
Rhodes University

Computer Science Department

Honours year project

Literature Review

Author: Etienne Stalmans
Supervisor: Dr. Karen Bradshaw

June 2010

1 Introduction

Software visualisation (SV) is the process of producing a visual metaphor to
represent the operation of a program or algorithm [13]. The use of SV in
teaching is not a new concept and numerous studies have been performed to
evaluate its effectiveness. The aim of SV in teaching is to increase learners
understanding of concepts through simplification. In order for a SV system to
be successful, the visual metaphor needs to effectively and efficiently relay the
mapped data [4, 8]. Dougles et al., [8] found that “active use of visualizations
by students improves their learning process”. Compiler generators produce
human-readable parsers from user specified grammars. A grammar is used to
formalise the syntax and semantics of a language. In order to understand how a
language is parsed, it is important to understand the grammar first. Grammars
are classified according to hierarchical type. The grammar type determines
which parsing method will be used to evaluate it.One such parsing method is
recursive descent parsing. Recursive descent parsers are used to parse Type 2
grammars [25], also known as context free grammars. Coco/R is a recursive
descent parser generator which is used to teach compiler theory [25]. VCOCO
provides limited visualisation of Coco/R operation. This is done by highlighting
the current execution point [23]; providing a debugging approach to expert
users [2]. Thus VCOCO is not suitable to be used as an education tool [2],
as it assumes prior knowledge of compilers and does not contain explanation
facilities which beginners require. Further, VCOCO does not allow for the
visualisation of syntax trees. Abstract syntax trees provide an easy to follow
description of how a grammar is processed. This makes abstract syntax trees
very effective for teaching the basic operation of parsers to new users. A suitable
visualisation of the abstract syntax trees should lead to easier understanding of
compiler operation.

2 Grammars

Grammars are used to formally specify the syntax of a language. A grammar can
be described as a structure < N,T,P,S > [25, 27] where N represents a set of non-
terminals, T a set of terminals, P a set of productions and S represents a non-
terminal starting symbol. Productions are syntax equations [25] which relates
two strings and describes how they can be transformed into each other. Terminal
symbols literal strings which cannot be broken into smaller units. Non-terminals
are symbols which can be replaced; therefore they can be composed of terminal
and non-terminal symbols. Grammars must conform to certain restrictions in
order to used in the automatic construction of parsers and compilers [25]. Two
main restrictions are that grammars need to be cycle-free and unambiguous.
Ambiguity in a grammar occurs when that grammar has more than one parse
tree for a given input string [1]. Further grammar types can be classified using
the Chomsky hierarchy. The Chomsky hierarchy consists of four classes of
grammar, Type3, Type2, Type1 and Type0 [25]. Most modern languages can be
described using Type2 or context-free grammars [25]. In a context-free grammar
the left-hand side of every production consists of a single non-terminal; while
the right-hand side consists of a non-empty sequence of terminals and non-
terminals [25].

1

2.1 LL(1) grammars and attributed grammars

Grammars can be said to be LL(1) complaint when it is possible to evaluate
the grammar, from left to right, while only looking one terminal ahead [1, 27].
LL(1) conflicts can occur under three different conditions; these are, explicit
alternatives, options and iterations. Mössenböck, Wöß and Löberbauer [27]
described these conditions as follows;

In EBNF grammars, there are the following three situations where
LL(1) conflicts can occur (Greek symbols denote arbitrary EBNF
expressions such as a[b]C; first(a) denotes the set of terminal start
symbols of the EBNF expression a; follow(A) denotes the set of
terminal symbols that can follow the non-terminal A)

Explicit alternatives
e.g. A = α | β | γ. check that first(α) ∩ first(β) = {} ∧

first(α) ∩ first(γ) = {} ∧
first(β) ∩ first(γ) = {}.

Options
e.g. A = [α]β. check that first(α) ∩ first(β) = {}
e.g. A = [α]. check that first(α) ∩ follow(A) = {}

Iterations
e.g. A = {α} β. check that first(α) ∩ first(β) = {}
e.g. A = {α}. check that first(α) ∩ follow(A) = {}

Knuth [12] defined attributed grammars which could be used to describe the
translation of languages [27]. EBNF as described by Wirth [26], is a nota-
tion used to describe a language [25]. EBNF defines metasymbols which are
used to simplify the expression of grouping, alternatives, optional symbols and
much more [25, 26]. The attributes of the grammar consists of non-terminals;
these non-terminals can be described as input attributes, which provide con-
text information, and output attributes which provide results calculated during
the processing of the non-terminals [27]. The semantic actions are executed
as statements in an imperative programming language, during the parsing pro-
cess [25, 27]. Recursive descent parsers require grammars to be LL(1) compli-
ant [27]. The LL(1) restriction is enforced as the parser needs to be able to
select between alternatives with a single look ahead symbol [27].

3 Compiler Generators

Compiler generators are used to construct human-readable parsers automat-
ically [18]. Traditionally hand-built, recursive-descent parsers where used to
recognise languages [18, 27]. These hand-built parsers where able to resolve
LL(1) conflicts using semantic information or by performing a multi-symbol
look ahead [27]. The first automatic compiler generators where constructed to
produce bottom-up parsers. The bottom-up or LALR(1) parsers are more pow-
erful and are not affected by the same LL(1) restrictions as recursive-descent
parsers. However, LALR(1) parsing does not allow for integrated semantic pro-
cessing as semantic actions can only be performed at the end of productions [27].
To solve this problem, recursive-descent parser producing compiler generators

2

where created [27]. Two early compiler generators are JavaCC and ANTLR.
JavaCC generates recursive descent parsers which are able to resolve LL(1)
conflicts [27]. ANTLR produces recursive descent parsers which process LL(k)
grammars, where k > 1 [18]. Furthermore the grammars processed by ANTLR
use predicates to aid in the resolution of LL(1) conflicts [18]. The ANTLR
compiler generator comes with a tree generator, SORCERER [18, 27].

3.1 Coco/R

The compiler generator studied in this paper is Coco/R. Coco/R is classified
as a recursive-descent parser as it does a top-down evaluation of grammars.
Recursive-descent parsers use a procedure for each non-terminal [1]. By looking
at the input it receives, the procedure determines which production to apply.
Using an attributed grammar, Coco/R produces a scanner and recursive descent
parser [27]. The productions of an attributed grammar get processed from left
to right by Coco/R [25]. Coco/R does syntax analysis and semantic actions,
defined by attributes, are executed when they are encountered. The user is
able to add custom classes, which perform actions such as code optimisation,
code generation and symbol table handling [25, 27]. The grammar is attributed
with semantic actions which can be used to access the user defined classes.
LL(1) conflicts in Coco/R are handled in a similar manner to ANTLR and
JavaCC. This is done through conflict resolvers [27]. Conflict resolvers are
Boolean expressions which are inserted before the first occurrence of conflicting
alternatives [18, 27]. Another method of conflict resolution implemented in
Coco/R is the use of semantic actions. The semantic actions help determine
which alternative to select and are inserted into the generated parser [27]. Unlike
ANTLR, Coco/R does not include a tree generator.

4 Abstract Syntax Trees

Aho et al., [1] provide a formal description for Abstract Syntax Trees (AST),
“In an abstract syntax tree for an expression, each interior node represents an
operator; the children of the node represent the operands of the operator”. The
expression a-b+c can be represented by an AST, see Figure 1, where the root is
represents the operator +. The sub expressions a-b and c are represented by a
sub tree and leaf node respectively. The grouping of a-b, reflects how operators
on the same precedence level are evaluated from left-to-right [1, 25].
The parsing process evaluates a grammar on a symbol by symbol basis. This

process is recursive in nature and can be represented using parse trees [10].
An abstract syntax tree consists of inter-related nodes which represent data
structures [10]. The construction of the AST is done bottom-up. The parser
recursively works its way down each branch, as it exits each method and travels
back up the branch, it adds the last visited node to the tree [10, 25]. The
construction of syntax trees can be used to perform simple type checking [1].
This is done by matching actual types with expected types as the a node is
about to be added to the tree [1]. Further analysis can be done once the AST
has been constructed; by executing code fragments at each node in the AST [1].

3

Figure 1: Abstract Syntax Tree for a-b+c

5 Software Visualisation

In order to understand the term software visualisation, it is first required to
define visualisation. Visualisation, as defined by the Oxford dictionary, is the
“the power or process of forming a mental picture or vision of something not
actually present to the sight”. Other terms often associated with visualisation
are program visualisation and algorithm visualisation [4]. Program visualisation
refers to the various techniques used to enhance the understanding of computer
programs [4]. While algorithm visualisation is defined as a the process where-by
actual implemented code is visualised [4]. Software visualisation encompasses
both program and algorithm visualisation. Thus software visualisation can be
defined as “the use of the crafts of typography, graphic design, animation and
cinematography with modern human-computer interaction technology to facil-
itate both the human understanding and effective use of computer software”.
Software visualisation (SV) is used to solve a wide range of problems including
algorithm animation and visual programming [13]. In order to be successful,
the SV needs to provide a natural and direct mapping from the visual metaphor
to the source code and back [13]. The dimensions of SV systems, as described
by Marcus, Feng and Maletic [13] are:

• Tasks - why is the visualisation needed?

• Audience - who will use the visualisation?

• Target - what is the data source to represent?

• Representation - how to represent it?

• Medium - where to represent the visualisation?

Representation is an important aspect of SV as this defines how raw data is
mapped in to a visual structure and view [13]. Expressiveness and effectiveness
are two criteria for evaluating the mapping of data to a visual metaphor [13].
Expressiveness describes how well the visual metaphor represents all the avail-
able information. The expressiveness of the SV solution can be described by
the ratio between the number of visual parameters and the number of data
values [13]. Effectiveness relates to how effective the metaphor is at represent-
ing information [13]. Thus it can be seen that the effectiveness of visualisation
relates to its semantic richness, simplicity and the level of abstraction [13].

4

5.1 Effectiveness of Software Visualisation

One of the main areas where software visualisation can be used to enhance
the understanding of computer programs and algorithm function, is the field of
computer science education. Possible uses of SV in education are:

• Help illustrate algorithm operation in lectures

• Help students learn the fundamental algorithms found in computer science

• Help instructors track down bugs in students programs

The use of SV in the teaching of algorithms and programming to novice students
is not a new concept. One such general purpose system Karel, The Robot has
been used to assist students in studying Pascal [7]. Software visualisation aims
to increase the understanding of how programs work [4, 8, 13]. In investigating
the effectiveness of SV, there has been ample evidence that visualisation can
significantly reduce the effort required to comprehend a system [11]. In a study
conducted by Bassil and Keller [11], participants rated better comprehension as
a benefit of SV systems. In the evaluation of SV systems used in education,
expressiveness is usually the focal point [8]. In order for a SV system to be ef-
fective as an education tool, it is important that the visual metaphor effectively
expresses the underlying data. The metaphor needs to provide an accurate
representation of what is being visualised; this will allow students to trust the
metaphor and aid in the learning process [8, 13]. Cognitive Constructivist the-
ory states that active learning is superior to passive learning [8]. Visualisation
allows learners to actively engage with the work by augmenting their view [8].
This view is further enhanced by Bower’s [5] statement “it is important that
such simulations are manipulative in order to actively involve the learner rather
than... passively watch pre-programmed instruction”. The learning can be
further enhanced by requiring learners to answer questions about the visualisa-
tions [8]. Thus it can be said that software visualisation offers the advantage of
providing high student involvement and allowing for the development of intu-
itive understanding of concepts in a visual manner [7]. However, the educational
impact of visualisation is dependant on the enhancement of learning with visu-
alisation and the usage of visualisation in the classroom [14, 15]. It has been
found that instructors are unwilling to use visualisation in their classrooms [14].
As stated by Naps et al., [14] “the overall educational impact of visualisation
is and will be minimal until more instructors are induced to integrate visuali-
sation techniques in their classes”. In a 2002 study of SIGCSE members [15],
respondents listed time required to search for good examples and time it takes
to develop visualisations, among the main impediments to the implementation
of visualisation in their teaching. From this it is clear that these issues need to
be addressed in order for visualisations to become effective teaching aids.

6 Related Work

There have been numerous projects which aim to visualise how compilers work.
Visual YACC was developed to aid in the teaching of compiler theory [9]. YACC
(Yet Another Compiler Compiler) is a compiler generator which generates a

5

LALR parser. The program takes YACC grammars as input and produces vi-
sualisations of both the LR parse tree and LR parse stack [9]. Resler argues
that “the study of the inner-workings of a compiler can be greatly simplified
through use of a visible compiler” [23]. VCOCO (Visible COmpiler COmpiler)
was constructed to generate LL(1) visible compilers [23]. VCOCO provides
a visual front-end to Coco/R. The benefit of this approach is that VCOCO is
capable of generating compilers which are functionally equivalent to compilers
produced by Coco/R, given the same specifications [23]. The VCOCO inter-
face is designed to provide an user with detailed, visual feedback of the compiler
generator process. This is accomplished by inserting hooks into the semantic
actions associated with each production in a grammar [23]. These hooks update
the Grammar window of VCOCO to visualise the progression of the parse pro-
cess. Furthermore, VCOCO highlights the source code of Coco/R, line-by-line,
as it steps through the compilation process [23]. The operation of VCOCO
allows users to trace the compiler generation process from syntax analysis to
code generation [23]. VCOCO’s method of visualisation offers a debug ap-
proach for experts and is not ideal as an education tool [2]. ANTLR (ANother
Tool for Language Recognition) is a parser generator which produces human-
readable recursive-descent parsers [18]. Like Coco/R, ANTLR uses attributed
grammars. However, unlike Coco/R, ANTLR accepts LL(k) grammars, where
k > 1. ANTLR parsers can automatically construct abstract syntax trees [18].
In order to construct an AST, the user needs to annotate the grammar to indi-
cate root and leaf nodes, as well as what needs to be excluded from the AST.
An ANTLR generated AST can be seen in Figure 2. The disadvantage with
ANTLR’s AST generation is that the user needs to manually specify node types
and which nodes should be included. This complicates the learning process for
novice users. There have been numerous studies using software visualisation

Figure 2: The abstract syntax tree resulting from “if 3+4*5 then return 4;” [18]

in aiding the teaching of programming concepts [7, 14, 15]. Norvell and Lock-
hart [16] created a software system, The Teaching Machine, which animates
computer programs. The system allows students or instructors to single step
through C++ or Java programs; the system then visualises these changes to the
virtual machine [16]. Norvell and Lockhart used their system as a teaching-aid
while instructing an advanced programming course [16]. They found that using
program animation they were able to ease the learning process for new students
[16].

6

7 Conclusion

It has been found that software visualisation is effective in teaching program-
ming concepts to new users [8]. However the overall effectiveness is limited due
to demonstrators hesitation to use SV systems [8, 14]. Current systems that
attempt to visualise compiler generators are too complicated to learn and use
by novice users [2]. A successful implementation will need to be easy to learn,
easy to use and needs to provide accurate representations of the data being
visualised. The compiler visualiser would need to ease the concerns raised by
demonstrators, as to increase the use of visualisation in the teaching of compiler
theory.

References

[1] Alfred V. Aho, Monica S. Lam, R. S. J. D. U. Compilers Principles,
Techniques, & Tools:. Pearson International, 2007.

[2] Almeida-Mart́ınez, F. J., Urquiza-Fuentes, J., and Velázquez-
Iturbide, J. A. Vast: a visualization-based educational tool for language
processors courses. SIGCSE Bull. 41, 3 (2009), 342–342.

[3] Baecker, R. Sorting out sorting: A case study of software visualization
for teaching computer science. In Software Visualization: Programming as
a Multimedia Experience, chapter 24 (1998), The MIT Press, pp. 369–381.

[4] Blaine A. Price, I. S. S., and Baecker, R. M. A taxonomy of software
visualization. Journal of Visual Languages and Computing 4 (1992), 211–
266.

[5] Bower, R. An investigation of a manipulative simulation in the learning
of recursive programming. PhD thesis, Iowa State University, 1998.

[6] catalin Roman, G., Cox, K. C., and Roman, D. C. A taxonomy of
program visualization systems. IEEE Computer 26 (1993), 11–24.

[7] Dann, W., Cooper, S., and Pausch, R. Using visualization to teach
novices recursion. SIGCSE Bull. 33, 3 (2001), 109–112.

[8] Douglas, S. A., Stasko, J. T., Hundhausen, C. D., Hundhausen,
C. D., Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. A
meta-study of algorithm visualization effectiveness.

[9] Elizabeth White, Laura Deddens, J. R. Software visualization of
lr parsing and synthesized attribute evaluation. Software: Practice and
Experience 29, 1 (January 1999), 1–16.

[10] Howarth, N. Abstract syntax tree design. Tech. rep., Architecture
Projects Management Limited, 1955.

[11] IWPC. Software visualization tools: Survey and analysis. In IWPC ’01:
Proceedings of the 9th International Workshop on Program Comprehension
(Washington, DC, USA, 2001), IEEE Computer Society, p. 7.

7

[12] Lemone, K. A., O’Connor, M. A. A., McConnell, J. J., and Wis-
newski, J. Implementing semantics of object oriented languages using at-
tribute grammars. In CSC ’91: Proceedings of the 19th annual conference
on Computer Science (New York, NY, USA, 1991), ACM, pp. 190–202.

[13] Marcus, A., Feng, L., and Maletic, J. I. 3d representations for soft-
ware visualization. In SoftVis ’03: Proceedings of the 2003 ACM symposium
on Software visualization (New York, NY, USA, 2003), ACM, pp. 27–ff.

[14] Naps, T., Cooper, S., Koldehofe, B., Leska, C., Rö, G., Dann,
W., Korhonen, A., Malmi, L., Rantakokko, J., Ross, R. J., An-
derson, J., Fleischer, R., Kuittinen, M., and McNally, M. Evalu-
ating the educational impact of visualization. In ITiCSE-WGR ’03: Work-
ing group reports from ITiCSE on Innovation and technology in computer
science education (2003), pp. 124–136.

[15] Naps, T. L., Rö, G., Almstrum, V., Dann, W., Fleischer,
R., Hundhausen, C., Korhonen, A., Malmi, L., McNally, M.,
Rodger, S., and Velázquez-Iturbide, J. A. Exploring the role of visu-
alization and engagement in computer science education. In ITiCSE-WGR
’02: Working group reports from ITiCSE on Innovation and technology in
computer science education (2002), pp. 131–152.

[16] Norvell, T. S., and Bruce-lockhart, M. P. Teaching computer
programming with program animation.

[17] Oliveira, N., Henriques, P. R., Cruz, D. D., Var, M. J., and
Pereira, A. Visuallisa: Visual programming environment for attribute
grammars specification.

[18] Parr, T. ANTLR Reference Manual, 2.7.4 ed. University of San Francisco,
May 2004.

[19] Pauw, W. D., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides,
J. M., and Yang, J. Visualizing the execution of java programs. In Re-
vised Lectures on Software Visualization, International Seminar (London,
UK, 2002), Springer-Verlag, pp. 151–162.

[20] Petre, M., and Blackwell, A. F. Mental imagery in program design
and visual programming. Int. J. Hum.-Comput. Stud. 51, 1 (1999), 7–30.

[21] Price, B., Baecker, R., and Small, I. A principled taxonomy of
software visualization. Journal of Visual Languages and Computing 4, 3
(September 1993), 211–266.

[22] Resler, D. Using visual compilers in the compiler construction cur-
riculum. In In Proceedings of the 4th Annual Conference on the Teach-
ing of Computing (Dublin, Ireland, August 1996), Dublin City University,
pp. 195–197.

[23] Resler, D., and Deaver, D. M. Vcoco: A visualisation tool for teaching
compilers.

8

[24] Stansifer, R. The study of programming languages. Prentice-Hall, Inc.,
1995.

[25] Terry, P. Compiling with C# and JAVA. Pearson Education Limited,
2005.

[26] Wirth, N. What can we do about the unnecessary diversity of notation
for syntactic definitions? Commun. ACM 20, 11 (1977), 822–823.

[27] Wöß, A., Löberbauer, M., and Mössenböck, H. Ll(1) conflict res-
olution in a recursive descent compiler generator. In In JMLC03, volume
2789 of LNCS (2003), Springer-Verlag, pp. 192–201.

9

