDATE_REQUEST.

• The stop() method will create and send a CCR message with CC-Request-Type

AVP set to TERMINATE_REQUEST.

5.3. MOBILL'S CHARGING MODELS 40

Figure 5.2: Event-based Charging Model Sequence Diagram

5.3 MoBill's Charging Models

In the previous section we provided a brief overview of the Ericsson Diameter API. We

discussed di�erent classes that we used in the proposed component (MoBill). We gave a

brief description of how we perform event and session charging using classes de�ned in

the API. Di�erent AVPs were shown to aid the discussion of CCR messages.

In this section we will discuss how we extended these two approaches to implement di�er-

ent charging models. We chose to illustrate the di�erent charging models using sequence

diagrams since they provide an easier representation of the algorithm than code. Ap-

pendix B provides a description of classes and methods in MoBill.

5.3.1 Event-based Charging

Event-based charging occurs when a user performs a single atomic transaction that raises

an event.

5.3. MOBILL'S CHARGING MODELS 41

Figure 5.2 shows the detailed description of how event-based charging is performed.

1. When the user service wants to perform charging, it calls the charge_Event()

method in MoBill class.

2. MoBill performs initialisations. This includes setting up connection parameters,

and starting the Diameter stack.

3. MoBill creates and sends CCR (credit control request) message to the Ericsson

Emulator in order to perform a direct debit. The CCR message will contain CC-

Request-Type AVP set to EVENT_REQUEST and Requested-Action AVP set to

DIRECT_DEBITING.

4. The Ericsson Emulator server responds with an answer, indicating whether or not

the transaction was successful.

5. The answer is returned to the service.

5.3.2 Time-based Charging

Time-based charging is billing for the duration of a session. To demonstrate time-based

charging, we have implemented per second billing.

The sequence diagram, shown in Figure 5.3, shows detailed description of time-based

charging operation. The details are outlined brie�y below:

1. When a session is established within the user service, the charge_startSessionBilling()

method in MoBill is called.

2. Similar to event-based charging, MoBill performs initialisations.

3. MoBill creates and sends CCR message to the Ericsson Emulator in order to start

a session. The CCR message will contain the CC-Request-Type AVP that is set to

INITIAL_REQUEST.

4. The Ericsson Diameter Emulator responds with an answer message.

5. MoBill calls the Start() method of the Timer object.

6. When a second lapses a tick event is generated by the Timer object.

42

Figure 5.3: Time-based Charging Model Sequence Diagram

5.3. MOBILL'S CHARGING MODELS 43

7. MoBill sends a CCR message to the Ericsson Diameter Emulator in order to perform

an update. The CC-Request-Type AVP is set to UPDATE_REQUEST.

8. The Ericsson Diameter Emulator will respond with an answer message indicating

that the transaction was successful or not. Steps 6 � 8 get repeated until the end of

the session.

9. When the session is complete, the service will call the charge_stopSessionBilling()

method in MoBill.

10. MoBill calls the stopTimer() method.

11. The StopSession() method is called. This action will send a CCR message with the

CC-Request_Type AVP set to TERMINATE_REQUEST.

12. The Ericsson Diameter Emulator responds with an answer.

5.3.3 Volume-based Charging

Volume-based refers to charging that uses amount of data transferred. The implementa-

tion for volume-based charging is similar to event based charging. However, with each

event created, di�erent rates apply based on transferred data.

The sequence diagram in Figure 5.4 shows the detailed description of volume-based charg-

ing. Below is a brief explanation for each step.

1. The service calls the charge_Volume(Kilobytes) method in MoBill, sending the

number of bytes to MoBill.

2. The calculateRequestedQuota(Kilobytes) is initiated in MoBill. This method cal-

culates the charge price based on the amount of kilobytes that are sent.

3. MoBill performs initialisations. These include setting up connection parameters,

and starting the Diameter stack.

4. Similar to event based charging, MoBill creates and sends CCR message to the

Ericsson Diameter Emulator in order to perform a direct debit.

5. The Ericsson Diameter Emulator responds with an answer, indicating whether or

not the transaction was successful.

6. An answer is returned to the service.

44

Figure 5.4: Volume-based Charging

5.3. MOBILL'S CHARGING MODELS 45

5.3.4 Reward-based Charging

With reward-based charging, billing is performed with the consideration of the user's

selected criteria of use. For instance, the more the user uses a service; s/he may receive a

discount. We have implemented reward-based charging by combining both incentive-based

billing functions and event-based charging. For example, when a transaction is performed,

e.g. downloading a video; we raise the �rst event to charge for the video. Similarly when

the user accomplishes a task that a�ords them a reward, we use event-based charging to

perform a refund on the user account.

Our implementation of reward-based charging counts the number of times the user per-

forms a function that a�ords them a reward. The Video on Demand example, explained

in Chapter 4, provides a suitable example to demonstrate this charging model.

The sequence diagram in Figure 5.5 shows the detailed description of the reward-based

charging. Below we provide a brief description for the steps shown in the diagram.

1. Steps 1 to 5 are similar to event-based charging, previously discussed.

2. In 6, the service will call the charge_Reward_Incentive() method when the user

performs a task that a�ords him/her the ability to receive an incentive.

3. In 7, we count the number of incentives.

4. If the number of incentives equals the threshold, we send a CCR to perform direct

refund (8). The CC-Request-Type AVP is set to REFUND_ACCOUNT.

5. In 9, the Ericsson Diameter Emulator responds with an answer. 10 An answer is

returned to the service.

5.3.5 Flexible Session Charging

Flexible session charging model extends the time-based charging model. However with

�exible session charging, the rates paid can change within a session. For instance, if a

user upgrades a session their rate could be increased. Alternatively, it could be decreased

if the user downgrades a session. The �exible session charging implements per second

billing and allows for a convenient way to change the rate depending on the events raised

by the user.

46

Figure 5.5: Reward-based Charging

5.4. ADDING MOBILL TO A MOBICENTS APPLICATION 47

Listing 1 Installation Command
mvn install:install-�le -D�le=charging.jar -DgroupId=com.ericsson -DartifactId=charg14
-Dversion=10.2.0 -Dpackaging=jarv

Sequence diagram shown in Figure 5.6 provides a detailed description of this charging

model. The steps are brie�y summarised below:

1. The �rst eight steps are similar to time-based charging explained earlier; except we

need to set the initial charging level (3). This will set the pricing level. There are

three levels prescribed, level 1, 2, 3 with each level having a di�erent charge price

associated with it.

2. In 10, the user raises an event to change the level by calling the method charge_

FlexibleMultiSessionLevel_N, where N is the level number.

3. In 11, the quota is changed based on the level speci�ed. We change the price per

second that the user is billed on the next second.

4. The remaining steps are similar to time-based charging.

5.4 Adding MoBill to a Mobicents Application

To deploy Mobicents examples we make use of Maven [17]. Maven uses xml �les (POM

�les) that contain con�gurations about the project. The jar �le containing MoBill needs

to be installed on the local repository in order for the example to compile. Listing 1

shows the installation command. This adds the Charging.jar (contains MoBill) to the

local repository. Di�erent parameter such as artifact ID, version, and group ID are also

de�ned for the jar �le.

After this installation we need to add the dependency in an xml POM �le in order for

Maven to include this �le when deploying the examples [29]. Figure 5.7 contains the

dependency added.

The jar �le needs to be placed in the library directory on Mobicents server in order for it

accessed during run time. View Appendix C.2 for the installation instructions.

48

Figure 5.6: Flexible Multi-session Charging Sequence Diagram

5.5. TESTING EXAMPLES 49

Figure 5.7: Adding a Dependency

5.5 Testing Examples

As proof of concept and to test various charging models, we have a number of testing ex-

amples that make use of the Billing Component to charge users for services rendered. The

main emphasis was not on the development of new services or making use of sophisticated

services, but rather it was on demonstrating di�erent concepts.

Mobicents is a service development platform that we use for the project. Before we can

deploy the examples, Mobicents Server needs to be installed. Appendix C discusses the

required installations and con�gurations. Ericsson Diameter Emulator acts as a Prepaid

System that responds to charging requests from a client application. Setup procedure for

the Ericsson Diameter Emulator is discussed in appendix E.

We have extended two Mobicents examples, namely: the Google Talk Bot and SIPB2BUA.

We have made use of Video on Demand service developed at Rhodes University [19] to

demonstrate reward-based charging model. For all these, we add additional billing logic

that uses the Billing Component.

5.5.1 Google Talk Bot Example

This example uses XMPP (Extensible Messaging and Presence Protocol) resource adapter.

XMPP is used for real-time communication and supports applications such as instant

messaging, presence, voice and video calls [28].

Figure 5.8 shows details about the example. A message is sent from the user to the

Google Talk Bot service. The Google Talk Bot service performs billing before sending a

reply message. In our example, we send a message back if the transaction was successful.

Alternatively, if the transaction was unsuccessful, i.e. no credit, an error message is sent

back.

50

Figure 5.8: Google Talk Bot Sequence Diagram

Figure 5.9: Google Talk Bot Example

5.5. TESTING EXAMPLES 51

Figure 5.10: SIPB2BUA Example

Appendix D.1 discusses the installation of Google Talk Bot example. Figure 5.9 shows a

screenshot of the Google Talk client, Ericsson Diameter Emulator, and Mobicents server

in the background. Initially the user's account credit is set to zero. The user attempts

to send a message. The Ericsson Diameter Emulator shows a denied request received.

We proceed by giving the user credit. When the user sends a message we can see that

the request is successful (sent and received request displayed on the Ericsson Diameter

Emulator). This example demonstrates how we can use Google Talk Bot example to

implement event-based charging model.

5.5.2 SIPB2BUA Example

The sip back-to-back user agent (SIPB2BUA) example is a call controlling service. The

example separates communication session into two call legs. This allows developers to

add additional code to perform accounting of resources and prepaid billing.

The general architecture of the example has three main components:

1. SIP UA: The originating user agent (UAS).

2. SIPB2BUA service: The service manages the interaction between the user agents.

3. SIP UA: The answering user agent (UAC).

As it can be seen from Figure 5.10, the B2BUA service handles SIP [27] messages between

user agents. Therefore the B2BUA acts as a mediator between communicating SIP user

agents. This example provides us with the ability to add billing logic in the SIPB2BUA

service.

Figure 5.11 shows how a SIP session would be established between the two user agents.

The SIP session is established as follows:

52

Figure 5.11: Sequence Diagram with SIPB2BUA Service

5.5. TESTING EXAMPLES 53

1. To initiate a session, the originating user agent sends an invite message.

2. The answering user agent responds with a message 180 ringing.

3. When the second user picks up, the answering user agent; a 200 OK message is sent

to the originating user agent.

4. The originating user agent receives the 200 0K message and responds with an ACK

message. At this point a session is established, this is where accounting for the use

of resources is initiated.

5. Either the originating user agent or the answering user agent hangs up; a SIP BYE

message is sent to the other user agent. The receiving user agent will respond with

a 200 OK message. At this point, we stop accounting on resource usage.

To add MoBill to the SBB (Service Building Block) used for the B2BUA service, we need

to import the jar �les containing MoBill. The process was previously explained in section

5.4. At class level, we de�ne a MoBill object. Additionally we de�ne a Boolean parameter

to indicate if billing has already been stopped or not.

The SIPB2BUA SBB contains a number of event handlers that handle a number of SIP

events. We list and explain event handlers that need to be modi�ed below.

• onInviteEvent() � When an Invite is received, the initial method that is called.

Initialisation code is placed here.

• on2xxResponse() � Handles responses starting with 2 such as 200 OK. We start

billing once we have received 200K.

• onBye() � Raised when a BYE message is received. This indicates the end of the

session. At this point we added code to stop billing. Since either of the user agents

can terminate the session we needed to check that we have not already stopped

billing. The onBye() event handler handles BYE messages from both the originating

user agent and answering user agent.

After these changes, we can deployed SIPB2BUA example. Appendix D.2 shows how to

deploy the example.

To execute the SIPB2BUA example, we start the Mobicents server. In order to test

SIPB2BUA service, we shall make use of two SIP phones. The originating client needs

5.5. TESTING EXAMPLES 54

Figure 5.12: SIPB2BUA Example

to be con�gured in order to connect to the Mobicents server. View appendix D.2.4 for

these con�gurations. When a call is made, diameter messages are sent to the Ericsson

Diameter Emulator. The Ericsson Diameter Emulator responds with an answer for each

request message sent. In Figure 5.12, we can see the received and sent requests on the

Ericsson Diameter Emulators window.

To provide a summary in this example we demonstrated how we can use the SIPB2BUA

Mobicents example to add accounting of resource usage. We have shown how we can

implement the time-based charging model.

5.5.3 Video on Demand Example

The VoD (video on demand) example allows a user to stream videos. A user may op-

tionally stream through advertisements during the session. The user pays for each video

requested. In order to create an incentive for users to watch advertisements, a discount

is given to the user.

Figure 5.13 shows the details of the video on demand example.

55

Figure 5.13: Video on Demand Sequence Diagram

5.6. SUMMARY 56

1. The user agent requests a video.

2. The SBBs containing service logic perform billing. We use reward-based charging

model to perform a debit on user account.

3. The video rtsp address containing video address is returned to the user agent.

4. The user agent initiates a session with the media streaming server.

5. The server responds with media stream for video.

6. The user agent requests an advertisement.

7. Based on the policy speci�ed, we check if the user deserves a discount. If the user

meets the criteria then we perform credit on his/her account.

8. The video rtsp address containing advertisement address is returned to the user

agent.

9. The user agent pauses the current media session and initiates another media session.

10. The server responds with media stream for video.

11. At the end of the advertisement, the previous media session (for the requested video)

is resumed.

12. The server responds with media stream for video.

Figure 5.14 shows the VoD client with a video. The Ericsson Diameter Emulator shows

the received requests from the client.

5.6 Summary

The �rst part of the chapter focused on the implementation details of MoBill. We used

UML diagrams to show how we implemented event, time, volume, reward, and �exible

charging model. We have shown with sequence diagrams how we extended the core

charging models to produce extended charging models.

The second part was focused on testing MoBill by using it on di�erent examples. The

Google Chat Bot was used to demonstrate event-based charging. The SIPB2BUA example

57

Figure 5.14: Video on Demand Example

5.6. SUMMARY 58

was used to demonstrate time-based charging model. We used the video on demand

example to demonstrate reward-based charging example. We demonstrated how MoBill

can be used to perform di�erent charging models required by di�erent examples.

Chapter 6

Conclusion

6.1 Overview

Factors such as composition of services, variety of services, di�erent service providers, and

QoS (quality of service) adds complexity to billing for next generation services. When

developing billing system, it is important to apply recommended principles. There are

a number of charging models available for services. Using the right charging model is

important for the success of the service.

Mobicents provides an open source service development that allows developers to com-

bine voice, video and data. The Mobicents platform contains the IMS (IP Multimedia

Subsystem) core. The Ericsson Diameter Charging SDK contains a number of tools that

allow developers to develop charging applications. The Diameter API provides high-level

implementation of Diameter. The Ericsson Diameter Emulator acts as a potential prepaid

system that responds to client requests.

We have developed a centralised billing component (MoBill) that can easily be added to

services requiring billing. MoBill implements core and extended charging models. Core

charging models consist of: event, time and volume. By combining the core charging

models, we produced more sophisticated charging models which we refer to as extended

charging models. Reward and �exible session models are the two examples of extended

charging model. As proof of concept we have enhanced Mobicents examples to demon-

strate how we can use MoBill to perform various charging models.

59

6.2. REVISITING PROJECTS OBJECTIVES 60

6.2 Revisiting Projects Objectives

The main objective of the research project was to develop a billing system for Mobicents

applications. This was achieved by developing a high abstract billing component called

MoBill that enables developers with less understanding of IMS billing and the Diameter

protocol to use within their service.

The second objective was to test the billing system. Mobicents examples were used

as test services. We have extended the Google Chat Bot to demonstrate event-based

charging model. Similarly we extended the Mobicents SIPB2BUA example to demonstrate

time-based charging. To demonstrate reward-based charging we used a video on demand

example. We used the Ericsson Diameter Emulator as a prepaid system that responds

to our accounting requests. Based on di�erent charging models, the Ericsson Diameter

Emulator performed debits and credits on user accounts.

6.3 Possible Future Work

The system focuses primarily on implementing core charging models. We have demon-

strated through examples of reward-based and �exible session billing how we can combine

the core charging models to produce more sophisticated charging models. One possible

extension to the project would be produces additional innovative charging models based

on the core ones.

Diameter protocol performs AAA (Authentication, Authorisation, and Accounting). The

research project primarily focused on Accounting of resources without considerations for

security. An extension to the project would be to investigate security threats with regards

to billing next generation services.

In the design approach we have chosen to develop a java object (billing component) that

can be instantiated in mobicents SBBs (service building blocks) in order to implement

various charging model. A minor extension would be to provide a wrapper for the object

such that it responds to SLEE events. In this case we incorporate the MoBill into a SBB.

References

[1] 3GPP. Charging and billing. TS 22.115, 3rd Generation Partnership Project (3GPP),

2006.

[2] 3GPP. Charging Managment, Charging Architecture and Principles. TS 29.278, 3rd

Generation Partnership Project (3GPP), 2009.

[3] A. Alonistioti, N. Houssos, S. Panagiotakis, M. Koutsopoulou, and V. Gazis. Intel-

ligent architectures enabling �exible service provision and adaptability. In Wireless

Design Conference (WDC 2002), 2002.

[4] M.E. Barachi, R. Glitho, and R. Dssouli. Charging for Multi-grade Services in the

IP Multimedia Subsystem. In Next Generation Mobile Applications, Services and

Technologies, 2008. NGMAST'08. The Second International Conference on, pages

10�17, 2008.

[5] FC Bormann, S. Flake, and J. Tacken. Business models for local mobile services en-

abled by convergent online charging. Mobile and Wireless Communications Summit,

2007. 16th IST, 16:pp. 1�5, 2007.

[6] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter Base

Protocol. RFC 3588, Internet Engineering Task Force, September 2003.

[7] Gonzalo Camarillo and Miguel García-Martín. The 3G IP Multimedia Subsystem

(IMS): Merging the Internet and the Cellular Worlds. John Wiley & Sons, Ltd, 3rd

edition, 2008.

[8] D.D. Clark. A model for cost allocation and pricing in the Internet. InMIT Workshop

on Internet Economics, volume 49, page 13, 1995.

[9] Jean Deruelle. Mobicents communications platform, 2008. Available from

http://people.redhat.com/vralev/blog/JavaOne 2008 Presentation - Jean Deru-

elle.pdf; accessed 01 June 2010.

61

REFERENCES 62

[10] M. El Barachi, R. Glitho, and R. Dssouli. Context-aware signaling for call di�er-

entiation in IMS-based 3G networks. In 12th IEEE Symposium on Computers and

Communications, 2007. ISCC 2007, pages 789�796, 2007.

[11] Ericsson. Ericsson developer tools, 2010. Available from

http://devtools.ericsson.com/charging/-sdk/overview; accessed 20 October 2010.

[12] Victor I. Fajardo. Open diameter c++ api, January 2005. Available from

http://diameter.sourceforge.net/diameter-api/index.html; accessed 20 October 2010.

[13] H. Hakala, L. Mattila, J. Koskinen, M. Stura, and J. Loughney. Diameter Credit-

Control Application. RFC 4006, Internet Engineering Task Force, August 2005.

[14] P. Kurtansky, B. Stiller, and TIK Series. Prepaid charging for QoS-enabled IP ser-

vices based on time intervals. In First International Workshop, WINE, pages 15�17,

2005.

[15] Eduardo Martins and Bartosz Baranowski. Mobicents JAIN

SLEE SIP B2BUA Example User Guide, 2010. Available from

http://www.mobicents.org/slee/docs/examples/sip-b2bua/2.2.0.FINAL/en-US

/pdf/Mobicents_SLEE_Example_SIP_B2BUA _User _Guide.pdf; accessed 10

May 2010.

[16] Eduardo Martins and Ivelin Ivanov. Mobicents jain slee

google talk bot example user guide, 2010. Available from

http://www.mobicents.org/slee/docs/examples/google-talk-bot/2.2.0.FINAL/en-

US/pdf/Mobicents_SLEE_Example_Google_Talk_Bot_User_Guide.pdf; ac-

cessed 10 May 2010.

[17] Maven. Maven in 5 minutes, 2010. Available from

http://maven.apache.org/guides/gettingstarted/mavenin�veminutes.html; accessed

20 October 2010.

[18] Alexandre Mendonça. Mobicents JAIN SLEE Diameter

Base Resource Adaptor User Guide, 2010. Available from

http://www.mobicents.org/slee/docs/resources/diameter-ro/2.0.0.GA/en-

US/pdf/Mobicents _SLEE _RA _DIAMETER_RO _User _Guide.pdf; accessed

10 May 2010.

[19] Ray Musvibe and Alfredo Terzoli. Towards a customised video on demand service

for the mobicents platform. In Southern Africa Telecommunication Networks and

REFERENCES 63

Applications Conference (SATNAC 2010), 2010. Spier Estate, Stellenbosch, South

Africa.

[20] Magnus Nilsson. Diameter Charging SDK Practicalities, 2008.

Available from http://a178.g.akamai.net/7/178/8211/0001/ ericsson-

com.download.akamai.com/8211 /high1/mainframe _low.htm; accessed 10 May

2010.

[21] Andrew Odlyzko. Paris metro pricing for the internet. In Proceedings of the 1st ACM

conference on Electronic commerce, pages 140�147, 1998.

[22] H. Oumina and D. Ranc. Towards a real time charging framework for complex

applications in 3GPP IP Multimedia System (IMS) environment. In Next Genera-

tion Mobile Applications, Services and Technologies, 2007. NGMAST'07. The 2007

International Conference on, pages 145�150, 2007.

[23] V.G. Ozianyi, N. Ventura, and E. Golovins. A novel pricing approach to support

QoS in 3G networks. Computer Networks, 52(7):1433�1450, 2008.

[24] Vitalis G. Ozianyi and Neco Ventura. Service outsourcing and billing in inter-domain

ims scenarios. In Southern African Telecommunication Networks and Applications

Conference (SATNAC 2009), August 2009.

[25] S. Panagiotakis, M. Koutsopoulou, and A. Alonistioti. Business models and revenue

streams in 3g market. In 14th IST Mobile and Wireless Communication Summit,

2005.

[26] S. Panagiotakis, M. Koutsopoulou, A. Alonistioti, and A. Kaloxylos. Generic frame-

work for the provision of e�cient location-based charging over future mobile commu-

nication networks. 2:755�759, 2002.

[27] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. Session Initiation Protocol. RFC 3261, Internet Engi-

neering Task Force, December 2002.

[28] Ed. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC

3920, Internet Engineering Task Force, October 2004.

[29] Sonatype. Project dependencies, 2010. Available from

http://www.sonatype.com/books/mvnref-book/reference/pom-relationships-sect-

project-dependencies.html; accessed 20 October 2010.

Appendix A

System Class Diagram

A.1 Detailed Class Diagram

Figure A.1 shows the class diagram of the billing component with parameters and addi-

tional methods. Additional Methods are described in the next section.

A.2 Additional Methods Description

A.2.1 DiameterListener

• getResultCode() - This method returns the result code from the Ericsson Diameter

Emulator.

A.2.2 AbstractBillingComponent

• calculateRequestedQuota() - calculates the requested quota based on the amount of

Kilobytes downloaded. Used for volume based charging.

A.2.3 BillingComponent

• startSession() - start session billing.

64

65

Figure A.1: Billing Component Detailed Class Diagram

A.3. SESSIONLEVEL ENUMERATION 66

• stopSession() - stop session billing.

• credit_refund() - performs a credit on user account used for reward based charging.

A.3 SessionLevel enumeration

• Used for stating the session level (level1, level2, level3).

Appendix B

MoBill JavaDocs

We named the billing component MoBill because the naming happened later in the his-

tory of this project, portions of the code still use `billing component'. So, while reading

through the code and documentation, keep in mind that MoBill is referred to as `Billing

Component'.

B.1 MoBillInterface

B.2 AbstractMoBill

\

B.3 MoBill

67

68

Figure B.1: MoBillInterface (BillingComponentInterface)

69

Figure B.2: AbstractMoBill (AbstractBillingComponent)

70

Figure B.3: MoBill (BillingComponent)

Appendix C

Installations and Con�gurations

This appendix discusses the installation of the environment and the tools required.

C.1 Con�guring the Mobicents server

Mobicents and associated tools installation process is discussed in this section.

C.1.1 Downloading Mobicents

Mobicents JAIN SLEE can be downloaded from:

http://sourceforge.net/projects/mobicents/�les/Mobicents%20JAIN%20SLEE%20Server/

Mobicents JAIN SLEE Server version 2.1.1 GA was used in this research. Select the the

version and download to a directory on local computer. Uzip the �le to your selected

folder, e.g. �c:\server\�.

C.1.2 Con�guring JBOSS

The JBOSS variable needs to be set by editing the environmental variable. The JBOSS_HOME

variable contains the BIN directory. In our example we have con�gured the variable

to �C:\servers\mobicents-jainslee-2.1.1.GA-jboss-5.1.0.GA\jboss-5.1.0.GA�. Additionally

add the BIN directory into the PATH i.e. �C:\servers\mobicents-jainslee-2.1.1.GA-jboss-

5.1.0.GA\jboss-5.1.0.GA\bin�.

71

C.2. ADDING MOBILL'S JAR FILE 72

C.1.3 Con�guring JAVA

The java SDK version 1.6 is installed and downloaded from ... The JAVA_HOME is

set to �C:\Program Files\Java\jdk1.6.0_18�. Verify that the BIN directory is set in the

PATH. To test that Java is installed properly you can test by java �version in command

prompt.

C.1.4 Con�guring ANT

Apache ant is used to deploy various mobicents project. Similar to the setup above we

con�gure ANT_HOME. In our installation ant is extracted to �c:\ant�. So we con�gure

ANT_HOME to �c:\ant� and we add the BIN directory to the path i.e �c:\ant\bin�.

C.1.5 Con�guring Maven

In order to build from source Maven needs to be installed and con�gured. M2_Maven

variable is set to �C:\servers\apache-maven-2.2.1� and additionally we add the bin direc-

tory to �C:\servers\apache-maven-2.2.1\bin�.

C.2 Adding MoBill's Jar File

Navigate to the %JBOSS_HOME/server/default/lib. JBOSS_HOME is de�ned in Ap-

pendix C.1.2 . Place the jar �le in this directory.

Appendix D

Mobicents examples

We discuss the installation of the di�erent examples.

D.1 Deploying Google Talk Bot Example

In this section we explain how to deploy Google Talk Bot Example.

D.1.1 Prerequisites

The GoogleTalkBotSbb will require a user account and password to an existing Gtalk

account.

The Mobicents XMPP resource adapter is used by Google Talk Bot example. XMPP

resource adapter needs to be deployed.

D.1.2 Installing Google Talk Bot Example

To install the Google Talk Bot service, navigate to the installation directory of the system.

Use the following command to load the example into the mobicents server. �mvn clean

install �o�.

73

D.2. DEPLOYING THE SIPB2BUA EXAMPLE 74

D.1.3 Executing the Example

To start the mobicents server, navigate to the bin directory or type �cd %JBOSS_HOME%/bin�.

To start the server use the following command �run.bat �b <IP address>�.

D.1.4 Google Talk Client

Download the Google Talk client from: http://www.google.com/talk/

The user will be required to have an account.

D.2 Deploying the SIPB2BUA Example

In this section we explain the deployment process for the SIPB2BUA example.

D.2.1 Prerequisites

The example makes use of a JAIN SIP resource adapter. Therefore the SIP11 resource

adapter needs to be deployed. To deploy the SIPP11 resource adapter, navigate to the

SIP11 RA directory. Deploy the resource adapter by with ant by using the following

command �ant deploy�. This will load the sipp11 RA to mobicents server.

D.2.2 Installing B2BUA Service

Similar to appendix D.1.2.

D.2.3 Executing the Example

Similar to appendix D.1.3.

D.2.4 Con�guring SIP Phones

Two SIP phones are used; desktop soft phone(X-lite) and hard phone.

D.2. DEPLOYING THE SIPB2BUA EXAMPLE 75

D.2.4.1 Counter Path X-lite

The phone can be downloaded from: http://www.counterpath.com/

The domain �eld needs to be set to the IP address that the mobicents server is running

on. Additionally the Mode �eld in the Presence tab is set to Presence Agent.

D.2.4.2 SIP phone

A physical SIP phone is con�gured with an IP address.

Appendix E

Con�guring Ericsson Diameter

Emulator

Download the Charging SDK from: http://devtools.ericsson.com/node/18

The Charging SDK 2 has been installed and unzipped to �Ericsson Server\Ericsson� in

our machine. We open the command prompt and navigate to this installation directory.

The Ericsson Diameter Emulator requires the java runtime environment to be installed

(JRE 1.5 or higher). After this we execute the application with the following command

�java -jar SCAPv2TestServer.jar�.

In order to establish a connection between the client application and the Ericsson Diameter

Emulator, the connection properties needs to be con�gured. We need to con�gure both

the URI and the Realm.

In the options menu item we con�gure the peer ID to �aaa://146.231.123.54:3868;transport=tcp�

and Realm to �test.com�.

Figure E.1 shows connection settings.

76

77

Figure E.1: Ericsson Diameter Emulator Connection Settings

Appendix F

DVD Contents

F.1 Thesis\

The folder contains the �nal research report.

F.2 JavaDoc_MoBill_BillingComponent\

The folder contains Java Documentation for MoBill. Additionally it shows details of the

package with the di�erent classes and methods. We named the billing component MoBill

because the naming happened later in the history of this project, portions of the code still

use `billing component'. So, while reading through the code and documentation, keep in

mind that MoBill is referred to as `Billing Component'.

F.3 JavaDoc_EricssonChargingAPI\

Folder contains the Ericsson Charging API java documentation, listing all the di�erent

packages and classes in the API.

F.4 Mobicents_Examples\

All the used examples and source code are placed here.

78

F.5. PROJECT_PROPOSAL\ 79

F.4.1 GoogleTalkBot_Example\

Google Talk Bot example used to demonstrate event-based charging.

F.4.2 SIPB2BUA_example\

SIPB2BUA example used to demonstrate time-based charging.

F.4.3 VoD_Example\

The folder contains video on demand example used to demonstrate reward-based charging.

F.5 Project_Proposal\

Folder contains a project proposal document for the research project.

F.6 Software\

Contains various software packages used within the research project.

F.7 Poster\

Folder contains a project poster.

