
Rhodes University

Computer Science Department

Honours year project

Project Proposal

Author: Etienne Stalmans
Supervisor: Dr. Karen Bradshaw

19 February 2010



1 Principle Investigator

Etienne Raymond Stalmans
29 African Street
Grahamstown, 6140
0798748161
g07s0924@campus.ru.ac.za
Supervised by: Dr. K. Bradshaw

2 Project Title

The project is proposed under the title:
VISUALIZATION OF ABSTRACT SYNTAX TREES AND COMPILER GEN-
ERATION WITH COCO/R

3 Statement of the Problem

Modern programming languages are high-level in nature [5], while compiler gen-
eration remains a low level operation [6, p.4-p.9]. Coco/R, a popular compiler
generator tool, allows for the generation of compilers from any grammar. This is
achieved through high-level abstraction, allowing for simplification of the compi-
lation process. Currently no integrated development environment (IDE) exists
for Coco/R. This poses a problem for young programmers who are use to mod-
ern development environments with syntax highlighting and code visualization.
Abstract Syntax Trees (ASTs) can be useful in the analysis and comparison
of programs [6, p.20-p.23]. The purpose of this project is to produce an IDE
for Coco/R.Furthermore the project proposes to help programmers, new to the
field of compilers, understand the compiler generation process and visualize the
output of syntax analysis. This will be done in the form of ASTs. The user
should be able to use a tree walker to step through the generated ASTs and
gain an understanding of the underlying program. This implementation will
aim to improve on work done in compiler visualization by implementations such
as VCOCO and ANTLR. VCOCO was developed for use with Coco/R and
provides step-by-step information about the compiler generation process [4].
VCOCO however does not provide visualization of ASTs.Thus it is necessary to
produce a new tool, capable of visualizing the compilation process.

1



4 Objective of Research

Based on the above problem statement, the objectives of this research are:

Primary objectives

• Produce an Integrated Development Environment for Coco/R

• Visualize abstract syntax trees produced during syntax and constraint
analysis

• Increase understanding of the compilation process for new users

Secondary objectives or future extensions

• Provide step by step analysis of the compilation process

• Allow for comparison of abstract syntax trees

• Include JAVA code generation

The development of an IDE for Coco/R will allow for easier development of
grammars for compiler generation. Visualization will assit in the understanding
of compilers and will aid in the optimization of code generation. The extension
of Coco/R should not affect performance or ease of use negatively and should
not change the core functionality in any way.

5 History and Background

High-level languages provide an advantage over low-level languages by reducing
complexity and being easier to learn for new programmers [6, p.4-p.9]. Compiler
generation has traditionally been a task performed at a low-level, with the use
of compiler generator tools such as Coco/R, it is possible to abstract to a higher-
level [6, p.4-p.9]. Coco/R allows for the formal description of a language through
a grammar. The supplied grammar provides specification of the syntax as well
as the static and dynamic semantics of the language [6, p.20]. Coco/R is a
table-driven parser generator which was developed by Hanspeter Mossenbock
at ETH Zurich in 1989. Coco/R is open source and has been ported to many
different languages such as C#, Java and Delphi. Grammars used in Coco/R
are in the EBNF form and are processed by a recursive descent parser, output
is in the form of a scanner and parser, which are able to process the intended
grammar. The syntax of the language can be represented in the form of ASTs.
ASTs represents the components of a language which can convey the ultimate
meaning of a program. Due to the nature of ASTs it is possible to use tree
differencing to determine the difference between two programs. Tree differencing
can furthermore be used for source control and the extraction of source code
change [1].

Related work has been done by Terence Parr who produced ANTLR, AN-
other Tool for Language Recognition [3]. ANTLR is similar Coco/R as it also

2



provides a framework for constructing compilers from a user specified grammar
[3]. ANTLR provides a tool for generating visual representations of programs
in the form of ASTs. Furthermore ANTLR allows for the walking of produced
ASTs which assists in increasing the understanding of a program. Other tools
for visualizing compilers are VCOCO and VYACC [4]. Both of which allow for
step by step visualization of the compiler generator process. The limitation of
existing visualization tools for Coco/R is that they do not provide visualization
of ASTs and lack a mechanism for walking the ASTs.

6 Approach

In order to develop a front end for Coco/R is its imperative to gain an under-
standing of how the different functions of Coco/R function. To achieve this
the documentation for Coco/R will be studied and sample programs will be
generated using different grammars. Furthermore, mechanisms for exchanging
information between the existing Coco/R code and the visual front-end will
need to be investigated.

The second phase of the project will require the investigation of abstract
syntax tree generation and the creation of efficient algorithms to achieve this.
The visualization of ASTs will require the creation an efficient mechanism to
display them in an easy to understand and user friendly manner. This interface
should provides as much information as possible without becoming overwhelm-
ing or difficult to read. This phase will also require the production of an abstract
syntax tree walker able of parsing the ASTs and providing information about
each node to the user. The current Coco/R parser generator will be extended
to produce a 2-Dimensional AST. The resultant AST will then be parsed by the
visualization function.

The third phase will necessitate the creation of the front-end for Coco/R
which the user will interact with. This phase will involve design decisions as to
provide the most user friendly manner of manipulating grammars and displaying
the ASTs. The front-end will be created in C# which will interface with the C#
version of Coco/R. During this phase possible extensions will be investigated
for their validity and possibility of implementation.

The final phase is the testing phase. The project aims to have a working
prototype ready for evaluation by third year computer science students. The
test group are all currently taking Prof. P. Terry’s compilers course at Rhodes
University or have taken the course in the past. The testing will be divided
into three categories; performance evaluation of the IDE, ease of use and user
awareness. The performance evaluation will require students to evaluate the
performance of the Coco/R IDE and the generation of ASTs. Ease of use will
be evaluated by students to determine if any changes need to be made to the
front-end. The students will also be asked to evaluate how well the visualization
of ASTs helps with their understanding of compiler generation and affects their
awareness of the steps involved in arriving at a final solution.

3



7 Requirements

The hardware requirements for this project are as follows:

• Access to a x86 based personal computer

The software requirements are as follows:

• Windows XP Professional SP2

• Microsoft Visual Studio 2008

• .Net 3.5 SP1

• Java compilers

• Coco/R C# sources and Coco/R Java sources

8 Project Progression Time-line

Deadline Activity
22 February 2010 Formal written Project Proposal
23 February 2010 Presentation of Project Proposal
25 February 2010 Launch research website
10 March 2010 Aquire understanding of Coco/R
15 March 2010 Complete prototype design of IDE
25 March 2010 Finilise message passing between IDE and Coco-R
01 April 2010 Produce ASTs algorithm
10 April 2010 Create ASTs display mechanism
21 May 2010 Literature review and plan of action complete
15 July 2010 Initial prototype of Coco/R IDE
20 July 2010 Optimisation of prototype
27 July 2010 Oral presentation of completed work
01 August 2010 Initial testing by third years
13 September 2010 Short paper hand-in
20 September 2010 First draft of paper
01 October 201025 October 2010 Final oral presentation
01 November 2010 Final project hand in

4



References

[1] Fluri, B., Wursch, M., Pinzger, M., and Gall, H. C. Change distill-
ing: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on software engineering 33, 11 (November 2007), 725–743.

[2] Linsen, L., Karis, B. J., Gregory, E., and Hamann, M. B. Abstract
tree growth visualization.

[3] Parr, T. ANTLR Reference Manual, 2.7.4 ed. University of San Francisco,
May 2004.

[4] Resler, D. Vcoco: A visualisation tool for teaching compilers.

[5] Stansifer, R. The study of programming languages, 1995.

[6] Terry, P. Compiling with C# and JAVA. Pearson Education Limited,
2005.

[7] Von, S., Garcia, M., and harburg (germany, T. U. H. Eclipse corner
article how to process ocl abstract syntax trees, 2007.

5


