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1 Introduction

This document explores the Unos Vision application suite, focusing on the main
components that enable it to control an audio network. Additionally, the iPhone
programming environment and the Juce application framework is discussed so
the environment in which a mobile application can be programmed in is fa-
miliarised and defined. This will ultimately result in the establishing of an
environment that will allow the the Unos Vision application suite to be ported
to a mobile platform.

This document is laid out in a hierarchical fashion, focusing on the low level
attributes of Unos Vision first. First the AES-X170 protocol is discussed so
as to get an understanding on the structure of an X170-based audio network.
Following is an explanation of the Juce application framework. This will provide
insight as to how the core Unos Vision functions work. The iPhone programming
environment is described, focusing on the requirements for compiling to an
iPhone device. Finally, the Unos Vision application is analysed, focusing on
UML diagramming techniques to describe the programs functionality.
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2 AES-X170 Protocol

The AES-X170 protocol, allows for the remote administration of devices in
an audio network [11]. It is a UDP/IP-based peer-to-peer protocol that uses
a hierarchical addressing structure to communicate with the parameters on a
device and manage audio streams between devices [11].

X170 messages will generally fall under three main types [7]:

• Connection management messages - messages that facilitate the routing
of audio streams between devices.

• Control messages - messages that adjust the value of a parameter/parameter
group, establish relationships between parameters and provide a means
with which to interact with the device.

• Monitoring messages - messages that retrieve parameter information, such
as metering values.

2.1 Connection Management

The X170 protocol allows for the routing of audio signals between devices
through the use of a multicore [13]. A multicore is a network connection between
two devices whose concept is similar to the physical cable connections in an
analogue audio network [7]. Each multicore consists of a several audio channels
known as multicore sequences and it is these sequences that are responsible for
transmitting an actual audio signal [7]. Figure 2.1 demonstrates two multicore
connections within a network cable, where each multicore sequence is portrayed
by the dashed lines. Figure 2.1 also demonstrates the multicore sequences being
housed in a multicore, and these multicores are connected to either a multicore
in or multicore out socket on a device. A multicore transmits data in a single
direction, therefore to establish a bi-directional relationship between two devices
two multicore connections will need to be created.

Further action beyond establishing a multicore connection is required to
transmit an audio signal between two devices. A device may have an array of
audio inputs and outputs each of which may be routed to a multicore sequence
[6]. For an audio signal to be transmitted via a multicore, the desired source
and destination end-points need to be connected to the same multicore sequence
of the same multicore [6]. This can be portrayed as the internal routing of a
device and a mock-up of this routing is displayed in table 1 in a grid structure.
In table 1 we can see that Analogue In 1 is patched to Multicore 1’s 1st multicore
sequence, and Analogue In 1 is patched to Analogue Out 1 of the same device.

In order to create a basic connection between an audio input of one device
and an audio output of a second device where each device is on the same subnet,
the process involves three steps:

1. Create a multicore connection between two devices.
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Figure 1: Two multicore connections between two devices [13]

Table 1: Sample table displaying internal routing matrix.

2. Create a connection between an audio input on a source device and a
multicore sequence in the multicore from step 1.

3. Create a connection from the audio output on a destination device to the
same multicore sequence of the same multicore in step 2.

2.2 Routing

In an X170 network, the routing of multicores within a router is done in a
mirrored fashion; in other words each input multicore of each interface on a
router is routed to the corresponding output multicore of every other interface
on that same router [5]. Looking at figure 2.2, if a multicore connection was
created between Audio Device 1 and NIC1 (network interface controller) on the
router, that multicore would be accessible to any device connected to NIC2. In
order for Audio Device 2 to establish a multicore connection to Audio Device
1, a multicore connection would need to be created from Audio Device 2 to the
output multicore of NIC2 that has the same ID as the input multicore of NIC1
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of the router, this input multicore being connected to the output multicore of
Audio Device 1.

Figure 2: Multicore router routing between two subnets.

In order to connect an audio input and output between two devices on ad-
jacent subnets, the process would involve the following steps:

• Create a connection between an audio input on a source device and a
multicore sequence in a multicore.

• Create a connection between an audio output on a destination device and
a multicore sequence in a multicore.

• Create a multicore connection between the source device and an X170
router.

• Create a multicore connection between the destination device and an X170
router, ensuring that the multicore ID is the same as the one in step 3.

When connecting devices on remote subnets, multiple multicore connections
need to be created between routers in every subnet until a single, continuous
multicore stream is establish between the two devices.

2.3 Parameters and Desk Items

There are three methods of access for any parameter that adheres to the X170
stack[7]:

• A value can be polled from the parameter
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• A value can be set to the parameter

• A value can be ’pushed’ from the parameter to a target remote parameter

A parameter’s value can be retrieved or set through a basic ’get’ or ’set’ X170
command, respectively[7]. This behaviour may become undesirable for cases
where diagnostic data is updated in frequent intervals, such as with metering
data. The X170 protocol has a ’push’ system implemented where a parameter
can continuously feed data to a remote parameter. This is done by sending a
’set push’ X170 command to a parameter[7].

Parameters can be grouped to establish either a master-slave or a peer-to-
peer relationship with other parameters[6]. In a master-slave parameter group, a
master parameter controls a set of slave parameters. This means that any change
in the master parameter is echoed throughout all the slaves, but a change in
any slave parameter does not reflect on the master or any of the other slaves[6].
In a peer-to-peer group, a change in any single parameter will affect all the
parameters in the joined group[6].

Desk Items are control items that can be used to provide a virtual repre-
sentation of a device[7]. They allow for interaction with parameters that are
associated with a desk item and can provide a graphical means with which to
control and monitor a parameter[12]. Each device stores its own desk items,
which include a visual representation of the desk item, the nature of the desk
item and the parameters associated with the desk item[7].

Figure 2.3 demonstrates two common types of desk items:

• Image A demonstrates a fader desk item which can be used to adjust the
value of a parameter.

• Image B demonstrates a meter desk item which can be used to display
metering values, such as volume levels.

2.4 Protocol Structure

The Open Systems Interconnection model, known as the OSI model, is a commu-
nications system that divides network communications into seven manageable
sections[9]. The layers in order from highest to lowest level are [9]:

• Application level - responsible for interaction with an application and
contains application data.

• Presentation layer - responsible for the format of the data, as well as
encryption and decryption. This is an optional layer.

• Session layer (Optional) - responsible for maintaining connectivity between
applications on end-hosts. This is an optional layer.

• Transport layer - responsible for controlling end-to-end connectivity be-
tween hosts in segments, for example the TCP and UDP protocols.
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Figure 3: Example of a fader and a meter desk item.

• Network layer - defines the logical addressing for data transmission in
packets, for example the IP protocol.

• Data link layer - defines the physical addressing for data transmission in
frames, for example a devices hardware address.

• Physical layer - defines the physical medium for data transmission in bits.

In terms of the OSI model, the X170 protocol is sent via the UDP/IP pro-
tocol. Each message consists of three main sections [7]:

• an IP header containing the source and destination addresses for the mes-
sage

• a UDP header containing the source and destination ports for the message

• a data field containing the X170 header and address block

The benefit of this structure is that any network device with IP and UDP
support can send and receive X170 messages as long as the X170 stack is im-
plemented as an application layer protocol on a device. Figure 5 demonstrates
the structure of an X170 message [7].

The IP header and the UDP header are used to facilitate the transportation
of an X170 message on the Network and Transport layer respectively. The UDP
segment is contained within the IP packet’s data field, and the X170 message is
contained within the UDP segment’s data field [7].
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Figure 4: Structure of the AES-X170 protocol

The X170 header is used to define the nature of the message, as well as
provide some additional addressing information required to identify a device at
the Application level[7].

The fields in the X170 header have the following functions [7]:
The Target and Sender IP address fields contain the IP addresses of the

source and destination devices[7]. This field enables the IP addresses of the
devices in question to be accessible at an application level.

The Target X170 Node ID and Sender X170 Node ID are used to uniquely
identify a device. In situations where several devices connect to an X170 network
via a proxy device, each device will share an IP address with the proxy device[7].
The node ID field will allow each device to be uniquely identified beyond that
of its IP address.
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The Sender Parameter ID allows a destination parameter to refer back to
an originating parameter from which a message was sent[7]. This is for cases
where a change in one parameter affects a second parameter, and the second
parameter may need to interact with the first parameter.

The User Level field allows for the assignment of user levels to a message so
that a parameter can modify its behaviour accordingly[7].

The Message Type field specifies the role of the message and can identify
whether a message is a request or a response[7].

The Sequence ID facilitates the transmission of multiple messages. When
sending a large array of messages, they are done so without waiting for receipt
responses. This sequence ID allows for responses to be paired with an originating
message, hence confirming receipt of a message[7].

The Command Executive field defines the nature of a message, such as
whether it is either getting a parameter value or setting it[7]. The Command
Qualifier field can be used to specify an attribute of a parameter or it can refer
to a group of parameters[7].

The X170 protocol was established as a means of proving a standardised
method of control among devices in an audio network. Since an audio network
will consist of a variety of devices, each with their own set of parameters, a
generic method for addressing parameters was implemented that will allow any
parameter of any device to be read and modified. To enable this, a seven level
hierarchical addressing structure was created [6].

The levels of the hierarchical addressing structure in order from highest level
to lowest are:

• Section Block

• Section Type

• Section Number

• Parameter Block

• Parameter Block Index

• Parameter Type

• Parameter Index

The Section block aims to define a device in terms of its abilities. A single
device may have several sections, and the section block clusters parameters into
a specific section, such as input section or output section[7].

Within a section block there may be different types of components. The
Section Type address aims to further group a parameter to a specific type in a
block. One example is that within an Input section block of a device there may
be microphone inputs, line inputs and tape inputs, yet all are part of the same
section block[7]. These components will each have their own section type; that
is within an input section block all the microphone inputs may be grouped as a
single section type.

9



The Section Number is used to identify a channel or interface number and is
responsible for the successful processing or routing of a channel[7]. In networks
where there are a multitude of active channels, this field allows any channel to
be tracked and uniquely identified.

The Parameter Block field allows for several parameters to be associated as
a group. These parameters are often used in conjunction with each other to
allow for the processing and routing of audio channels. An example given by
Foss 2010[7] is that of using a block of equalizers to provide a wide range of
equalization of an audio channel.

The Parameter Block Index allows for parameters joined in a group to each
be further classified into sub-groups. Expanding on the aforementioned equal-
izer example, this would refer to uniquely identifying parameter groups in a
parameter block as being responsible for Frequency or Gain[6].

The Parameter Type field allows a parameter to be defined as a specific
type. Parameter types define what a parameter is responsible for, such as gain,
frequency or threshold[6].

The Parameter Index is the lowest level of addressing of a parameter and
refers to an individual parameter in a group of parameters that process an audio
channel[7]. For example, it can be used to distinguish a single parameter in a
group of gain parameters processing an audio channel.

This hierarchical structure has the additional benefit of allowing an array of
parameters to be accessed via a single message by using a ”wildcard” parameter
at any level of the addressing scheme[7]. For example, if a wild card value was
passed into the parameter index, the X170 message would be parsed by every
parameter at that specific level.

2.5 Limitations

The specification of the X170 protocol only accommodates routing devices that
are in the same subnet[7]. The X170 protocol does not offer any automated
routing mechanisms between devices on different subnets. Routing between
subnets is achieved by connecting an end-host to a routing device on one subnet
and then connecting another end-host to that same router on an adjacent subnet.
This action is done on the application level in terms of the OSI stack.

The number of multicore connections that a device may establish is limited
and varies between devices. For example, an evaluation board may only support
up to two multicore connections at a time, while an X170 router may support
eight[6]. This means that special attention needs to be paid to the structure of
an audio network as bottlenecks may occur due to a lack of available multicores.

The X170 protocol does not allow for the aggregation of output multicores;
however a single output multicore may be distributed to multiple input multicore
sockets[7]. This means that a source audio signal may be patched to an array of
destinations, but multiple sources may not be patched to a single destination.
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3 Programming for the iPhone OS

The iPhone OS has become a popular platform on which to deploy applications.
The iPhone OS has achieved further popularity since its adaptation from the
iPhone to the iPod Touch and the iPad. In terms of architecture all three of these
devices are identical[2]. The only major differences between the iPhone, iPod
and iPad in terms of functionality are the size of the screen and the inclusion of
a GSM-based antenna[3]. Of the three devices, the iPad has the larger screen
whereas the iPhone and the iPod have identical screens, and the iPod is the
only device that does not include the option of a GSM-based antenna.

Of the three devices the third generation iPod Touch was chosen for the
research project. A device with GSM capabilities was not required and in terms
of network functionality the iPod offers a standard 802.11 b/g wireless antenna.
The iPad, albeit similar to the iPod, was not chosen due to its limited availabil-
ity.

3.1 Specifications

The third generation iPod Touch has the following specifications[3]:

• Arm A8 600MHz CPU

• 256MB Ram

• PowerVR SGX GPU

• Capacitive multi-touch touchscreen with a 480x320 resolution

• 16GB or 32GB storage capacity

• 802.11 b/g wireless connectivity

• iPhone OS 3.1.1 (can be upgraded to iPhone OS 4.1)

3.2 Requirements

In order to compile an application for an iPhone OS-based device using Apple’s
iPhone SDK, the following requirements must be met[1]:

• The application must be compiled on an Intel-based Apple system

• The system must have at least 1GB RAM

• The host operating system on which the application will be programmed
should be Apple’s Mac OS X 10.5.7 or later

• Apple’s iPhone SDK needs to be installed using XCode 3.1.3 as the IDE

• A device running iPhone OS 3 or higher
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The iPhone SDK offers a simulator on which to test applications before de-
ployment; however there are further requirements if a user wants to deploy an
application onto a physical device[1]. This comes in the form of a provisioning
certificate. This certificate is a form of digital rights management, commonly
known as DRM, which pairs an application with a device, allowing the applica-
tion to run on the device.

4 Juce

Juce is a cross-platform application framework written in C++ with a strong
focus on creating audio-centric applications. Using Juce, a user is able to create
a consistent graphical experience across multiple platforms, including Windows,
Linux, Apple Mac OS and iPhone OS operating systems. Programming envi-
ronments that are explicitly supported are Microsoft’s Visual Studio, GIT for
Linux and Apple’s XCode IDE, including the iPhone SDK environment[14]. In
addition to the benefit of being cross-platform, Juce also offers a comprehensive
API reference guide in the form of a Doxygen generated document [15].

4.1 Features

The current iteration of Juce offers a large variety of features. Some of these
features include[14]:

• cross-platform multi-threading support including synchronisation between
threads, events, thread pools and other features that allow the controlling
of threads,

• messaging classes that facilitate event-driven applications including asyn-
chronous callbacks, timers, etc.,

• rich GUI elements through the use of a look-and-feel subsystem, MDI
windowing and window management system, and other GUI-based com-
ponents,

• cross platform audio driver classes supporting a variety of audio formats
as well as extensive MIDI support,

• software-based graphic rendering system,

• global logging facilities,

• extensive network communication support,

• support for various cryptographic algorithms,

• zip archive decompression.
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Juce also has a comprehensive core class that handles elements that would
otherwise have to be programmed on a per-operating system basis, such as the
management of files and input/output streams[14].

In addition to these features, the Juce framework includes an application
called ”The Jucer”. The Jucer is a UI component builder application that al-
lows a user to construct custom graphical components based on existing Juce
controls. This allows the user to tailor the behaviour and look of their applica-
tion depending on the nature of the application[15].

4.2 Targeting Specific Platforms

Juce achieves cross platform compilation by including native libraries specific
to each supported operating system. Depending on the environment, one of the
platform specific classes will be used to compile an application. The targeting
of platforms is achieved through the use of pre-processor directives.

Pre-processor directives are sections of code that are exclusively handled by
the compiler at compile time and are not included in the runtime application[4].
One example of a pre-processor directive is the #include directive, common to
most C-like languages. At compile time, the compiler will treat the #include
directive as if it were replacing that line with the contents of the file it was
including [10]. Pre-processor directives can also be used to execute specific
sections of code depending on the environment variables.

Figure 5: Example of using a preprocessor directive to execute iPhone specific
code

In figure 2.5, a #if directive is used to only compile a section of code if
the targeted platform is the iPhone. The #if directive is synonymous with an
if-statement, where a block of code will only be executed if a condition is met.
The #endif directive is used to indicate the end of the platform-specific code.
In short, all the code between the #if and the #endif will be executed if the
targeted platform is the iPhone OS version 4.

By combining the #include directive with the #if directive, a user can in-
clude specific libraries depending on the platform being used. Figure 2.6 displays
a mock-up of this usage:

This usage of native operating system libraries and pre-processor directives
means that an application will only work for the platform that it has been com-
piled for. If an application was compiled in Visual Studio for the Microsoft
Windows platform that application will only run on a Windows platform since
the application is compiled into platform-specific machine code. When using
Juce to get a working version of an application for another platform, that appli-
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Figure 6: Preprocessor directive to include either iPhone or Windows specific
code depending on the programming environment.

cation will need to be compiled by a compiler native to that platform, such as
using Apple’s XCode environment to create a Mac OS version of the application.

4.3 Juce Usage

There are two supported methods for including Juce into a project[14]:

• as a statically linked library

• as an ”amalgamated” C++ file

To include Juce as a statically linked library, a user needs to include the
#include <juce.h> directive in the files where Juce code is referenced. When
using this method, the Juce library needs to be compiled separately from the
application and acts as an external resource to the project[14].

An alternative method to including the Juce libraries is to use an amal-
gamated version of Juce. This amalgamated version contains the entire Juce
library in a single file providing a conceptually simple method of including the
Juce libraries. A problem with this method is that some compilers may have
issues parsing the amalgamated file due to its size. To use this method, the #in-
clude <juce amalagamated.h> directive needs to be used where any Juce-based
class is referenced[14].

4.4 Limitations

The current version of Juce at the time of conducting this research was 1.51.
At this point the iPhone support for Juce was at an immature state, and as
such still had several iPhone OS specific issues. One such issue is in regards to
the rotation of applications. When using the rotation mechanism on an iPhone
device certain GUI components become distorted[16].

5 Unos Vision

Unos Vision is a management suite that provides a visual representation of an
audio network and allows users to interact with the devices on that network
using the X170 protocol[13]. Interaction between the user and the devices on
an audio network is achieved by providing a graphical interface that[13]:
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• monitors each device on an audio network, as well as displaying each
device’s status and parameters,

• allows the user to control the parameters of a device, such as manipulate
volume levels and create relationships between parameters among a variety
of devices,

• Allows the user to create connections between devices, including the rout-
ing of audio signals.

At the time of conducting this research, Unos Vision only had support for
IEEE1394 networks with Ethernet AVB network support currently in develop-
ment. The tested version of Unos Vision is able to interact with an IEEE1394
network through the use of a Firewire router which bridges an Ethernet-based
client hosting the Unos Vision application to an IEEE1394 network[13].

Figure 2.7 displays a typical network configuration for a digital audio network
using a Unos Vision client:

Figure 7: Audio network using a Unos Vision workstation[13]

An audio network will typically consist of audio and routing devices. Multi-
core routers act in the same fashion as Ethernet routers as they forward traffic
between two different subnets. In most cases, each device in a subnet will have
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a device with routing capabilities as its default gateway so that any routing of
multicores and X170 messages between subnets is managed by that device.

5.1 Features

The current version of Unos Vision offers the following main features[13]:

• Create and destroy multicore connections between devices and manage
connections internal to a device.

• Display desk item data from a device and control the parameters bound
to that Desk Item.

• Establish relationships between parameters and parameter groups, includ-
ing master-slave and peer-to-peer relationships.

• Create desk item components by using an alternative version of Unos
Vision called Unos Creator[12].

Unos Vision has no support for creating end-to-end connections between the
audio inputs and outputs of remote devices. Connectivity between devices is
handled in the same fashion as described in section 2.1.2.

5.2 Usage

The Unos Vision application is divided into two main tabs[13]:

• Devices tab

• Connection Manager tab

Figure 2.6 demonstrates the Devices tab which provides an overview of an
entire audio network and displays a summary of the devices for a selected subnet.
Container 1 displays the devices on a specific subnet, as well as the status of
each device. Container 2 lists all the subnets on the network and provides a
preview of the devices on each subnet.

Figure 2.7 demonstrates the Connection Manager tab, which is divided into
six main containers. The containers 1, 2, 4 and 5 allow the user to create and
destroy connections. The columns of the grid views display the outputs, while
the rows display the inputs.

• Container 1 displays all the devices in a specific subnet. By selecting a
cross-point in this container, all the other containers will be updated with
the data pertaining to the devices related to that cross-point[13].

• Container 2 displays the possible multicore sockets for each device, where
selecting a cross-point will create a multicore connection between the
devices[13].
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Figure 8: Devices view of Unos Vision

• Containers 4 and 5 allow the user to manage the internal routings of
the two devices selected in container 1, where container 4 represents the
source device and container 5 the destination device. For example, the
cross-points in containers 4 and 5 allow a user to connect a multicore
sequence to an Analogue, ADAT or AES input or output[13].

• Containers 3 and 6 display a device’s graphical desk item component,
allowing a user to interact with the parameters of a device[13].

5.3 Structure

The Unified Modelling Language will be used to describe the functionality and
structure of Unos Vision. The Unified Modelling Language, commonly known
as UML and hereafter referred to as such, provides a visual means to represent
the structure, behaviour or the interactions of an application through several
types of diagrams[8]. Three types of diagrams will be used to demonstrate
these attributes; use case diagrams to demonstrate application behaviour, se-
quence diagrams to demonstrate interactions, and class diagrams to demonstrate
structure[8].

Figure 2.8 is a Use Case diagram demonstrating the high-level function-
ality of Unos Vision. The ”User” and ”X170Stack” icons represent external
actors. These are entities that are not directly involved with the functioning
of the application, but are necessary in the execution of the application. The
User actor represents the user that will interact with the application, while the
X170Stack actor represents the interface between the application and the ac-
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Figure 9: Connection Manager view of Unos Vision

tual audio network. The X170Stack is responsible for the sending and parsing
of X170 messages.

The ”Start up”, ”Make connections”, ”Break connections”, ”Load desk items”,
and ”Control parameters” labels refer to use cases. These use cases describe the
high-level functions of the application that the external actors interact with.

Figure 2.9 is a class diagram that describes the overall structure of the
application. Main areas of focus are:

Network - The Network class provides a virtual representation of the audio
network and allows the application to interact with devices, their parameters
and their multicore connections. The devices in the network object are divided
into busses, where a bus is synonymous with a subnet. The Network class
is populated via the NetworkClient class which interacts with the UMANDLL
class

UMANDLL - The UMANDLL class provides an interface between the appli-
cation and the X170Stack. This class is responsible for initializing the X170Stack,
as well as constructing and parsing X170 messages.

Device View and NetworkView - These components are responsible for dis-
playing the containers in figure 2.6 and 2.5 respectively. Additionally, this class
handles some high-level connectivity logic, such as checking if a connection be-
tween two multicore sockets is possible.

Figure 2.10, 2.11 and 2.12 demonstrate sequence diagrams focusing on the
interactions between an application and the X170 stack.

Figure 2.10 details the portion of the start-up procedure that is responsible
for initialising the XFNStack and scanning the network for devices.

Figure 2.11 demonstrates the toggling of a firewire multicore connection.
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Figure 10: Use case diagram of Unos Vision

Figure 2.12 demonstrates the establishing of an internal connection.
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Figure 11: Class diagram of Unos Vision.

6 Conclusion

This chapter summarised some of the key concepts required to understand an
X170-based audio network focusing on the connection management aspects of
the Unos Vision application suite. A description of how an audio signal may be
routed has been discussed and a high level overview of the Unos Vision applica-
tion has been presented using UML diagramming techniques. An introduction
to the iPhone OS platform and the Juce application framework gives a basic un-
derstanding of some aspects to consider when porting an application to a mobile
platform, and a possible programming approach to maintaining cross-platform
compatibility has been discussed.
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