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Abstract

Compiler theory is a core module in most computer science courses. The tools and

techniques used in teaching compiler theory has not advanced to keep pace with modern

teaching techniques. One of these teaching techniques is the use of visualisation. Through

visualisation students are provided with a visual metaphor of the problem, which aims

to improve understanding by encouraging cognitive learning. Coco/R, a popular com-

piler generator, has no integrated development environment or visualisation facilities. By

creating an integrated development environment, which is capable of visualising data

structures such as abstract syntax trees and syntax graphs, the effectiveness of Coco/R

as a teaching aid is increased. Visualisation is done automatically allowing for a layer of

abstraction to be inserted between the user and the problem domain. This ensures that

students can focus on learning the material without needing to learn a meta language first.

The visual representation of the parsing process can more easily convey the underlying

actions and allows students to form a mental model of how compilers function.
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Chapter 1

Introduction

1.1 Problem Statement

Modern programming languages are high-level in nature [35], while compiler generation

remains a low level operation [37]. Coco/R, a popular compiler generator tool, allows

for the generation of compilers for any grammar. This is achieved through high-level

abstraction, allowing for simplification of the compilation process. Currently no integrated

development environment (IDE) exists for Coco/R, which poses a problem for young

programmers who are used to modern development environments with syntax highlighting

and code visualisation. Abstract Syntax Trees (ASTs) can be useful in the analysis and

comparison of programs [37]. The purpose of this project is to produce an IDE for

Coco/R. Furthermore, the project aims to help programmers, new to the field of compilers,

understand the compiler generation process and visualise the output of syntax analysis.

This will be done through the construction and visualisation of syntax graphs and ASTs.

It has been shown that visualisation can be a useful teaching aid and it is hoped that

the user will be able to examine the generated AST and gain a greater understanding of

the underlying program. This implementation aims to improve on work done in compiler

visualisation by programs such as VCOCO [33] and ANTLR [28]. VCOCO was developed

for use with Coco/R and provides step-by-step information about the compiler generation

process [33]. VCOCO does not, however, provide visualisation; thus, it is necessary to

produce a new tool, capable of visualising the AST and compile time data structures.

7
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1.2 Research Goals

Based on the above problem statement, the objectives of this research are:

• Produce an Integrated Development Environment for Coco/R.

• Visualise abstract syntax trees produced during syntax and constraint analysis.

• Increase understanding of the compilation process for new users.

The development of an IDE for Coco/R will allow for easier development of grammars

used in compiler generation. Visualisation will assist in the understanding of compilers

and will aid in the optimisation of code generation. The extension of Coco/R should

not negatively affect performance or ease of use. Furthermore, the extension should not

change the core functionality of Coco/R in any way.

1.3 Motivation for research

Compiler theory is a core module in most computer science courses offered at university

level. Subsequently Coco/R is used as a teaching aid for the compiler theory course

offered at Rhodes University. Current implementations of Coco/R do not provide an

IDE and thus users require third party tools to write the grammar and are required

to manually perform the compilation of grammars and the execution of the generated

parser. This means students are required to learn how to perform these actions before

being able to use Coco/R. With the development of an IDE students will be able to start

using Coco/R almost immediately. The IDE will assist in the development of grammars

and will make error identification and correction easier for novice users. It is hoped

that the visualisations provided by the IDE will help increase student understanding of

compiler functionality. The use of visualisation will assist students in gaining a greater

understanding of the data structures produced during syntax analysis.
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1.4 Document structure and outline

Chapter two contains a literature survey that covers related work and provides a theoret-

ical background upon which the rest of the thesis is based.

Chapter three discusses Coco/R in more detail and explains the basic mechanism behind

recursive descent compiler construction.

Chapter four examines visualisation as a teaching aid and identifies the requirements of

a good user interface.

Chapter five outlines the IDE produced for Coco/R and highlights the main features

thereof.

Chapter six discusses how the AST construction code is incorporated into the existing

version of Coco/R. It further explains how the resultant AST is retrieved from the gen-

erated parser through the use of reflection.

Chapter seven lists example ASTs generated using the modified version of Coco/R and

discusses problem areas identified.

Finally, Chapter eight concludes the thesis and suggests further extensions.



Chapter 2

Literature Survey

To gain a firm understanding of the underlying problem domain it is essential to look

at the following research areas: grammars, compiler generators, abstract syntax trees and

visualisation. Specifically we will focus on attributed, LL(1) compliant grammars. These

grammars can be used by compiler generators to generate recursive descent compilers

automatically. During this compilation the AST is produced. There are numerous uses

for ASTs, amongst others, for describing the compilation process. Furthermore, due to

the nature of abstract syntax trees they are easy to visualise. Visualisation has been

shown to be helpful in the teaching of complex computer algorithms and it is hoped that

these visualisation techniques, when applied to compiler theory, will be just as helpful.

In order for visualisation to be effective numerous design challenges exist which need to

be identified and explored.

2.1 Grammars

Grammars are used to formally specify the syntax of a language. A grammar can be

described as a structure < N,T,P,S > [37, 42], where N represents a set of non-terminals,

T a set of terminals, P a set of productions and S represents a non-terminal starting

symbol. A production is a syntax equation that relates two strings and describes how

they can be transformed into each other. Terminal symbols are literal strings that cannot

be broken into smaller units. Non-terminals are symbols that can be replaced; therefore

they can be composed of terminal and non-terminal symbols. Grammars must conform to

certain restrictions to be used in the automatic construction of parsers and compilers. Two

10
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main restrictions are that grammars need to be cycle-free and unambiguous. Ambiguity

in a grammar occurs when that grammar has more than one parse tree for a given input

string [2]. Further, grammar types can be classified using the Chomsky hierarchy, which

consists of four classes of grammar: Type3, Type2, Type1 and Type0 [37]. Most modern

languages can be described using Type2 or context-free grammars. In a context-free

grammar the left-hand side of every production consists of a single non-terminal, while

the right-hand side consists of a non-empty sequence of terminals and non-terminals.

2.1.1 LL(1) grammars and attributed grammars

Grammars are said to be LL(1) compliant if it is possible to evaluate the grammar from

left to right, while only looking one terminal ahead [2, 42]. LL(1) conflicts can occur

under three different conditions; these being, explicit alternatives, options and iterations.

Mössenböck, Wöß and Löberbauer [42] described these conditions as follows:

In EBNF grammars, there are the following three situations where LL(1) con-

flicts can occur. (Greek symbols denote arbitrary EBNF expressions such as

a[b]C; FIRST(α) denotes the set of terminal start symbols of the EBNF ex-

pression α and FOLLOW(A) denotes the set of terminal symbols that can

follow the non-terminal A)

Explicit alternatives

e.g. A = α | β | γ. check that first(α) ∩ first(β) = {} ∧
first(α) ∩ first(γ) = {} ∧
first(β) ∩ first(γ) = {}.

Options

e.g. A = [α]β. check that first(α) ∩ first(β) = {}
e.g. A = [α]. check that first(α) ∩ follow(A) = {}

Iterations

e.g. A = {α} β. check that first(α) ∩ first(β) = {}
e.g. A = {α}. check that first(α) ∩ follow(A) = {}

Knuth [16] defined attributed grammars, which can be used to describe the translation

of languages. EBNF, as described by Wirth [41], is a notation used to describe a lan-

guage consisting of meta-symbols, which are used to simplify the expression of grouping,
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alternatives, optional symbols and much more [37, 41]. The attributes of the gram-

mar consists of non-terminals ; these can be described as input attributes, which provide

context information, and output attributes, which provide results calculated during the

processing of the non-terminals. The semantic actions are executed as statements in an

imperative programming language, during the parsing process. Recursive descent parsers

require grammars to be LL(1) compliant. The LL(1) restriction is enforced as the parser

needs to be able to select between alternatives with a single look ahead symbol.

2.2 Compiler Generators

Compiler generators are used to construct human-readable parsers automatically [27].

Traditionally hand-built, recursive-descent parsers were used to recognise languages [27,

42]. These hand-built parsers where able to resolve LL(1) conflicts using semantic informa-

tion or by performing a multi-symbol look ahead. The first automatic compiler generators

where constructed to produce bottom-up parsers. The bottom-up or LALR(1) parsers are

more powerful and are not affected by the same LL(1) restrictions as recursive-descent

parsers. However, LALR(1) parsing does not allow for integrated semantic processing as

semantic actions can only be performed at the end of productions. To solve this problem

recursive-descent parser producing compiler generators where created. Two early compiler

generators are JavaCC [3] and ANTLR [27]. JavaCC generates recursive-descent parsers

that are able to resolve LL(1) conflicts. ANTLR produces recursive descent parsers that

process LL(k) grammars, where k > 1. Furthermore, the grammars processed by ANTLR

use predicates to aid in the resolution of LL(1) conflicts. The ANTLR compiler generator

comes with a tree generator, SORCERER [27, 42].

2.3 Abstract Syntax Trees

Aho et al. [2] provide a formal description for Abstract Syntax Trees (AST): “In an

abstract syntax tree for an expression, each interior node represents an operator; the

children of the node represent the operands of the operator”. The expression a-b*c can

be represented by an AST, see Figure 2.1, where the root represents the operator *.

The sub expressions a-b and c are represented by a sub-tree and leaf node respectively.

The grouping of a-b, reflects how operators on the same precedence level are evaluated

from left-to-right [2, 37]. A useful feature of an AST is that it can be used to capture
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the essential features of a program [37]. The AST provides a conceptual interface for the

representation of a program’s syntax [11]. The parsing process evaluates a grammar on a

Figure 2.1: Abstract Syntax Tree for a-b*c

symbol by symbol basis. This process is recursive in nature and can be represented using

parse trees [14]. An AST consists of inter-related nodes which represent data structures.

The construction of the AST is done bottom-up. The parser recursively works its way

down each branch, as it exits each method and travels back up the branch, it adds the last

visited node to the tree [14, 37]. The construction of syntax trees can be used to perform

simple type checking [2], which is performed by matching actual types with expected

types as the node is about to be added to the tree. Further analysis can be done once the

AST has been constructed by executing code fragments at each node in the AST. Thus,

it can be seen that the AST either exactly mirrors or is an exact subset of the control

sequence that has created it [11]. The creation of an AST can be performed at different

levels and using different techniques. When manually constructing an AST it is possible

to define node types according to the structure of the target grammar. As demonstrated

by Terry [37], an AST node can be defined using a class structure.

Listing 2.1: Description of BinaryNode type using a class structure [37, p.470]

c l a s s BinaryNode : Expr

{
i n t op ; // i n f i x operator

Expr l e f t , r i g h t ; // operand subt r e e s

// con s t ruc to r

pub l i c BinaryNode (Type type , i n t op , Expr l e f t , Expr r i g h t )

}

A similar approach can be taken to construct nodes representing other type structures

such as statements. Once all node types and their structures have been defined, the user
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can manually perform AST construction. The AST construction can be performed by

attributing the user grammar with semantic actions for node creation. As described by

Terry [37], the user grammar is attributed so that each component of the tree is synthesised

as an output parameter.

Listing 2.2: Attributed grammar showing manual calls to construct an AST node [37,

p.475]

Condition<out Expr exp>

= Express ion<out exp>

( . i f ( exp . type != Type . boolType )

SemError (” boolean exp r e s s i on r equ i r ed ” ) ;

. ) .

RelExp<out Expr a> ( . i n t op ; expr b ; . )

= AddExp<out a>

[ RelOp<out op> AddExp<out b>

( . i f ( ! a . type . IsArithType ( ) | | ! b . type . IsArithType ( ) )

SemError (” incomparable operands ” ) ;

a = Expr . MakeBinaryNode (Type . boolType , op , a , b ) ;

. )

] .

By studying this description we can see how the call to MakeBinaryNode is used to

construct a leaf node of type boolean. This leaf node has two of its own leaf nodes; with

left node a and right node b. From this it is clear that AST construction can be done

by attributing the grammar with semantic actions that construct the nodes of the tree

and link them together [37]. Using this method requires that the user creates the AST

class first and understands where node creation semantic actions need to be inserted in

the grammar. Furthermore, the user needs to understand the nature of each node so

as to ensure that the node creation statements are implemented in the correct locations

within the grammar [37]. This is a problem when trying to construct an automatic AST

generator that is generic enough to work with most user supplied grammars.
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The benefits associated with constructing an AST during parsing are numerous and in-

clude the following [37, 42]:

• Constructing a tree and then traversing it, allows the compiler to overcome the

“declare before use” constraint of languages such as Parva and Pascal.

• If tree construction occurs in the syntatic/semantic analysis phase, it is possible

to perform code optimisation. This optimisation can be done before actual code

generation is performed.

• Through the use of a tree constructor, we can perform constraint analysis. This

allows checking that the expression is defined correctly and storing the value in the

symbol table, rather than calling code creation methods.

• Analysis of the tree construct can also lead to the identification of statements that

require no code generation at compile time.

To take full advantage of these benefits it is essential that students understand AST

construction. Through understanding they will be able to interpret these trees correctly.

2.4 Related Work

Resler [33] argues that “the study of the inner-workings of a compiler can be greatly sim-

plified through the use of a visible compiler”. There have been numerous projects that

aim to visualise how compilers work. Visual YACC was developed to aid in the teaching

of compiler theory [12]. YACC (Yet Another Compiler Compiler) is a compiler genera-

tor that generates a LALR parser. The program accepts YACC grammars as input and

produces visualisations of both the LR parse tree and LR parse stack. VCOCO (Visible

COmpiler COmpiler) was constructed to assist in the generating of LL(1) compilers by

providing a visual front-end to Coco/R. The benefit of this approach is that VCOCO is

capable of generating compilers that are functionally equivalent to compilers produced by

Coco/R, given the same specifications. The VCOCO interface is designed to provide a user

with detailed, visual feedback of the compiler generation process. This is accomplished by

inserting hooks into the semantic actions associated with each production in the grammar.

These hooks update the Grammar window of VCOCO to visualise the progression of the

parse process. Furthermore, VCOCO highlights the source code of Coco/R, line-by-line,
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as it steps through the compilation process. The operation of VCOCO allows users to

trace the compiler generation process from syntax analysis to code generation. VCOCO’s

method of visualisation offers a debugging approach for experts and is not ideal as an

education tool [3]. Furthermore, VCOCO does not provide any visualisation of the data

structures associated with parsing. ANTLR (ANother Tool for Language Recognition)

is a parser generator that produces human-readable recursive-descent parsers [27]. Like

Coco/R, ANTLR uses attributed grammars, however, unlike Coco/R, ANTLR accepts

LL(k) grammars, where k > 1. The parsers constructed using ANTLR are capable of con-

structing and visualising the abstract syntax tree. Construction of the AST is performed

when the user annotates the grammar to indicate root and leaf nodes, as well as what

needs to be excluded from the AST. An ANTLR generated AST can be seen in Figure

2.2. A disadvantage of ANTLR’s AST generation is that the user needs to manually

specify node types and which nodes should be included. This complicates the learning

process for novice users, as they are required to learn ANTLR annotations before being

able to interact with the AST. Furthermore, ANTLR assumes prior knowledge of how

AST’s are constructed and thus, is not suitable for learners wanting to learn about AST

construction.

Figure 2.2: The abstract syntax tree resulting from “if 3+4*5 then return 4;” (taken from
[27])

There have been numerous studies using software visualisation in aiding the teaching

of programming concepts [9, 21, 22]. Norvell and Lockhart [23] created a software sys-

tem, The Teaching Machine, which animates computer programs. The system allows

students or instructors to single step through C++ or Java programs; the system then

visualises these changes to the virtual machine. Norvell and Lockhart used their system

as a teaching-aid while instructing an advanced programming course. They found that

by using program animation they were able to ease the learning process for new students.

The use of visualisation as a teaching aid is further explored in Section 4.



Chapter 3

Coco/R

3.1 Introduction

Created by Hansperter Mössenböck at ETH Zürich, Coco/R is a compiler generator [37,

42]. Coco/R takes an attributed grammar as input and produces a recursive descent

parser and scanner. A modified version of the C# implementation of Coco/R is used in

this thesis. This modified version of Coco/R is used as a teaching aid in the instruction

of compiler theory to third year students at Rhodes University. The parser generated

by Coco/R is LL(1), but allows for LL(1) conflicts to be resolved through the use of

semantic checks. These semantic checks are implemented by attributing the grammar’s

productions. Coco/R produces numerous data structures during compilation, however,

none of these are visualised.

3.2 Implementation

3.2.1 Coco/R structure

Terry defines the basic compiler structure [37, p308], consisting of file handling routines

that are responsible for the execution of input and output routines. The input routines

are used to transmit the source file to the scanner, also known as the lexical analyser.

Once compilation is complete the output routines produce source and error listings along

with the object code file.

17
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During lexical analysis characters are grouped together into recognised tokens. These

tokens are stored for later parsing by the syntax analyser. The parser is responsible

for parsing the user grammar and performing constraint analysis. Tokens recognised by

the lexical analyser are processed by the parsing routine, and as these are processed the

parser checks that syntactic constraints are met. Non-terminals and terminals are stored

as symbols in a symbol table, represented as a symbol graph, which is used to keep

track of symbol declaration in the user grammar. The parser performs semantic checks

to ensure that symbols are not declared twice. Other semantic checks include checking

that symbols are declared before use and that there are no attribute mismatches between

symbol declaration and usage. Error handling is done during the lexical analysis and

parsing phase. The error handling routines interface with the output routines to produce

error listings, which users may consult to gain a greater understanding of where syntactic

and semantic errors occur. If parsing completes without any errors, Coco/R calls the

code generator routine to produce the scanner, parser and driver files for the user defined

grammar. The code generator routine is divided into three sections, scanner generation,

parser generation and driver generation.

Figure 3.1: Relationships between main components of Coco compiler [37, p308]



3.2. IMPLEMENTATION 19

3.2.2 Input

The input used for Coco/R consists of a context-free, attributed grammar known as

Cocol [37]. Cocol itself can be described using EBNF notation [37]:

Cocol = [LibraryAccess ]

“COMPILER” GoalIdentifier

[ArbitraryText ]

ScannerSpecification

ParserSpecification

“END” GoalIdentifier“.”.

The LibraryAccess section defines any additional C# declarations, which allows parser

methods access to additional facilities in other namespaces. This is done by defining

the C# using <namespace> directive. Any text included in the ArbitraryText section

is not checked by Coco/R and is added directly to the generated parser. This is useful

for declaring custom fields and methods which are used for semantic actions. Coco/R

uses each production specified in the ParserSpecification section to generate a matching

parsing routine [20].

Scanner Specification

The scanner is required to scan a users input, skip over meaningless characters, and to

recognise tokens to be handled by the parser [36]. These recognised tokens are identifiable

by a simple integer, unique to the token type. Tokens may be classified as either literals

or as token classes. Literal tokens may be introduced directly into productions as simple

strings. However, token classes must be named and have a structure that can be defined

in EBNF. The parser is able to retrieve the lexene or textual representation of a token

from the scanner. Coco/R allows tokens to be declared in any order, where each token

is named using a TokenSymbol and has a token structure defined using EBNF. Once a

token is recognised by the scanner, it is stored as a Token object, defined by the following

Token class:



3.2. IMPLEMENTATION 20

Listing 3.1: Token declaration within Coco/R Scanner.cs

pub l i c c l a s s Token

{
pub l i c i n t kind ; // token kind

pub l i c i n t pos ; // token p o s i t i o n in the source t ext

pub l i c i n t c o l ; // token column ( s t a r t i n g at 0)

pub l i c i n t l i n e ; // token l i n e ( s t a r t i n g at 1)

pub l i c s t r i n g va l ; // token value

pub l i c Token next ; // Tokens are kept in l i nked l i s t

}

Parser Specification

The parser specification is the main part of Coco/R. The user defined ParserSpecification

consists of productions that provide procedural descriptions of parser actions [37, 42].

Coco/R uses the production section as the syntax of the language to be recognised. Each

production is composed of identifiers which are the names of Terminals and NonTerminals.

If an identifier appears in a production and has not been declared as a terminal token, it

is considered to be a NonTerminal. Each NonTerminal must be defined by exactly one

production. Furthermore, the productions are used to determine the actions to be taken

as each token is recognised. These descriptions can be extended through the use of user

specified attributes and semantic actions.

Attributes are used to define parameters of the non-terminal symbols [42, 20] and may be

either input or output attributes. These attributes are enclosed in angle brackets < and

>. The attributes can be considered to be the parameters of the production where input

attributes are used to pass values into the production, while output attributes return

values from the production. Coco/R performs checks to ensure that NonTerminals with

attributes are always used with attributes and NonTerminals without attributes are used

without attributes.

Semantic actions define statements in an imperative programming language. These ac-

tions are added to the produced parser and are executed during the parsing process. The

semantic actions, enclosed within (. and .) are copied to the generated parser as they

are encountered and no checks of their validity are performed. Users may add semantic

actions anywhere in the grammar but they are mainly implemented at the end of produc-

tions [20]. Coco/R uses a one token lookahead and thus productions are processed from
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left to right [42]. The example in Listing 3.2 shows a production that processes variable

declarations and adds the identifiers to a symbol table, symTab:

Listing 3.2: LL(1) Conflict Resolution in a Recursive Descent Compiler Generator [42,

p.3]

VarDeclarat ion ( . S t ruc ture type ; s t r i n g name ; . )

= Type<out type>

Ident<out name> ( . symTab . Enter (name , type ) ; . )

{ ” ,” Ident<out name> ( . symTab . Enter (name , type ) ; . )

} ” ; ” .

3.3 Grammar checks

Once a user submits a grammar, Coco/R performs several checks to ensure that the

grammar is well formed [37]. If these checks fail Coco/R does not produce any code

and the user is informed of the checks that have failed. The user then needs to correct

these errors and resubmit the grammar. Several checks do not result in errors, but rather

in warnings [37]. If a warning occurs, code generation still takes place but the user is

informed of the warnings. Checks that result in errors include:

• whether each NonTerminal has been defined by exactly one production;

• whether there are no useless productions;

• whether it is a cycle free grammar;

• whether no ambiguity exists and each token can be distinguished from the others.

The following checks result in warnings:

• whether a non-terminal is nullable;

• whether LL(1) conditions are not met, such as at least two alternatives of a produc-

tion have common elements in the FIRST and FOLLOW sets.
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3.4 Coco/R output

If Coco/R successfully compiles the user supplied grammar, numerous files are produced

as output. These files contain the source code of various classes,as described by Terry [37,

p.241]:

• scanner class, which represents a FSA scanner (Scanner.cs);

• parser class able to perform recursive descent parsing (Parser.cs);

• driver class used to run the compiled code (Calc.cs).

These classes all belong to the namespace with the same name as the grammar’s goal

symbol.

3.5 Coco/R frame files

Coco/R requires frame files to function correctly. These frame files provide skeleton code

to be used by Coco/R during code generation. The standard frame files used by Coco/R

are the following;

• Parser.frame

• Scanner.frame

• Driver.frame

The frame files are used to specify additional code to be included into the generated

scanner, parser and driver files and are thus useful for implementing extensions to Co-

co/R. Support classes required by extensions to the parser generated by Coco/R may be

included in the Parser.frame file, simplifying implementation and increasing portability.
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Visualisation

Visualisation, as defined by the Oxford dictionary, is “the power or process of forming a

mental picture or vision of something not actually present to the sight”1. Visualisation

is seen as a cognitive activity as it is occurs in the mind, resulting in a mental model,

which allows insight and understanding to be gained [34]. Other terms often associated

with visualisation are program visualisation and algorithm visualisation [6]. A difference

exists between program visualisation and algorithm visualisation. Program visualisation

refers to the various techniques used to enhance the understanding of computer programs,

while algorithm visualisation is defined as the process whereby actual implemented code

is visualised [6]. Software visualisation encompasses both program and algorithm visuali-

sation. Thus, software visualisation can be defined as “the use of the crafts of typography,

graphic design, animation and cinematography with modern human-computer interaction

technology to facilitate both the human understanding and effective use of computer soft-

ware” [6, p214]. Software visualisation (SV) is used to solve a wide range of problems

including algorithm animation and visual programming [19]. To be successful, the SV

needs to provide a natural and direct mapping from the visual metaphor to the source

code and back. Through graphically illustrating how algorithms function, visualisation

techniques, such as algorithm visualisation and algorithm animation, can greatly increase

understanding of algorithm function. Spence [34, p11] emphasises the value associated

with the ability to explore and interactively rearrange the visualised data, this being

particularly true when applied to visualisation as a teaching aid.

1The Oxford dictionary (2010). [Online].
Available:http://www.oxforddictionaries.com/definition/visualize?view=uk

23
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4.1 Visualisation as teaching aid

The modern classroom has changed and teaching techniques need to be adapted to these

changes. Algorithm visualisation and algorithm animation tools are freely available and

easy to use [4]. Unfortunately the use of visualisation technology in mainstream com-

puter science education has not yet caught on [10]. There have been numerous studies

on the use of visualisation as a teaching aid. Unfortunately these studies have yielded

mixed results. The use of algorithm animation in teaching usually receives good informal

reviews. However, formal studies have found little statistical evidence of the efficacy of

using visualisation as a teaching aid. Palmiter and Elkerton [26] compared the teaching

of computer tasks using animation techniques and text-only presentation. Their study

showed that the animation group was faster and enjoyed the lesson more. It was found

that the results were negated in the long-run, with the text-only group performing better

in the delayed test. A further study performed by Reed [31] indicated that the use of

visualisation should be combined with external lesson activities to be effective. One of

the main areas where software visualisation can be used to enhance the understanding

of computer programs and algorithm function is the field of computer science education.

Possible uses of SV in education include:

• helping illustrate algorithm operation in lectures,

• helping students learn the fundamental algorithms found in computer science, and

• helping instructors track down bugs in students programs.

The use of SV in the teaching of algorithms and programming to novice students is not a

new concept. One such general purpose system Karel, the Robot has been used to assist

students in studying Pascal [9]. Software visualisation aims to increase the understanding

of how programs work [6, 10, 19]. The investigation into SV effectiveness has revealed

ample evidence that visualisation can significantly reduce the effort required to compre-

hend a system [15]. In a study conducted by Bassil and Keller [15], participants rated

better comprehension as a benefit of SV systems. In the evaluation of SV systems used

in education, expressiveness is usually the focal point [10]. For a SV system to be effec-

tive as an education tool, it is important that the visual metaphor effectively expresses

the underlying data. The metaphor needs to provide an accurate representation of what

is being visualised; this will allow students to trust the metaphor and them aid in the

learning process [10, 19]. Cognitive Constructivist theory states that active learning is
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superior to passive learning. This theory can be applied to visualisation due to the cog-

nitive nature of visualisation as discussed by Spence [34]. Visualisation allows learners to

actively engage with the work by augmenting their view. This view is further enhanced

by Bower’s [7] statement “it is important that such simulations are manipulative in order

to actively involve the learner rather than... passively watch pre-programmed instruc-

tion”. The learning can be further enhanced by requiring learners to answer questions

about the visualisations. Thus, it can be said that software visualisation offers the advan-

tage of providing high student involvement and allowing for the development of intuitive

understanding of concepts in a visual manner [9]. However, the educational impact of vi-

sualisation is dependent on the enhancement of learning with visualisation and the usage

of visualisation in the classroom [21, 22]. It has been found that instructors are unwilling

to use visualisation in their classrooms [21]. As stated by Naps et al. [21] “the overall

educational impact of visualisation is and will be minimal until more instructors are in-

duced to integrate visualisation techniques in their classes”. In a 2002 study of SIGCSE

members [22], respondents listed time required to search for good examples and time it

takes to develop visualisations, among the main impediments to the implementation of

visualisation in their teaching. From this it is clear that these issues need to be addressed

in order for visualisations to become effective teaching aids.

4.2 Testing effectiveness

To determine whether the visualisation of ASTs and other elements of compiler generators

offer a benefit to students, studies have been performed. As reported by Hundhausen,

Douglas and Stasko [10], visualisations can be used in multiple scenarios. In their study

they state that the notion of effectiveness of a visualisation is derived from the scenario

in which it is used. Hundhausen, Douglas and Stasko identified a taxonomy of scenarios

within computer science education where visualisation can be used including: Lectures,

Assignments, Laboratories and Tests.

For our study we focused on the use of visualisation in laboratories and assignments. The

use of visualisation in laboratories have allowed students to interactively explore algo-

rithms [10]. Computer science students at Rhodes University are required to attend a

formal laboratory session for three hours every week. During these laboratory sessions

students are assisted in completing their assignments by the lecturer and tutors, compris-

ing senior computer science students. The students are required to complete additional

assignments in their own time for submission at the next practical session. This would
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provide an ideal situation for testing visualisation effectiveness. In their study of visual-

isation effectiveness Hundhausen, Douglas and Stasko identified four techniques used to

evaluate visualisation effectiveness. These are:

• Anecdotal techniques which provides author analysis of example usage of their vi-

sualisation system.

• Programmatic techniques where the actual programs used to produce visualisations

are evaluated. Programs are evaluated using different metrics, such as the number

of lines of code required to specify a visualisation.

• Analytic evaluation assesses the effectiveness of an interactive system. Users are

asked to evaluate the usability of the system and to identify any usability problems

the perceive.

• Empirical evaluation requires the collection of data on the students who use the

visualisation system.



Chapter 5

User interface design

A user interface aims to present content to a user in a visual manner. Furthermore, the

user interface provides mechanisms for user interaction with the content being presented.

These two features of the user interface, makes it an integral component when using

visualisation as a teaching aid. The usability of software is determined by the quality of

the user interface design. The user interface is of even more importance when it comes to

educational software. Learner orientation and feedback are two of the core issues when

designing the user interface [25]. It is essential that information is presented in a way

that is appropriate to the learning material. Furthermore, students need to be able to

navigate the software with ease and without needing to learn a whole new system before

being able to study the relevant learning material. Thus, being able to easily orientate

the user without the use of a help system is essential. Guidance can be accomplished

through implicit guidance, whereby the learning system guides the user through content

presentation. Another means of guidance is explicit guidance, whereby the user is guided

by instructions on how to use the content presented to them. Learning systems require

more implicit guidance, which allows the learning to focus on studying the domain content

as opposed to learning the system. Therefore, we can say that the main tasks demanded

of a learning system is content presentation and facilities for user interaction with the

content. This needs to be accomplished in an implicit manner, making the user feel at

ease with the system and assisting in the learning process.

When evaluating the user interface, we look at usability. The usability of a system can be

measured by the efficiency and effectiveness of the system, as well as the satisfaction of

the user [25]. Effectiveness is determined by how many of the overall goals of the system

are achieved. Efficiency can be measured by the amount of resources required in order

27
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to achieve the system goals. To evaluate usability we need to evaluate the look and feel

of the system. Further determinants of usability are access to tools and services as well

as communication and user support. The extent to which usability goals are met can be

measured by:

• Suitability for the task: how well the system supports the user in completing the

goals of the system.

• Self-descriptiveness: the system provides implicit guidance to the user. This allows

the user to determine what is required without being explicitly prompted by the

system.

• Conformity with user expectations: the user interface is consistent and relates well

to the problem domain.

• Error tolerance: the system is able to respond to errors in input and still produce

expected results with minimal correction required by the user

• Suitability for learning: the system assist the user in learning how to use the system

and creates greater user understanding of the problem domain.

As discussed earlier, a user interface aims to provide a visual representation of content

with which users can interact. This visual representation of content can be defined as in-

formation presentation, the look and feel can be represented by the following presentation

attributes [25]:

• clarity: the content is conveyed quickly and accurately;

• discrimination: information can be distinguished accurately;

• conciseness: only relevant information is displayed;

• consistency: information is displayed through a unique design and meets user ex-

pectations;

• detectability: the user is guided towards relevant information;

• legibility: information is presented in an easy to read manner;

• comprehensibility: the meaning of information is easy to interpret, unambiguous

and recognisable.
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5.1 Learning software user interface

The user interface used in learning software needs careful design and consideration. It

needs to meet standard interface demands [25], as well as taking into account specific user

demands and design considerations determined by the problem domain. When designing

a user interface for learning software, it can be assumed that the user is a novice user of the

software and that the user will not be a long term user of the software [25]. The nature of

learning software dictates that the software will only be used for a time period determined

by the time taken to grasp the required concepts of the problem domain. Due to this

time limit, it is essential that the user interface is easy to learn and use. A user should be

able to easily determine which aspects of the problem domain are covered by the learning

software, simply by navigating the user interface. This is known as implicit guidance. The

ability of learning software to accurately display content to users is limited by screen size.

To overcome the screen size limitation, the user interface needs to be designed to make

maximum usage of available screen space. The information presentation by the learning

software should clearly reflect the problem domain.

Providing feedback is key in learning environments [8], since it is essential that the user

interface provides clear, concise feedback to the learner. As discussed earlier, feedback

may be given implicitly or explicitly. In order to prevent interruption to a learner’s work

process, explicit feedback should be kept to a minimum [25].

5.2 Design and Implementation

Numerous factors were considered in designing the user interface for the Coco IDE. Since

the overall design of the system will greatly impact on the usability, and in turn the

usefulness, of the Coco IDE. Learners need to be comfortable working in the new environ-

ment. Furthermore, learners need to quickly learn how to use the system. As discussed

in Section 5.1, it is important to ensure that the user interface does not hinder user un-

derstanding of the underlying problem domain. The learning curve of the system needs

to be low, ensuring that students can quickly start working on the problem domain as

opposed to first needing to learn the new interface.

The basic design of the Coco IDE matches current software packages that the learners

are comfortable working with. To this aim, the Ribbon device from Microsoft Office is

incorporated into the Coco IDE. Learners use Microsoft Office or similar products on a
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regular basis and have become comfortable navigating their way around those systems.

Thus, by following a similar design, we could ensure that learners can get to grips with

the basic functionality of the system quickly. Important and frequently used actions are

available on the Ribbon bar, with large, prominent pictorial buttons, allowing for quick

and easy identification of their functionality. Buttons are disabled when their action is not

available in the current program state. By disabling the buttons we are able to provide

implicit guidance to the user.

Using a tabbed interface has the benefit of allowing more screen space to be available to

each panel without cluttering the interface. The left-hand side of the interface is dedicated

to user input. The grammar tab contains a large text area with syntax highlighting, where

the user can input and edit their Cocol grammar. The input tab allows for the editing of

sample grammars, which can be run and tested using the parser generated by Coco/R. The

right-hand side of the interface is used for visualisation. The compile info tab visualises

the output of the compile process. This includes syntax graphs as well as FIRST and

FOLLOW sets. The syntax tree tab contains the visualisation of the abstract syntax

trees produced when running the generated parser. An always visible feedback pane is

placed on the bottom left of the screen. The feedback pane allows for error and warning

messages to be displayed to the user in a well structured manner.

5.2.1 Syntax highlighting

Syntax highlighting has the advantage of making code easier to read. Careful text layout

can significantly increase readability [11]. Syntax highlighting can thus be combined

with text layout to make interaction with source code easier. By highlighting important

keywords and control symbols, users are made more aware of these symbol’s function.

Syntax highlighting also aids in the identification of errors; for example the user is able

to identify unclosed comment blocks easily. Furthermore, unmatched brackets and string

literals are clearly identifiable. The IDE attempts to use syntax highlighting to convey the

meaning of symbol usage in the grammar implicitly. Reserved keywords are highlighted

in blue, while user keywords are highlighted in light blue. This makes differentiation

between the two types of keywords easier for the user, which is especially true for new

users. By colouring the reserved keywords in a prominent colour, users are made aware

of their importance. Furthermore, users are able to identify missing grammar structures

as missing keywords are more noticeable. Comments are highlighted in light green, which

is a standard used in many editors that incorporate syntax highlighting. The use of this
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Figure 5.1: The CocoIDE
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convention helps new users easily identify the meaning of the highlighting as they are

used to seeing it in familiar software packages. String literals are highlighted in maroon,

which is another convention taken from widely used editors. Line numbering allows users

to identify the current line as well as simplifying error recovery. By using line numbers,

the user can quickly find the problem line as identified by Coco/R.

Figure 5.2: A user grammar with syntax highlighting

Syntax highlighting is performed in real time. The implementation of syntax highlight-

ing is done by creating a modified textbox as a new user control in C#. This modified

textbox contains methods for recognising reserved words and characters. To achieve this

goal, a modified version of the Coco/R scanner is used. This modified scanner, Syntax-

HighlightScanner, scans the user grammar currently in the textbox and classifies tokens

according to type. Recognised types are:
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• Keywords such as COMPILER, CHARACTERS, TOKENS, PRODUCTIONS and

END.

• Strings are used to identify string literals.

• Comments may be single or multi-line and are identified by in the same manner as

comments in Java and C#.

• Identifiers represent Terminals and NonTerminals.

• Operators are the standard meta-symbols defined by EBNF.

The class CocoLexer.cs parses the tokens recognised by the scanner. CocoLexer calls

the Scan() method from SyntaxHighlightScanner, which returns the current recognised

token. The token returned by the Scan() method is stored as a CodeToken object. The

CodeToken object, defined as a C# class (see Listing A.1) stores the TokenType and the

token’s start and end indices. Once the token has been transformed into a CodeToken

object, it is added to a token list. The updating of the token list triggers the textbox to

render the token’s text with the correct formatting. Due to the real-time parsing of the

user grammar, a possible extension would be to include real-time error checking. This

could be done in a similar manner to most modern IDE’s where unrecognised keywords

are underlined and unmatched brackets are highlighted. This extension could improve the

speed of debugging as users are made aware of errors in real-time as opposed to waiting

until the compile process has failed.

5.2.2 Syntax information

Syntax information is visualised at compile-time. The compile info tab contains compile-

time information such as a list of productions and the FIRST and FOLLOW sets. Also

included is a graphical representation of the grammar’s syntax graphs. During the com-

pilation process Coco/R produces syntax graphs, which can be visualised to provide the

user with a graphical representation of the EBNF rules [18]. The use of a visual graph al-

lows the user to see how productions will be processed during the parsing process. Unique

symbols are used to differentiate between Terminal and NonTerminal symbols. Symbols

are also used to identify control structures. Terminal symbols are represented by a yel-

low oval and labelled with a small T. The NonTerminals are drawn as a purple oval and

labelled with Nt. The colour differentiation between Terminal and NonTerminal symbols

facilitates quick identification. Control structures are drawn using a rectangle. These



5.2. DESIGN AND IMPLEMENTATION 34

control structures are also colour coded to aid their identification. The iteration structure

is coloured in green and labelled with Iter. The optional structure is coloured in light

blue and labelled Opt. Finally alternative options are represented with a red rectangle

and labelled as Alt. Further information is made available to the user by hovering over a

graph symbol with their mouse pointer. This additional information identifies the value

of the symbol as well as the line on which it occurs. The production given in Listing 5.1

is visualised in Figure 5.3.

Listing 5.1: EBNF description of the Factor production in Parva

Factor = Des ignator [ ”(” Arguments ”)” ]

| Constant

| ”new” BasicType ” [” Express ion ” ]”

| ” !” Factor

| ”(” Express ion ” ) ” .

Figure 5.3: Syntax information visualised by the CocoIDE for Factor production
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Parsing of the Cocol grammar results in the generation of FIRST and FOLLOW sets for

each production. Coco/R uses these FIRST and FOLLOW sets to determine whether

LL(1) conditions are violated [36]. In the original Coco/R implementation students are

required to execute Coco/R with the -t flag set to ensure that the FIRST and FOLLOW

sets are printed to file, where they can be studied. With the Coco IDE, these FIRST and

FOLLOW sets are automatically displayed, along with the associated production and the

correct syntax graph. This allows students to view all the related information in one

specific location and to comprehend the significance of the FIRST and FOLLOW sets

within the grammar. By providing the syntax graph on the same tab as the FIRST and

FOLLOW sets, students are able to observe how the contents of the FIRST and FOLLOW

sets determine the parsing of the associated production.

5.2.3 Abstract syntax trees

Abstract syntax tree construction takes place during compile time (see Section 2.3). Upon

a successful compilation Coco/R produces a recursive descent parser. This parser is

capable of constructing a generic AST for user supplied input. Users can choose to test

their newly generated parser against sample input by selecting the Run command from

the menu-bar. The user will be prompted to supply sample input to be used, if none has

been defined under the input tab.The user supplied input is then parsed by the parser.

During this parsing phase the AST is constructed. The Coco/R IDE uses reflection to

retrieve the AST object upon successful execution of the Run command (see Section 6.5).

The object code for the AST is visualised using the BinaryTreeImage class. This class

walks the AST and draws each node as it is visited. The visited nodes are represented as

TreeNodeControl objects. The TreeNodeControl object has pointers to the left and right

child nodes of the node. Further, it has pointers to both the left and right connector

lines which are used to link the parent node to its children. The TreeNodeControl is

represented using a class structure (see Listing A.2).

To construct the visual tree, the BinaryTreeImage class first walks the entire tree. This is

done to determine the depth of each branch of the tree, which in turn makes it possible to

determine how wide each branch will extend. Walking twice, once to determine tree size

and the second time to draw the tree, decreases performance slightly but has the benefit

of preventing tree branches overlapping each other when the display is created. The tree

nodes are drawn by the recursive method DrawNode. Within the DrawNode method (see

Listing A.3), each node visited is added to the Canvas object as a TreeNodeControl. The
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Figure 5.4: The abstract syntax tree resulting from running the user grammar
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benefit of declaring each node as a TreeNodeControl object is that each node is responsible

for itself and thus complies with the principles of object orientated programming. When

a tree branch is collapsed, each node is responsible for hiding itself and for informing its

child nodes that they need to collapse themselves. This is aided by the recursive nature

of the binary tree structure used to represent the AST.

As evident in Figure 5.4, large syntax trees may occupy the whole screen, reducing the

user’s ability to navigate and view the complete tree. This is a common problem associated

with visualisation, namely how to represent large amounts of data on a small screen.

Spence [34] discusses multiple solutions to the presentation problem, including scrolling

and the use of a context map. These concepts have been included in our implementation

of the AST visualisation. These concepts aid the user in viewing as much of the tree as

possible and assist in the navigation of large trees. The first mechanism used is an expand

feature, which hides the input and feedback panes. The tree canvas is then expanded to

occupy the entire screen, as seen in Figure 5.5.

Figure 5.5: The abstract syntax tree view expanded to fill the screen



5.2. DESIGN AND IMPLEMENTATION 38

A context map provides a less detailed display of the visualised data and identifies the

part of the visualised data currently visible. The context map has been implemented

in the form of a navigation pane, as shown in Figure 5.6. The navigation pane consists

of a miniature representation of the AST along with a red rectangle which indicates the

current area of focus as related to the main tree canvas. The user is able to drag the mouse

along the navigation window and refocus the main tree canvas on a point of interest. The

user is also able to collapse the branches of the tree. Collapsing branches of the tree

results in them being hidden from the user. The user can select to collapse or uncollapse

a branch by clicking on the corresponding parent node’s arrow. Users are also provided

with the ability to print the AST. The print routine produces a simplified visualisation of

the AST. This simplified version relates closely to AST representations students are used

to encountering in academic text.

Figure 5.6: Navigation component of the Abstract Syntax Tree visualisation

A further feature introduced by the IDE is the ability to overlay two ASTs (Figure 5.7).

The user may produce an AST and choose the overlay checkbox. When overlay is selected,

the next AST generated will be drawn in a light shade of blue and inserted as a layer

on top of the existing AST. The user is then able to manipulate the transparency of this

overlay AST and compare the difference between the two ASTs. This feature is useful to

a user who wishes to see how changes made to the grammar affects the AST constructed.

The user is also able to see how changing the input parsed by the compiler may result

in an AST with the same structure as the original AST, albeit with different values for

each node. This should make understanding the parsing process easier for new users who

can now visually see how changing the grammar alters the manner in which the input is

parsed.
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Figure 5.7: Overlay enabled to show the difference between two ASTs

5.2.4 User feedback

As highlighted by Boyle [8], the provision of user feedback is essential. When designing

the user interface for Coco/R IDE a key focus was the design of an effective user feedback

system. As highlighted in Section 5.1 feedback can be provided implicitly or explicitly.

Due to Coco/R being used in an educational environment it is essential that feedback

is provided in a manner that is both informative and unobtrusive. For this we created

a static feedback section that is always visible and displays error messages in a uniform

manner. Elder [11] identifies some best practices for error reporting. He states that

the error needs to be described as clearly as possible. Clearly describing errors allows

users to understand why an error has occurred, while descriptive error reporting aids in

the teaching process. Learners are able to gain greater understanding of the compiler

operation by studying error messages. Elder further states that the position an error

occurs at needs to be identified as exactly as possible. By indicating the exact position at

which an error occurred, users are able to more easily find and correct the error. Providing

exact error positions ensures that users are spared the time and effort of trying to locate

where an error has occurred. Error location information should be listed by line number

and if possible a character count [11].
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Figure 5.8: Feedback to the user

As seen in Figure 5.8, the feedback section is capable of displaying feedback in the form of

Errors and Warnings. Errors are deemed to be critical and will prevent the user grammar

from compiling. Language specific, compile time errors, such as errors in semantic actions,

are identified by the C# compiler and will be displayed to the user in the feedback section.

Furthermore, errors can also occur within a grammar that has been compiled successfully,

and these are known as run-time errors. These errors will be handled at run-time and

displayed to the user in the error panel. By grouping grammatical, compile time and

runtime errors into one central area, users are saved the effort of trying to locate where

an error has occurred. Warnings are less critical and do not prevent the grammar from

compiling correctly. Users are prompted with a dialogue box if they attempt to run a

grammar that produced warnings during compile-time. The user is then able to either,

ignore these warnings and attempt to run the grammar, or halt the execution of the

grammar and correct the warnings. The error pane layout allows for error information to

be displayed in an easy to understand form. The errors are listed in a tabular structure

with columns Description, File, Line and Column. This layout allows learners to first

read what the problem is, and then identify where the error occurs. The File column is

used to identify errors that occur at run-time, either in the generated scanner or parser

files. The line and column entries allow the user to locate errors more quickly and without

needing to search through every line of the grammar or produced source code to correct

the error.



Chapter 6

Design and Implementation

6.1 Introduction

This chapter details the changes made to the original Coco/R compiler generator. We

discuss the addition of new data structures and code generation routines. The AST

generation routines inserted into the code generated by Coco/R aim not to alter the func-

tionality of the produced parser. The inclusion of ASTs in the new version of Coco/R

requires a data structure to store and manipulate the AST nodes, and is discussed in Sec-

tion 6.3. Coco/R’s code generation routines are modified in multiple locations, including

the GenProductions and GenCode methods found in the ParserGen class. Output from

the original version of Coco/R is compared to the output produced after the modifications

have been implemented. By comparing the output, we are able to determine whether the

parser functionality has been altered. In Section 6.5 we discuss the methods required to

retrieve the generated AST at run-time through the use of reflection.

6.2 Incorporating AST’s

Abstract syntax tree generation occurs during the parsing phase [18]. Since Coco/R

is used to automatically generate a recursive descent compiler, it is necessary to alter

the Coco/R compiler construction routines to insert AST generation routines into the

generated code. The original implementation of Coco/R parses the following production

and produces the code shown in Listing 6.1.

Expression = Term {“ + ”Term|“− ”Term}.

41
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Listing 6.1: Code generated for simple EBNF expression 6.2

s t a t i c void Express ion ( )

{
Term ( ) ;

whi l e ( l a . kind == plus Sym | | l a . kind == minus Sym )

{
i f ( l a . kind == plus Sym )

{
Get ( ) ;

Term ( ) ;

} e l s e

{
Get ( ) ;

Term ( ) ;

}
}

}

By attributing the grammar it is possible to insert AST generation statements into the

generated parser. However, this approach requires users to have a firm understanding of

how the parsing process works. It further requires users to know where AST nodes should

be added in order to accurately reflect the syntax of the grammar. By automating the

process of attributing the code to include AST generation statements, it is possible to

create a layer of abstraction between the user and the tree building process. This should

assist new users in gaining a greater understanding of how the AST relates to the parsing

of a grammar.

The code generation routines in Coco/R are responsible for creating code that is able

to recognise and parse any input that can be described by the user’s grammar. This

means that code generation needs to be dynamic and unconstrained by what the grammar

describes. To achieve this aim, our AST creation code must also be sufficiently generic.

ParserGen.cs, the class responsible for the parser construction in Coco/R, defines three

methods, which are of particular interest when determining where and how AST code

generation should take place. These methods are:

• GenProductions : This method is responsible for the definition of methods that relate

to the NonTerminals defined in the parser specification section of the grammar.
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GenProductions generates code to create the method definition, along with the

return type and any parameters.

• GenCode: This method generates the actual code found within the method created

by GenProductions. Tokens defined within the production declaration are identified

according to their type and determines the that gets generated. This method is

used to generate the actual AST creation code.

• CopyFramePart : This method is required to copy predefined code from the Parser.frame

file and insert it directly into the newly created parser. This includes pre-created

error handling routines and code to interact with the scanner. This method will

not be altered directly but is essential in assuring that all supporting classes are

available to our AST creation code.

6.3 Abstract syntax tree representation

The AST generated during the parsing process needs to be represented as a data structure.

As discussed earlier (Section 2.3), the AST can be viewed as a collection of related nodes.

Every node in the tree should be connected to another node. This relational structure

enables a path through the tree, from the root node to any other node, to be found. Hand

coded compilers offer the benefit of allowing the creation of node structures to represent

each token type. However, Coco/R generated compilers cannot be afforded this level of

fine grained design. As Coco/R has no knowledge of the semantic meaning of tokens when

they are processed, it is not possible to generate a unique node structure for each token

type as they are encountered. Thus, it should be realised that the data structure needs

to be sufficiently general to cover all the different kinds of nodes. A node in the AST can

be generalised to contain three fields:

• Type field, which is used to define the literal value associated with that node.

• Left-child and Right-child pointers, which provide a link to the left and right sub-

trees of that node, respectively.

• Production field that represents the production or method which the node mirrors.

This data structure can be constructed in C# using an abstract class structure. As can

be seen in Listing 6.2, the general node defines the required fields. These fields can be

overwritten by the implementation of the actual AST node as seen in Listing 6.3.
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Listing 6.2: Definition of the AST node interface

pub l i c ab s t r a c t c l a s s INode

{
pub l i c ab s t r a c t s t r i n g product ion { get ; s e t ; }
pub l i c ab s t r a c t s t r i n g type { get ; s e t ; }
pub l i c ab s t r a c t INode l e f t { get ; s e t ; }
pub l i c ab s t r a c t INode r i g h t { get ; s e t ; }

}

The AST node, as defined in Listing 6.3, defines two constructors. The first constructor

is used to construct a node with no sub-trees. This constructor is normally used when the

node is the final leaf node of a branch. The second constructor is more general and will be

used in most cases. This constructor creates a tree node with given name, production and

sub-trees. Both constructors result in a tree node object being returned, which can be

used directly as the parameter of another TreeNode object’s constructor. The TreeNode

class is used by every parser generated using Coco/R. For this reason it is defined within

the default Parser.frame file. This ensures that the TreeNode class will automatically be

added to the generated parser. A further modification is to ensure that the abstract class

INode is always copied to the same namespace as the newly generated parser.

Listing 6.3: Code listing TreeNode class used to represent an AST node

pub l i c c l a s s TreeNode : INode

{
p r i v a t e s t r i n g product ion ; // a s s o c i a t e d product ion /method

p r i v a t e s t r i n g type ; // l i t e r a l va lue

p r i v a t e INode l e f t ; // l e f t sub−t r e e

p r i v a t e INode r i g h t ; // r i g h t sub−t r e e

// con s t ruc to r f o r TreeNode with no sub−t r e e s

pub l i c TreeNode ( s t r i n g t , s t r i n g p)

{
product ion = p ;

type = t ;

l e f t = n u l l ;

r i g h t = n u l l ;

}
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//methods to o v e r r i d e the ab s t r a c t c l a s s

pub l i c o v e r r i d e s t r i n g product ion

{
get { r e turn product ion ; }
s e t { product ion = value ; }

}

pub l i c o v e r r i d e s t r i n g type

{
get { r e turn type ; }
s e t { type = value ; }

}

pub l i c o v e r r i d e INode l e f t

{
get { r e turn l e f t ; }
s e t { l e f t = value ; }

}

pub l i c o v e r r i d e INode r i g h t

{
get { r e turn r i g h t ; }
s e t { r i g h t = value ; }

}

// con s t ruc to r f o r t r e e node with l e f t and r i g h t sub−t r e e s

pub l i c TreeNode ( s t r i n g p , s t r i n g t , INode l , INode r )

{
product ion = p ; type = t ; l e f t = l ; r i g h t = r ;

}

//empty cons t ruc to r

pub l i c TreeNode (){}
}
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The translation of parser operations into AST nodes is relatively straightforward, but nu-

merous cases need to be considered. A major hindrance is the lack of semantic knowledge.

Coco/R generates a recursive descent parser without any knowledge of the semantics. Our

AST generation needs to occur in a similar manner, however an AST normally assumes

some form of semantic knowledge. This can be problematic in cases where more than

two sub-trees exists. Due to Coco/R not being able to judge the meaning of tokens and

productions, there is no way of knowing that a multi-branch node needs to be created as

opposed to a binomial node. This can also be attributed to the limitation of LL(1) gram-

mars, where they are restricted to a one token look-ahead. An example of this problem

is the if-then-else production. By including the if-then-else production, LL(1) conditions

are broken as the production becomes ambiguous due to the optional else, this is known

as the dangling else problem [18, p120]. The if-then-else production has three possible

sub-trees as demonstrated in Figure 6.1. For our implementation we settled on imple-

menting only binomial nodes, which would result in the if-then-else production not being

represented correctly, as seen in Figure 6.2. The extended version of Parva [37], which

allows for the declaration of functions, will results in incorrect ASTs being generated.

This is because each function needs to be added as a sub-tree to the root node, the Parva

class node. As only binomial trees are supported, this will result in incorrect ASTs being

produced and sub-trees being overwritten, this is discussed in greater detail in Section

7.2. Restricting the implementation to the use of only binomial nodes has simplified the

implementation of automatic AST creation, but results in only strictly LL(1) grammars

being correctly visualised.

Figure 6.1: The correct syntax tree for if-then-else
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Figure 6.2: The syntax tree produced for the if-then-else production

6.4 Code generation

Code generation for the parser occurs within the ParserGen class. Once a grammar is

parsed correctly, Coco/R calls the WriteParser method from ParserGen. The WriteParser

method first validates that the Parser.frame file exists, and then proceeds to copy the

different frame parts to the new parser file. During the copying of the frame file, our AST

TreeNode class is added to the parser file. Another addition to the frame file is the inclu-

sion of the GetTree method, which is used to return the AST generated during parsing.

This provides a common interface for retrieving the AST using reflection as discussed in

Section 6.5. The next step in parser generation is to call the GenProductions method.

6.4.1 Modifications to GenProductions

The method for generating productions, GenProductions, is altered in multiple ways.

The standard version of GenProductions produces a method declaration similar to the

example in Listing 6.4. Any attributes defined in the grammar are automatically added

to the method declaration as parameters.

Listing 6.4: Method declaration as generated by unmodified GenProductions method

s t a t i c void Factor ( )

{
. . .

}

As discussed earlier the generated parser is a recursive descent parser. For this reason tree

nodes need to be passed back to the calling method after they have been created. For this

we used the out keyword to pass the new tree node up the call stack. The GenProductions
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method had to be modified to include this behaviour in our newly generated parser. Using

the C# version of Ccoo/R, which allows multiple values to be returned by a method,

ensures that the expected behaviour of a generated production is not altered. Code is

included to perform logic checks, the first of which examines whether the production

being generated is our so called Goal symbol. If the production to be generated is the

Goal symbol, no output parameter is added to the parameter list. This is because the

Goal production defines the root node, which is at the top of the call stack and no

calling method exists for it. The second modification is to include code to generate the

variables which will be used during node creation within the production. This includes

the declaration of the left and right sub-tree nodes and variables to contain the node type

and terminal value. The out parameter TreeNode l needs to be declared as null to satisfy

the C# compiler’s requirement that all out parameters are declared before use.

Listing 6.5: Method declaration as generated by modified GenProductions method

s t a t i c void Factor ( out TreeNode l )

{
l = n u l l ; // l e f t sub−t r e e

TreeNode r = n u l l ; // r i g h t sub−t r e e

s t r i n g symVal = l a . va l ; // l i t e r a l va lue o f the cur rent token

s t r i n g prodVal = ” Factor ” ;// node type

. . .

}

Once the initial production declaration is complete, the GenProductions method calls the

GenCode method to generate the code within the method.

6.4.2 Modifications to GenCode

The GenCode method uses the token type to determine what code should be generated.

Code generation techniques are different for each token type and thus it was important

to modify the correct routine to achieve AST generation. An AST node needs to be

created when a terminal symbol is encountered. NonTerminal symbols identify calls to

other productions and these production calls needed to be modified to include TreeNode

passing.
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Listing 6.6: Code generated using original GenCode

s t a t i c void Factor ( )

{
i f ( l a . kind == decNumber Sym ) {

Get ( ) ;

} e l s e i f ( l a . kind == hexNumber Sym ) {
Get ( ) ;

} e l s e i f ( l a . kind == lparen Sym ) {
Get ( ) ;

Express ion ( ) ;

Expect ( rparen Sym ) ;

} e l s e { SynErr ( 1 1 ) ;}
}

Listing 6.7: Code generated with modified GenCode method

s t a t i c void Factor ( out TreeNode l )

{
l = n u l l ;

TreeNode r = n u l l ;

s t r i n g symVal = l a . va l ;

s t r i n g prodVal = ” Factor ” ;

i f ( l a . kind == decNumber Sym ) {
l = new TreeNode ( prodVal , l a . val , l , r ) ;

Get ( ) ;

} e l s e i f ( l a . kind == hexNumber Sym ) {
l = new TreeNode ( prodVal , l a . val , l , r ) ;

Get ( ) ;

} e l s e i f ( l a . kind == lparen Sym ) {
Get ( ) ;

Express ion ( out l ) ;

Expect ( rparen Sym ) ;

} e l s e { SynErr ( 1 1 ) ; }
}
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As seen in Listing 6.7, the variable prodVal is always initialised as a string literal with a

value that is the same as the current production name. The listing further demonstrates

how a new TreeNode is constructed and returned as the out parameter l. Other than

the insertion of AST node construction code, the original output of Coco/R remains

unchanged. This ensures that the core functionality of Coco/R remains the same and

functions as expected.

Within GenCode, two main sections of code generation logic have been used. The Gen-

Code method contains a switch block used to determine what code should be generated

according to the current token being parsed. The two main cases used for code gener-

ation are for Terminals and NonTerminals. The NonTerminal case is used to generate

code that is used to call the next production in the recursive descent parser; code gener-

ated for a NonTerminal token can be seen in line 8 of Listing 6.6. Line 3 of Listing 6.6

demonstrates code generated for a Terminal token.

Determining which code routines are generated requires logic rules to be applied to the

current token. The first piece of logic to evaluate is to determine if the child node should

be added as a left or right sub-tree. We determined that a child node should be added to

the left sub-tree if it is the first child node to be added. Once the first child node has been

added to the tree, all subsequent child nodes should be added to the right sub-tree. A

boolean value outL is used as a flag to signal whether code to insert a left child node has

already been generated. However, conditions exist where code to insert a left child node

needs to be generated more than once. This occurs in Listing 6.8, where the left child

node can be added in any one of the conditional statements. Thus the GenCode routine

needs to be aware that the first occurrence of outL is within a conditional statement and

that all the alternative conditions can possibly be where the first child node is generated.

The code generation routine should also be aware of the possibility that the first left

child node could be generated after a conditional. This may occur in cases where the

production starts with an optional NonTerminal such as:

Expression = [Term] Factor.

To ensure that the parser generator is aware of child node creation in alternative state-

ments, the generation routine for alternative tokens has been modified. The alternative

routine needs to be aware of nested alternative statements to ensure child nodes are

created correctly.

The code generation for AST nodes representing Terminal symbols is more straightfor-

ward. When a Terminal symbol is encountered, code to generate a new TreeNode is
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inserted. Exceptions do exist; a node should not be generated if the next token is a pro-

duction. This logic prevents meta-symbols from being added to the AST. An AST node

should be constructed if the Terminal symbol encountered is present within the TOKENS

section of the grammar.

Listing 6.8: Dealing with alternatives and conditional statements

s t a t i c void Assignment ( out TreeNode l )

{
l = n u l l ;

TreeNode r = n u l l ;

s t r i n g symVal = l a . va l ;

s t r i n g prodVal = ”Assignment ” ;

i f ( l a . kind == i d e n t i f i e r S y m ) {
Designator ( out l ) ;

i f ( l a . kind == equal Sym ) {
symVal = l a . va l ;

Get ( ) ;

Express ion ( out r ) ;

l = new TreeNode ( prodVal , symVal , l , r ) ;

} e l s e i f ( l a . kind == plusplus Sym ) {
l = new TreeNode ( prodVal , l a . val , l , r ) ;

Get ( ) ;

} e l s e i f ( l a . kind == minusminus Sym ) {
l = new TreeNode ( prodVal , l a . val , l , r ) ;

Get ( ) ;

} e l s e {
SynErr ( 5 4 ) ;

}
} e l s e i f ( l a . kind == plusplus Sym ) {

Get ( ) ;

Des ignator ( out l ) ;

} e l s e i f ( l a . kind == minusminus Sym ) {
Get ( ) ;

Des ignator ( out l ) ;

} e l s e { SynErr ( 5 5 ) ; }
}
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6.5 Retrieving the Tree

The abstract syntax tree is created during compile time. Our generated parser is used to

parse user input and return the result as well as the AST. The source code generated by

Coco/R is not yet runnable and needs to be compiled; for this we use the CodeGenera-

tor class, which extends the CodeDomProvider. To execute our source code we call the

Run method. The Run method first compiles our source code by executing the Compile

method. Within this compile method we use the CompileAssemblyFromSource method

found within the CodeDomProvider class. If our compilation is unsuccessful the Com-

pilerErrorCollection is returned, which in turn is displayed to the user in the feedback

section of the IDE. A successful compilation results in the creation of an executable .dll

file, which can be executed using Reflection1 and the Invoke method.

Firstly the Scanner class is initialised by calling the Init method, as seen in lines 7-9 of

Listing 6.9. The next step is invoking the Parse method, which parses the entire input

file and returns the AST if there are no errors. The AST is represented as an object when

retrieved using reflection, but we know the structure of each TreeNode as defined by our

abstract INode class. The AST is parsed using the ConvertToNode method, which uses

pre-order traversal to walk the AST and convert each node object into a TreeNode. The

converted tree is passed into the static BinaryTreeImage class, which visualises the tree as

discussed in Section 5.2.3. The visualised tree is added to the visualisation tab enabling

the user to interact with it.

1Reflection is the process of inspecting metadata and compiled code at runtime [1].
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Listing 6.9: Using reflection to retrieve the AST

p r i v a t e s t a t i c void Run( Compi lerResults compile , s t r i n g nameSpace ,

s t r i n g testGrammer , bool ove r l ay )

{
Module module = compile . CompiledAssembly . GetModules ( ) [ 0 ] ;

Type mt = n u l l ;

MethodInfo methInfo = n u l l ;

i f ( module != n u l l )

mt = module . GetType ( nameSpace + ” . Scanner ” ) ;

i f (mt != n u l l )

methInfo = mt . GetMethod (” I n i t ” , new [ ] { typeo f ( s t r i n g ) } ) ;

i f ( methInfo != n u l l ){
methInfo . Invoke ( nu l l , new ob j e c t [ ] {testGrammer } ) ;

mt = module . GetType ( nameSpace + ” . Parser ” ) ;

methInfo = mt . GetMethod (” Parse ” ) ;

methInfo . Invoke ( nu l l , n u l l ) ;

methInfo = mt . GetMethod (” GetTree ” ) ;

ob j e c t t t = methInfo . Invoke ( nu l l , n u l l ) ;

BinaryTreeImage . Clear ( ) ;

ob j e c t ttmp = ConvertToNode ( t t ) ;

BinaryTreeImage . CreateBinaryTreeImage ( ( TreeNode ) ttmp , ove r l ay ) ;

}
}



Chapter 7

Results and Discussion

7.1 Testing

7.1.1 AST generation

We tested the new version of Coco/R to ensure that the core functionality had not been

altered. The output from our testing was compared to the output produced by standard

Coco/R. Apart from the introduction of AST generation code, the output produced was

identical to the original Coco/R output. The next step was to evaluate our tree con-

struction mechanisms. For this we used grammars produced in practicals and tutorials

from undergraduate classes in previous years, as well as examples taken from Compiling

with C# and JAVA [37]. ASTs were hand constructed to compare with our compiler

generated ASTs. The test aimed to identify areas where the produced ASTs did not cor-

rectly represent the grammar’s syntax. Furthermore, the tests ensured that left and right

associativity was correctly visualised. The following input was tested using the parser

generated from the grammar described in Listing A.4:

(a+b)-(c+(d+b))*(a/c) =

The resulting AST was visualised using the Coco IDE. From Figure 7.1 it can be seen

that the generated parser has correctly constructed the AST.

Further tests were performed using more complex grammars. Terry developed a LL(1)

grammar to describe a simple teaching language known as Parva [37], and this grammar

54
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Figure 7.1: AST produced for the expression (a+b)-(c+(d+b))*(a/c) =

is described in Listing A.5. Using this description we tested the accuracy of the AST

generation routine. The basic Parva program seen in Listing 7.1 results in a correct AST

begin generated (see Figure 7.2). It should be noted that the simple Parva program is

syntactically correct, but is not semantically correct as the variables p and q are never

declared. However, the parser produced by Coco/R will parse the simple program cor-

rectly as it has no semantic awareness. This demonstrates that the student is responsible

for implementing semantic checks in the form of semantic actions.
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Listing 7.1: Simple Parva program

void Main ( )

{
whi le ( t rue )

{
i f (p>q )

{
p = 1 + 2 ;

}
}

Once we introduced more complex productions such as conditional statements, the accu-

racy of the AST was decreased. It was found that new tree branches were overwriting

existing branches as opposed to being appended to the existing tree. We were also able

to confirm that nodes with multiple sub-trees result in inaccurate ASTs being generated,

even though the grammar parses correctly.

Figure 7.2: AST produced for a simple Parva program (Listing 7.1)
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7.1.2 Visualisation effectiveness

A study was planned to evaluate the usability of the Coco/R IDE, and to measure the

effectiveness of visualisation as a teaching aid. The study would be aimed at third year

computer science students and would be completed during the practical sessions. Students

would be asked to complete a pre-practical test, which would measure their understanding

of the parsing routine and the syntactic relation to the grammar. Once the test was

completed, students would randomly be divided into two groups. During the practical

session the first group would complete the practical as normal, while the second group

would use the Coco/R IDE. After the practical session, all the students would be required

to complete another test. The results from the pre-practical test would be compared to

the results of the post-practical test. The difference between the pre-practical and post-

practical results for the two groups would then be compared to determine if there was

any noticeable improvement in the group that used the Coco/R IDE as compared to the

group who completed the standard practical. A final test would be given to the students

the following week to determine if there was a long term benefit in using visualisation as

a learning aid. The group using the Coco/R IDE would also complete a questionnaire

where they rate the ease of use and effectiveness of the IDE. The study was not completed

for reasons listed in the discussion to follow (Section 7.2.2).

7.2 Discussion

7.2.1 AST generation

AST generation for simple grammars such as the Calculator grammar in Listing A.4 pro-

duced syntactically correct trees. Both left and right recursive productions are correctly

visualised and the user can clearly see this when looking at the visualisation. This holds

true for all grammars that are strictly LL(1) and which require no additional decision

making. However grammars that contain productions that result in nodes with multiple

sub-trees are not accurately represented by our AST routines. This is due to the binary

nature of our TreeNode implementation. Coco/R has no advanced knowledge of the pos-

sibility of multiple branch nodes being present in the AST. Furthermore, during AST

code generation, Coco/R is not able to determine whether a multiple branch child node is

required instead of the standard binary node. This can be attributed to the fact that no

semantic knowledge exists during the parsing of the Cocol grammar and code generation
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of our recursive descent compiler. A possible solution to this would be to require the user

to insert additional information into the grammar, in the form of semantic actions, which

can be used by the code generation routines to identify multi-branch nodes. However this

solution defeats the aims of our AST visualisation code, which aims to maintain a layer

of abstraction between the user and AST construction.

7.2.2 Visualisation effectiveness

The study was not completed due to the complications encountered when a grammar,

which is not perfectly LL(1), was parsed. It was found that trees generated using incorrect

grammars tended to be confusing and hard to interpret. Students would be lead to

believe that their work was incorrect, even when there were only minor problems with

the grammar they had produced. This confirms results from studies discussed in Section

4, where it was observed that a commonly stated problem with visualisation is the time

taken to find correct and accurate examples. To accurately evaluate the effectiveness of

visualisation, students would have to be provided with working solutions that produce

correct ASTs. This would mean altering the intended purpose of the Coco/R IDE, from

being used as a learning aid, to be used as a demonstration tool instead.
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Conclusion

The primary aims of this project were to produce an Integrated Development Environ-

ment for Coco/R and to visualise the Abstract Syntax Trees produced during the parsing

phase. Through these improvements to Coco/R the project aimed to increase the user

understanding of recursive descent parser operation.

The design of the Coco/R IDE required careful consideration of the problem domain and

needed to take into account the fact that the IDE would be used in a teaching environment.

Consequently, the IDE needed to be easy to navigate and learn, ensuring that students

could remain focused on the problem domain. Students desire a user interface that has a

low learning curve and relates directly to the problem domain. The user interface design

was kept unobtrusive and provides feedback implicitly where possible. Through implicit

feedback users can gain greater understanding of the material without first having to

understand the meaning of the feedback. The visualisations were designed to relate closely

to the underlying structure of the data structures produced during parsing. Visualisations

are displayed next to the user grammar, allowing the user to identify the association

between the visualised data and the grammar.

The creation of ASTs occurs automatically, without the need of user input. By providing

a layer of abstraction between the user and AST visualisation, users are able to use the

system without any prior knowledge of AST creation being assumed. This feature allows

for visualisation to be used as a teaching aid and not as a by-product of the teaching

process. The automatic insertion of AST construction code into the parser produced by

Coco/R required changes to be made to the original implementation of Coco/R. These

changes were made in a manner that did not affect the operation of the parser produced,

which will function identically to a parser produced using the original Coco/R.

59
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Providing an IDE with a highly intuitive and usable interface along with visual feedback,

users are able to gain a greater understanding of the compilation process. Visualised data

structures present information to the user in an easy to understand manner and relate

directly to the underlying data structures produced during compilation. The visualisa-

tion of ASTs help users identify the difference between syntax and semantics, as well as

allowing users to visualise how a grammar is syntactically.

8.1 Possible extensions

The first extension to be considered is the introduction of nodes that can have multiple

sub-trees. This will require Coco/R to have some semantic knowledge, which can be

implemented in a similar manner to the current semantic action implementation. Users

will be able to annotate the grammar to indicate nodes that have more than one sub-tree.

However, this solution will remove some of the abstraction obtained through automatic

AST code generation and will require greater user understanding of the parsing process

and AST construction.

Another proposed extension is improving the visualisation of the parsing process through

the introduction of step-by-step visualisation, which visualises each phase of the parsing

process. Users should be able to control the speed of the visualisation. This would allow

students to gain an even greater understanding of the actions of the parser and scanner.
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Appendix A

Code Listings

Listing A.1: Definition of CodeToken object

pub l i c c l a s s CodeToken

{
pub l i c CodeTokenType TokenType

{
get ; s e t ;

}

pub l i c i n t Sta r t

{
get ; s e t ;

}

pub l i c i n t End

{
get ; s e t ;

}

pub l i c i n t Length

{
get { r e turn End − Star t ; }

}
}
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Listing A.2: Code listing for TreeNodeControl.cs

pub l i c p a r t i a l c l a s s TreeNodeControl : UserControl

{
pub l i c i n t depth ; // keep track o f depth o f nodes to show

pub l i c TreeNodeControl l e f t ; // l e f t c h i l d node

pub l i c TreeNodeControl r i g h t ; // r i g h t c h i l d node

// connector between parent and l e f t node

pub l i c ConnectorLine l e f t L i n e = new ConnectorLine ( ) ;

// connector between parent and r i g h t node

pub l i c ConnectorLine r i gh tL in e = new ConnectorLine ( ) ;

// r e f e r e n c e to s e l f

pub l i c CocoIDE . BinaryTreeImage . ImageNode thisNode ;

pub l i c TreeNodeControl ( ) // con s t ruc to r

pub l i c void setOver lay ( ) // used compare two t r e e s

// event handler f o r user c o l l a p s i n g / expanding l e f t c h i l d t r e e

p r i v a t e void imageLeft MouseLeftButtonDown

( ob j e c t sender , MouseButtonEventArgs e )

// event handler f o r user c o l l a p s i n g / expanding r i g h t c h i l d t r e e

p r i v a t e void imageRight MouseLeftButtonDown

( ob j e c t sender , MouseButtonEventArgs e )

//expand l e f t / r i g h t c h i l d t r e e upto s e t depth

pub l i c void expand ( i n t endDepth )

// c o l l a p s e l e f t / r i g h t c h i l d t r e e

pub l i c void c o l l a p s e ( )

}
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Listing A.3: Code listing for DrawNode method in BinaryTreeImage.cs

protec ted s t a t i c Rectangle DrawNode( ImageNode node , bool i sRightChi ld ,

i n t depth , Rectangle parentBounds ,

out TreeNodeControl treeNodeControl ,

bool isOnlyChi ld , bool ove r l ay )

{
i n t x , y ;

treeNodeControl = new TreeNodeControl ( ) ;

i f ( node == n u l l ) r e turn new Rectangle ( ) ;

i n t o f f s e t = ( i sR ightCh i ld ) ?

node . LeftTreeWidth + NodeWidth + Dx

: −node . RightTreeWidth − NodeWidth − Dx;

x = ( isOnlyChi ld )? parentBounds .X: parentBounds .X + o f f s e t ;

y = depth ∗ (Dy + NodeHeight ) − HalfNodeHeight ;

Rectangle bounds = new Rectangle (x , y , NodeWidth , NodeWidth ) ;

treeNodeControl . l abe l Type . Content = node . Node . type ;

treeNodeControl . l abe l P roduc t i on . Content

= ”(”+node . Node . product ion +”)”;

treeNodeControl . depth = depth ;

treeNodeControl . thisNode = node ;

i f ( ove r l ay ) treeNodeControl . se tOver lay ( ) ;

canvas . Chi ldren . Add( treeNodeControl ) ;

Canvas . Se tLe f t ( treeNodeControl , x ) ;

Canvas . SetTop ( treeNodeControl , y ) ;

i f ( rootNode==n u l l )

{
rootNode = treeNodeControl ;

}
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i f ( node . Le f t != n u l l )

{
TreeNodeControl l e f t ;

Rectangle l e f tBounds = DrawNode( node . Left , f a l s e , depth + 1 ,

bounds , out l e f t ,

node . Right == nul l , ove r l ay ) ;

Line lh = new Line

{
StrokeThickness = 2 ,

Stroke = over lay ? Brushes . LightBlue : Brushes . Red ,

X1 = ( node . Right==n u l l )? bounds .X: l e f tBounds .X + HalfNodeWidth ,

X2 = bounds .X,

Y1 = bounds .Y + NodeHeight ,

Y2 = bounds .Y + NodeHeight

} ;

canvas . Chi ldren . Add( lh ) ;

treeNodeControl . l e f t = l e f t ;

treeNodeControl . l e f t L i n e . h o r i z o n t a l = lh ;

Line lv = new Line

{
StrokeThickness = 2 ,

Stroke = over lay ? Brushes . LightBlue : Brushes . Red ,

X1 = le f tBounds .X + HalfNodeWidth ,

X2 = le f tBounds .X + HalfNodeWidth ,

Y1 = bounds .Y + NodeHeight ,

Y2 = le f tBounds .Y

} ;

canvas . Chi ldren . Add( lv ) ;

treeNodeControl . l e f t L i n e . v e r t i c a l = lv ;

} e l s e

{
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treeNodeControl . imageLeft . V i s i b i l i t y = V i s i b i l i t y . Hidden ;

}

i f ( node . Right != n u l l )

{
TreeNodeControl r i g h t ;

Rectangle rightBounds = DrawNode( node . Right , true , depth + 1 ,

bounds , out r i ght ,

node . Le f t == nul l , ove r l ay ) ;

Line lh = new Line

{
StrokeThickness = 2 ,

Stroke = over lay ? Brushes . LightBlue : Brushes . Red ,

X1 = bounds .X + NodeWidth ,

X2 = node . Le f t==n u l l ? bounds .X: rightBounds .X + HalfNodeWidth ,

Y1 = bounds .Y + NodeHeight ,

Y2 = bounds .Y + NodeHeight

} ;

canvas . Chi ldren . Add( lh ) ;

treeNodeControl . r i g h t = r i g h t ;

treeNodeControl . r i gh tL in e . h o r i z o n t a l = lh ;

Line lv = new Line

{
StrokeThickness = 2 ,

Stroke = over lay ? Brushes . LightBlue : Brushes . Red ,

X1 = rightBounds .X + HalfNodeWidth ,

X2 = rightBounds .X + HalfNodeWidth ,

Y1 = bounds .Y + NodeHeight ,

Y2 = rightBounds .Y

} ;

canvas . Chi ldren . Add( lv ) ;

treeNodeControl . r i gh tL in e . v e r t i c a l = lv ;
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}
e l s e

{
treeNodeControl . imageRight . V i s i b i l i t y = V i s i b i l i t y . Hidden ;

}

r e turn bounds ;

}
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Listing A.4: A simple calculator grammar

COMPILER Calc $CN

/∗ Simple four func t i on c a l c u l a t o r

P.D. Terry , Rhodes Univers i ty , 2009 ∗/

CHARACTERS

d i g i t = ”0123456789” .

symbol = ” abcdefghi jk lmnopqrstuvwxyz ” .

h e x d i g i t = d i g i t + ”ABCDEF” .

TOKENS

decNumber = d i g i t { d i g i t } .

hexNumber = ”$” h e x d i g i t { h e x d i g i t } .

symbol ic = symbol .

PRODUCTIONS

Calc = { Express ion ”=” } EOF .

Express ion = Term { ”+” Term | ”−” Term } .

Term = Factor { ”∗” Factor | ”/” Factor } .

Factor = symbol ic | decNumber | hexNumber |” ( ” Express ion ”)” .

END Calc .
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Listing A.5: The Parva language grammar

COMPILER Parva

/∗ Parva l e v e l 1 grammar − Coco/R f o r C# (EBNF)

P.D. Terry , Rhodes Univers i ty , 2009

∗/

CHARACTERS

l f = CHR(10) .

backs la sh = CHR(92) .

c o n t r o l = CHR(0) . . CHR(31) .

l e t t e r = ”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz” .

d i g i t = ”0123456789” .

b inDig i t = ”01” .

hexDig i t = d i g i t + ”abcdefABCDEF” .

str ingCh = ANY − ’ ” ’ − c o n t r o l − backs la sh .

charCh = ANY − ” ’” − c o n t r o l − backs la sh .

p r i n t a b l e = ANY − c o n t r o l .

TOKENS

i d e n t i f i e r = l e t t e r

{ l e t t e r

| d i g i t

| ” ” { ” ” } ( l e t t e r | d i g i t )

} .

number = d i g i t { d i g i t }
| d i g i t { hexDig i t } ’H’

| b inDig i t { b inDig i t } ’% ’ .

s t r i n g L i t = ’” ’ { str ingCh | backs la sh p r i n t a b l e } ’ ” ’ .

charL i t = ” ’” ( charCh | backs la sh p r i n t a b l e ) ” ’” .

COMMENTS FROM ”//” TO l f

COMMENTS FROM ”/∗” TO ”∗/”

IGNORE CHR(9) . . CHR(13)
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PRODUCTIONS

Parva

= ” void ” Ident ”(” ”)” Block .

Block

= ”{” { Statement } ”}” .

Statement

= Block | ConstDec larat ions

| VarDec larat ions | AssignmentStatement

| I fStatement | WhileStatement

| ReturnStatement | HaltStatement

| ReadStatement | WriteStatement

| ForStatement | DoWhileStatement

| BreakStatement | ContinueStatement

| ” ;” .

ConstDec larat ions

= ” const ” OneConst { ” ,” OneConst } ” ;” .

OneConst

= Ident ”=” Constant .

Constant

= number | charL i t | ” true ” | ” f a l s e ” | ” n u l l ” .

VarDec larat ions

= Type OneVar { ” ,” OneVar } ” ;” .

OneVar

= Ident [ ”=” Express ion ] .

AssignmentStatement

= Assignment ” ;” .

Assignment

= Des ignator
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( ”=” Express ion | ”++” | ”−−” )

| ”++” Des ignator

| ”−−” Des ignator .

Des ignator

= Ident [ ” [ ” Express ion ” ]” ] .

I fStatement

= ” i f ” ”(” Condit ion ”)” Statement

[ ” e l s e ” Statement ] .

DoWhileStatement

= ”do” Statement ” whi l e ” ”(” Condit ion ”)” ” ;” .

ForStatement

= ” f o r ” ”(”

[ [ BasicType ] Ident ”=” Express ion ] ” ; ”

[ Condit ion ] ” ; ”

[ Assignment ]

”)” Statement .

BreakStatement

= ” break ” ” ;” .

ContinueStatement

= ” cont inue ” ” ;” .

WhileStatement

= ” whi l e ” ”(” Condit ion ”)” Statement .

ReturnStatement

= ” return ” ” ;” .

HaltStatement

= ” ha l t ” ” ;” .

ReadStatement
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= ” read ” ”(” ReadElement { ” ,” ReadElement } ”)” ” ;” .

ReadElement

= s t r i n g L i t | Designator .

WriteStatement

= ” wr i t e ” ”(” WriteElement { ” ,” WriteElement } ”)” ” ;” .

WriteElement

= s t r i n g L i t | Express ion .

Condit ion

= Express ion .

Express ion

= AddExp [ RelOp AddExp ] .

AddExp

= [ ”+” | ”−” ] Term { AddOp Term } .

Term

= Factor { MulOp Factor } .

Factor

= Des ignator

| Constant

| ”new” BasicType ” [” Express ion ” ]”

| ” !” Factor

| [ ” char ” | ” i n t ” ] ”(” Express ion ”)” .

Type

= BasicType [ ” [ ] ” ] .

BasicType

= ” i n t ” | ” bool ” | ” char ” .

AddOp
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= ”+” | ”−” | ” | | ” .

MulOp

= ”∗” | ”/” | ”%” | ”&&” .

RelOp

= ”==” | ”!=” | ”<” | ”<=” | ”>” | ”>=” .

Ident

= i d e n t i f i e r .

END Parva .


