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Abstract

Digital audio networks have become a popular solution to the problem of distributing

audio. They provide the ability to manage devices at a software level and allow audio

signals to be routed between devices. The administration of these networks and their

devices becomes increasingly difficult when they span large distances since most control

applications are built on static workstations. This project proposes the development of

a mobile application that will control an audio network and give a sound engineer the

capability to have this control at any physical location.

The initial stages of this project concentrated on porting an existing desktop application

to the iPhone OS. It was found that the ported application did not provide a satisfactory

means of control over an audio network, since the application’s logic was more suited to

the desktop environment.

Various connectivity approaches were analysed so that an improved prototype could be

built. The analysis resulted in the design of a grid-based end point to end point patchbay

solution. The patchbay was implemented and a final analysis of this prototype showed

that the design did provide a satisfactory means to control an audio network. However

more work was required in the underlying logic to provide subnet to subnet routing.
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Chapter 1

Introduction

1.1 Problem Statement

There are many contexts where it is necessary to route audio signals across large distances,

for example in stadiums, convention centres, etc. In digital audio networks, these systems

are often controlled from a centralised console using specialised software which allows

audio devices to be interconnected and controlled remotely via a protocol that is common

among all the devices.

With regards to audio networks that span large distances, they become difficult to manage

from a centralised location since the end-hosts may be out of seeing and hearing range of

the user. This could result in issues where a network user believes that they have correctly

routed an audio signal between two end-hosts; meanwhile, either through an application

error or through user error, the signal is routed incorrectly. In situations such as this the

user is forced to traverse all the devices in an audio network to diagnose any possible issues

that have arisen and then return to the control console to correct the noted issues. This

process can become cumbersome and time-consuming in larger network configurations.

One possible solution to this issue would be that of utilising a portable version of an

existing audio network management application where a user can access the audio network

from any location with a wireless signal, as demonstrated in figure 1.1. With the advent of

powerful smart-phone and tablet devices, the development of a mobile-based application

that mimics the functionality of a desktop-based solution has become a feasible option.

This application should be able to communicate with an audio network via some wireless

8



1.2. RESEARCH GOALS AND OBJECTIVES 9

medium, be able to give an effective view of the network utilising the limited screen-space

of mobile devices and be able to interact with devices on that network.

Figure 1.1: Example scenario demonstrating the lack of a centralised control console.

1.2 Research Goals and Objectives

The purpose of this research project is to test the feasibility of a portable audio net-

working application through the development of a prototype. This prototype is based

on an existing audio networking application so that research and implementation can be

concentrated on providing an effective front-end experience for a mobile platform. The

prototype is used to expose any issues that would arise when building an application of

this nature.

Primary issues addressed included:

• Performance in terms of hardware resource usage.

• Usability in terms of interaction design.

Secondary issues included:
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• Addressing technical design issues specific to the mobile platform. One example

is that of file IO operations being handled differently on a mobile platform from a

desktop platform.

1.3 Project Outline

For the purpose of this research project, the application on which the prototype is based

is the Unos Vision application suite. Unos Vision is an audio networking application suite

that allows a user to connect, control and monitor devices in a digital audio network. It is

able to interact with devices on a firewire-based audio network, with connectivity between

the application and the network done using a standard Ethernet connection to a firewire

router. Routing an audio signal between two end-hosts is currently a multistage stage

process, where the routing internal to the device and the routing between two devices

is handled separately. The underlying protocol that enables communications between

devices and Unos Vision is the AES-X170 protocol and the application itself is built on

Juce, a C++ cross-platform application framework. An extended analysis of Unos Vision,

the technical specifications of the AES-X170 protocol and the Juce application framework

will be further discussed in chapter two.

The mobile platform on which the prototype application is built is the iPhone OS and

the device used was the third generation iPod Touch. The iPod Touch is similar to the

iPhone 3G and 3GS models in terms of hardware and software configuration, and all of

these devices have gained substantial popularity in mobile markets. This is a contributing

factor as to why the iPhone OS was chosen. Additionally, the Juce application framework

has been extended to be compatible with the iPhone OS, allowing applications to be

compiled for Windows, Linux, Mac OS and iPhone OS platforms. This made the process

of porting the application a relatively simple one as only minor changes were required

as to get the application compiling for the mobile platform. Issues experienced and

modifications made during the process of porting the application from a desktop to a

mobile platform will be discussed in chapter three, focusing on the technical requirements

for optimising application functionality.

Using the prototype from chapter three, it was discovered that the user interface of the

Unos Vision application was less than optimal for small-screen devices. Chapter four

explores the design of a patchbay component that aims to simplify the application logic,

thereby simplifying the usage of the application on a mobile device. A brief description
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of several patchbays is explored and ultimately a grid-based approach was selected. The

migration from the original Unos Vision design to a patchbay solution was done by re-

placing the four stage process for establishing connections between devices into a single

step; selecting two end-point IO sockets. All the routing and establishing of connections

is done automatically by the application, and the interaction with the network is done

via a single grid-based GUI component.

In chapter five the actual implementation of the patchbay and the analysis thereof is

discussed. Any further modifications in terms of design and performance required to

produce a feasible solution is listed and experimental results are used to compare the

mobile patchbay solution to the original Unos Vision design.

Finally in chapter six the project the overall result of this research project is analysed. A

final conclusion on the feasibility of a mobile-based audio network application is stated

and any further work that could result from this research project is listed.



Chapter 2

Background Information

In this chapter the AES-X170 protocol, Juce application framework and the Unos Vision

application are introduced and analysed. Additionally, the programming environment

in which the prototype will be built is explored, focusing on Apple’s iPhone SDK for

the iPhone OS versions 3.2 and 4. This analysis is conducted in order to gain a better

understanding of the Unos Vision application and to gain an overview as to how a basic

X170 audio network functions.

2.1 AES-X170 Protocol

The AES-X170 protocol, allows for the remote administration of devices in an audio net-

work [13]. It is a UDP/IP-based peer-to-peer protocol that uses a hierarchical addressing

structure to communicate with the parameters on a device and manage audio streams

between devices [13].

X170 messages will generally fall under three main types [8]:

• Connection management messages - messages that facilitate the routing of audio

streams between devices.

• Control messages - messages that adjust the value of a parameter/parameter group,

establish relationships between parameters and provide a means with which to in-

teract with the device.

• Monitoring messages - messages that retrieve parameter information, such as me-

tering values.

12
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2.1.1 Connection Management

The X170 protocol allows for the routing of audio signals between devices through the

use of a multicore [15]. A multicore is a network connection between two devices whose

concept is similar to the physical cable connections in an analogue audio network [8].

Each multicore consists of a several audio channels known as multicore sequences and

it is these sequences that are responsible for transmitting an actual audio signal [8].

Figure 2.1 demonstrates two multicore connections within a network cable, where each

multicore sequence is portrayed by the dashed lines. Figure 2.1 also demonstrates the

multicore sequences being housed in a multicore, and these multicores are connected to

either a multicore in or multicore out socket on a device. A multicore transmits data in

a single direction, therefore to establish a bi-directional relationship between two devices

two multicore connections will need to be created.

Figure 2.1: Two multicore connections between two devices [15]

Further action beyond establishing a multicore connection is required to transmit an audio

signal between two devices. A device may have an array of audio inputs and outputs each

of which may be routed to a multicore sequence [7]. For an audio signal to be transmitted

via a multicore, the desired source and destination end-points need to be connected to

the same multicore sequence of the same multicore [7]. This can be portrayed as the

internal routing of a device and a mock-up of this routing is displayed in table 1 in a

grid structure. In table 1 we can see that Analogue In 1 is patched to Multicore 1’s 1st

multicore sequence, and Analogue In 1 is patched to Analogue Out 1 of the same device.

In order to create a basic connection between an audio input of one device and an audio

output of a second device where each device is on the same subnet, the process involves

three steps:
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Table 2.1: Sample table displaying internal routing matrix.

1. Create a multicore connection between two devices.

2. Create a connection between an audio input on a source device and a multicore

sequence in the multicore from step 1.

3. Create a connection from the audio output on a destination device to the same

multicore sequence of the same multicore in step 2.

2.1.2 Routing

In an X170 network, the routing of multicores within a router is done in a mirrored

fashion; in other words each input multicore of each interface on a router is routed to the

corresponding output multicore of every other interface on that same router [6]. Looking

at figure 2.2, if a multicore connection was created between Audio Device 1 and NIC1

(network interface controller) on the router, that multicore would be accessible to any

device connected to NIC2. In order for Audio Device 2 to establish a multicore connection

to Audio Device 1, a multicore connection would need to be created from Audio Device 2

to the output multicore of NIC2 that has the same ID as the input multicore of NIC1 of

the router, this input multicore being connected to the output multicore of Audio Device

1.

In order to connect an audio input and output between two devices on adjacent subnets,

the process would involve the following steps:

• Create a connection between an audio input on a source device and a multicore

sequence in a multicore.

• Create a connection between an audio output on a destination device and a multicore

sequence in a multicore.
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Figure 2.2: Multicore router routing between two subnets.

• Create a multicore connection between the source device and an X170 router.

• Create a multicore connection between the destination device and an X170 router,

ensuring that the multicore ID is the same as the one in step 3.

When connecting devices on remote subnets, multiple multicore connections need to be

created between routers in every subnet until a single, continuous multicore stream is

establish between the two devices.

2.1.3 Parameters and Desk Items

There are three methods of access for any parameter that adheres to the X170 stack[8]:

• A value can be polled from the parameter

• A value can be set to the parameter

• A value can be ’pushed’ from the parameter to a target remote parameter

A parameter’s value can be retrieved or set through a basic ’get’ or ’set’ X170 command,

respectively[8]. This behaviour may become undesirable for cases where diagnostic data

is updated in frequent intervals, such as with metering data. The X170 protocol has a
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’push’ system implemented where a parameter can continuously feed data to a remote

parameter. This is done by sending a ’set push’ X170 command to a parameter[8].

Parameters can be grouped to establish either a master-slave or a peer-to-peer relationship

with other parameters[7]. In a master-slave parameter group, a master parameter controls

a set of slave parameters. This means that any change in the master parameter is echoed

throughout all the slaves, but a change in any slave parameter does not reflect on the

master or any of the other slaves[7]. In a peer-to-peer group, a change in any single

parameter will affect all the parameters in the joined group[7].

Desk Items are control items that can be used to provide a virtual representation of a

device[8]. They allow for interaction with parameters that are associated with a desk item

and can provide a graphical means with which to control and monitor a parameter[14].

Each device stores its own desk items, which include a visual representation of the desk

item, the nature of the desk item and the parameters associated with the desk item[8].

Figure 2.3 demonstrates two common types of desk items:

• Image A demonstrates a fader desk item which can be used to adjust the value of a

parameter.

• Image B demonstrates a meter desk item which can be used to display metering

values, such as volume levels.

2.1.4 Protocol Structure

The Open Systems Interconnection model, known as the OSI model, is a communications

system that divides network communications into seven manageable sections[11]. The

layers in order from highest to lowest level are [11]:

• Application level - responsible for interaction with an application and contains ap-

plication data.

• Presentation layer - responsible for the format of the data, as well as encryption and

decryption. This is an optional layer.

• Session layer (Optional) - responsible for maintaining connectivity between appli-

cations on end-hosts. This is an optional layer.
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Figure 2.3: Example of a fader and a meter desk item.

• Transport layer - responsible for controlling end-to-end connectivity between hosts

in segments, for example the TCP and UDP protocols.

• Network layer - defines the logical addressing for data transmission in packets, for

example the IP protocol.

• Data link layer - defines the physical addressing for data transmission in frames, for

example a devices hardware address.

• Physical layer - defines the physical medium for data transmission in bits.

In terms of the OSI model, the X170 protocol is sent via the UDP/IP protocol. Each

message consists of three main sections [8]:

• an IP header containing the source and destination addresses for the message

• a UDP header containing the source and destination ports for the message

• a data field containing the X170 header and address block

The benefit of this structure is that any network device with IP and UDP support can send

and receive X170 messages as long as the X170 stack is implemented as an application

layer protocol on a device. Figure 5 demonstrates the structure of an X170 message [8].
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Figure 2.4: Structure of the AES-X170 protocol

The IP header and the UDP header are used to facilitate the transportation of an X170

message on the Network and Transport layer respectively. The UDP segment is contained

within the IP packet’s data field, and the X170 message is contained within the UDP

segment’s data field [8].

The X170 header is used to define the nature of the message, as well as provide some

additional addressing information required to identify a device at the Application level[8].

The fields in the X170 header have the following functions [8]:

The Target and Sender IP address fields contain the IP addresses of the source and

destination devices[8]. This field enables the IP addresses of the devices in question to be

accessible at an application level.

The Target X170 Node ID and Sender X170 Node ID are used to uniquely identify a

device. In situations where several devices connect to an X170 network via a proxy
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device, each device will share an IP address with the proxy device[8]. The node ID field

will allow each device to be uniquely identified beyond that of its IP address.

The Sender Parameter ID allows a destination parameter to refer back to an originating

parameter from which a message was sent[8]. This is for cases where a change in one

parameter affects a second parameter, and the second parameter may need to interact

with the first parameter.

The User Level field allows for the assignment of user levels to a message so that a

parameter can modify its behaviour accordingly[8].

The Message Type field specifies the role of the message and can identify whether a

message is a request or a response[8].

The Sequence ID facilitates the transmission of multiple messages. When sending a large

array of messages, they are done so without waiting for receipt responses. This sequence

ID allows for responses to be paired with an originating message, hence confirming receipt

of a message[8].

The Command Executive field defines the nature of a message, such as whether it is either

getting a parameter value or setting it[8]. The Command Qualifier field can be used to

specify an attribute of a parameter or it can refer to a group of parameters[8].

The X170 protocol was established as a means of proving a standardised method of control

among devices in an audio network. Since an audio network will consist of a variety of

devices, each with their own set of parameters, a generic method for addressing parameters

was implemented that will allow any parameter of any device to be read and modified.

To enable this, a seven level hierarchical addressing structure was created [7].

The levels of the hierarchical addressing structure in order from highest level to lowest

are:

• Section Block

• Section Type

• Section Number

• Parameter Block

• Parameter Block Index
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• Parameter Type

• Parameter Index

The Section block aims to define a device in terms of its abilities. A single device may

have several sections, and the section block clusters parameters into a specific section,

such as input section or output section[8].

Within a section block there may be different types of components. The Section Type

address aims to further group a parameter to a specific type in a block. One example is

that within an Input section block of a device there may be microphone inputs, line inputs

and tape inputs, yet all are part of the same section block[8]. These components will each

have their own section type; that is within an input section block all the microphone

inputs may be grouped as a single section type.

The Section Number is used to identify a channel or interface number and is responsible

for the successful processing or routing of a channel[8]. In networks where there are a

multitude of active channels, this field allows any channel to be tracked and uniquely

identified.

The Parameter Block field allows for several parameters to be associated as a group. These

parameters are often used in conjunction with each other to allow for the processing and

routing of audio channels. An example given by Foss 2010[8] is that of using a block of

equalizers to provide a wide range of equalization of an audio channel.

The Parameter Block Index allows for parameters joined in a group to each be further

classified into sub-groups. Expanding on the aforementioned equalizer example, this would

refer to uniquely identifying parameter groups in a parameter block as being responsible

for Frequency or Gain[7].

The Parameter Type field allows a parameter to be defined as a specific type. Parameter

types define what a parameter is responsible for, such as gain, frequency or threshold[7].

The Parameter Index is the lowest level of addressing of a parameter and refers to an

individual parameter in a group of parameters that process an audio channel[8]. For

example, it can be used to distinguish a single parameter in a group of gain parameters

processing an audio channel.

This hierarchical structure has the additional benefit of allowing an array of parameters

to be accessed via a single message by using a ”wildcard” parameter at any level of the



2.2. PROGRAMMING FOR THE IPHONE OS 21

addressing scheme[8]. For example, if a wild card value was passed into the parameter

index, the X170 message would be parsed by every parameter at that specific level.

2.1.5 Limitations

The specification of the X170 protocol only accommodates routing devices that are in the

same subnet[8]. The X170 protocol does not offer any automated routing mechanisms

between devices on different subnets. Routing between subnets is achieved by connecting

an end-host to a routing device on one subnet and then connecting another end-host to

that same router on an adjacent subnet. This action is done on the application level in

terms of the OSI stack.

The number of multicore connections that a device may establish is limited and varies

between devices. For example, an evaluation board may only support up to two multicore

connections at a time, while an X170 router may support eight[7]. This means that special

attention needs to be paid to the structure of an audio network as bottlenecks may occur

due to a lack of available multicores.

The X170 protocol does not allow for the aggregation of output multicores; however a

single output multicore may be distributed to multiple input multicore sockets[8]. This

means that a source audio signal may be patched to an array of destinations, but multiple

sources may not be patched to a single destination.

2.2 Programming for the iPhone OS

The iPhone OS has become a popular platform on which to deploy applications. The

iPhone OS has achieved further popularity since its adaptation from the iPhone to the

iPod Touch and the iPad. In terms of architecture all three of these devices are identical[2].

The only major differences between the iPhone, iPod and iPad in terms of functionality

are the size of the screen and the inclusion of a GSM-based antenna[3]. Of the three

devices, the iPad has the larger screen whereas the iPhone and the iPod have identical

screens, and the iPod is the only device that does not include the option of a GSM-based

antenna.

Of the three devices the third generation iPod Touch was chosen for the research project.

A device with GSM capabilities was not required and in terms of network functionality
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the iPod offers a standard 802.11 b/g wireless antenna. The iPad, albeit similar to the

iPod, was not chosen due to its limited availability.

2.2.1 Specifications

The third generation iPod Touch has the following specifications[3]:

• Arm A8 600MHz CPU

• 256MB Ram

• PowerVR SGX GPU

• Capacitive multi-touch touchscreen with a 480x320 resolution

• 16GB or 32GB storage capacity

• 802.11 b/g wireless connectivity

• iPhone OS 3.1.1 (can be upgraded to iPhone OS 4.1)

2.2.2 Requirements

In order to compile an application for an iPhone OS-based device using Apple’s iPhone

SDK, the following requirements must be met[1]:

• The application must be compiled on an Intel-based Apple system

• The system must have at least 1GB RAM

• The host operating system on which the application will be programmed should be

Apple’s Mac OS X 10.5.7 or later

• Apple’s iPhone SDK needs to be installed using XCode 3.1.3 as the IDE

• A device running iPhone OS 3 or higher

The iPhone SDK offers a simulator on which to test applications before deployment;

however there are further requirements if a user wants to deploy an application onto a

physical device[1]. This comes in the form of a provisioning certificate. This certificate is a

form of digital rights management, commonly known as DRM, which pairs an application

with a device, allowing the application to run on the device.
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2.3 Juce

Juce is a cross-platform application framework written in C++ with a strong focus on

creating audio-centric applications. Using Juce, a user is able to create a consistent

graphical experience across multiple platforms, including Windows, Linux, Apple Mac

OS and iPhone OS operating systems. Programming environments that are explicitly

supported are Microsoft’s Visual Studio, GIT for Linux and Apple’s XCode IDE, including

the iPhone SDK environment[17]. In addition to the benefit of being cross-platform, Juce

also offers a comprehensive API reference guide in the form of a Doxygen generated

document [18].

2.3.1 Features

The current iteration of Juce offers a large variety of features. Some of these features

include[17]:

• cross-platform multi-threading support including synchronisation between threads,

events, thread pools and other features that allow the controlling of threads,

• messaging classes that facilitate event-driven applications including asynchronous

callbacks, timers, etc.,

• rich GUI elements through the use of a look-and-feel subsystem, MDI windowing

and window management system, and other GUI-based components,

• cross platform audio driver classes supporting a variety of audio formats as well as

extensive MIDI support,

• software-based graphic rendering system,

• global logging facilities,

• extensive network communication support,

• support for various cryptographic algorithms,

• zip archive decompression.
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Juce also has a comprehensive core class that handles elements that would otherwise have

to be programmed on a per-operating system basis, such as the management of files and

input/output streams[17].

In addition to these features, the Juce framework includes an application called ”The

Jucer”. The Jucer is a UI component builder application that allows a user to con-

struct custom graphical components based on existing Juce controls. This allows the

user to tailor the behaviour and look of their application depending on the nature of the

application[18].

2.3.2 Targeting Specific Platforms

Juce achieves cross platform compilation by including native libraries specific to each

supported operating system. Depending on the environment, one of the platform specific

classes will be used to compile an application. The targeting of platforms is achieved

through the use of pre-processor directives.

Pre-processor directives are sections of code that are exclusively handled by the compiler

at compile time and are not included in the runtime application[5]. One example of a

pre-processor directive is the #include directive, common to most C-like languages. At

compile time, the compiler will treat the #include directive as if it were replacing that

line with the contents of the file it was including [12]. Pre-processor directives can also

be used to execute specific sections of code depending on the environment variables.

Figure 2.5: Example of using a preprocessor directive to execute iPhone specific code

In figure 2.5, a #if directive is used to only compile a section of code if the targeted

platform is the iPhone. The #if directive is synonymous with an if-statement, where a

block of code will only be executed if a condition is met. The #endif directive is used to

indicate the end of the platform-specific code. In short, all the code between the #if and

the #endif will be executed if the targeted platform is the iPhone OS version 4.

By combining the #include directive with the #if directive, a user can include specific

libraries depending on the platform being used. Figure 2.6 displays a mock-up of this

usage:
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Figure 2.6: Preprocessor directive to include either iPhone or Windows specific code
depending on the programming environment.

This usage of native operating system libraries and pre-processor directives means that an

application will only work for the platform that it has been compiled for. If an application

was compiled in Visual Studio for the Microsoft Windows platform that application will

only run on a Windows platform since the application is compiled into platform-specific

machine code. When using Juce to get a working version of an application for another

platform, that application will need to be compiled by a compiler native to that platform,

such as using Apple’s XCode environment to create a Mac OS version of the application.

2.3.3 Juce Usage

There are two supported methods for including Juce into a project[17]:

• as a statically linked library

• as an ”amalgamated” C++ file

To include Juce as a statically linked library, a user needs to include the #include

<juce.h> directive in the files where Juce code is referenced. When using this method,

the Juce library needs to be compiled separately from the application and acts as an

external resource to the project[17].

An alternative method to including the Juce libraries is to use an amalgamated version of

Juce. This amalgamated version contains the entire Juce library in a single file providing

a conceptually simple method of including the Juce libraries. A problem with this method

is that some compilers may have issues parsing the amalgamated file due to its size. To

use this method, the #include <juce amalagamated.h> directive needs to be used where

any Juce-based class is referenced[17].
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2.3.4 Limitations

The current version of Juce at the time of conducting this research was 1.51. At this

point the iPhone support for Juce was at an immature state, and as such still had several

iPhone OS specific issues. One such issue is in regards to the rotation of applications.

When using the rotation mechanism on an iPhone device certain GUI components become

distorted[19].

2.4 Unos Vision

Unos Vision is a management suite that provides a visual representation of an audio

network and allows users to interact with the devices on that network using the X170

protocol[15]. Interaction between the user and the devices on an audio network is achieved

by providing a graphical interface that[15]:

• monitors each device on an audio network, as well as displaying each device’s status

and parameters,

• allows the user to control the parameters of a device, such as manipulate volume

levels and create relationships between parameters among a variety of devices,

• Allows the user to create connections between devices, including the routing of audio

signals.

At the time of conducting this research, Unos Vision only had support for IEEE1394

networks with Ethernet AVB network support currently in development. The tested

version of Unos Vision is able to interact with an IEEE1394 network through the use

of a Firewire router which bridges an Ethernet-based client hosting the Unos Vision

application to an IEEE1394 network[15].

Figure 2.7 displays a typical network configuration for a digital audio network using a

Unos Vision client:

An audio network will typically consist of audio and routing devices. Multicore routers

act in the same fashion as Ethernet routers as they forward traffic between two different

subnets. In most cases, each device in a subnet will have a device with routing capabilities

as its default gateway so that any routing of multicores and X170 messages between

subnets is managed by that device.
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Figure 2.7: Audio network using a Unos Vision workstation[15]

2.4.1 Features

The current version of Unos Vision offers the following main features[15]:

• Create and destroy multicore connections between devices and manage connections

internal to a device.

• Display desk item data from a device and control the parameters bound to that

Desk Item.

• Establish relationships between parameters and parameter groups, including master-

slave and peer-to-peer relationships.

• Create desk item components by using an alternative version of Unos Vision called

Unos Creator[14].

Unos Vision has no support for creating end-to-end connections between the audio inputs

and outputs of remote devices. Connectivity between devices is handled in the same

fashion as described in section 2.1.2.
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2.4.2 Usage

The Unos Vision application is divided into two main tabs[15]:

• Devices tab

• Connection Manager tab

Figure 2.6 demonstrates the Devices tab which provides an overview of an entire audio

network and displays a summary of the devices for a selected subnet. Container 1 displays

the devices on a specific subnet, as well as the status of each device. Container 2 lists all

the subnets on the network and provides a preview of the devices on each subnet.

Figure 2.8: Devices view of Unos Vision

Figure 2.7 demonstrates the Connection Manager tab, which is divided into six main

containers. The containers 1, 2, 4 and 5 allow the user to create and destroy connections.

The columns of the grid views display the outputs, while the rows display the inputs.

• Container 1 displays all the devices in a specific subnet. By selecting a cross-point

in this container, all the other containers will be updated with the data pertaining

to the devices related to that cross-point[15].

• Container 2 displays the possible multicore sockets for each device, where selecting

a cross-point will create a multicore connection between the devices[15].
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• Containers 4 and 5 allow the user to manage the internal routings of the two devices

selected in container 1, where container 4 represents the source device and container

5 the destination device. For example, the cross-points in containers 4 and 5 allow

a user to connect a multicore sequence to an Analogue, ADAT or AES input or

output[15].

• Containers 3 and 6 display a device’s graphical desk item component, allowing a

user to interact with the parameters of a device[15].

Figure 2.9: Connection Manager view of Unos Vision

2.4.3 Structure

The Unified Modelling Language will be used to describe the functionality and structure of

Unos Vision. The Unified Modelling Language, commonly known as UML and hereafter

referred to as such, provides a visual means to represent the structure, behaviour or

the interactions of an application through several types of diagrams[10]. Three types of

diagrams will be used to demonstrate these attributes; use case diagrams to demonstrate

application behaviour, sequence diagrams to demonstrate interactions, and class diagrams

to demonstrate structure[10].

Figure 2.8 is a Use Case diagram demonstrating the high-level functionality of Unos

Vision. The ”User” and ”X170Stack” icons represent external actors. These are entities

that are not directly involved with the functioning of the application, but are necessary

in the execution of the application. The User actor represents the user that will interact
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with the application, while the X170Stack actor represents the interface between the

application and the actual audio network. The X170Stack is responsible for the sending

and parsing of X170 messages.

The ”Start up”, ”Make connections”, ”Break connections”, ”Load desk items”, and ”Con-

trol parameters” labels refer to use cases. These use cases describe the high-level functions

of the application that the external actors interact with.

Figure 2.10: Use case diagram of Unos Vision

Figure 2.9 is a class diagram that describes the overall structure of the application. Main

areas of focus are:

Network - The Network class provides a virtual representation of the audio network

and allows the application to interact with devices, their parameters and their multicore

connections. The devices in the network object are divided into busses, where a bus is

synonymous with a subnet. The Network class is populated via the NetworkClient class

which interacts with the UMANDLL class

UMANDLL - The UMANDLL class provides an interface between the application and the

X170Stack. This class is responsible for initializing the X170Stack, as well as constructing

and parsing X170 messages.
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Device View and NetworkView - These components are responsible for displaying the

containers in figure 2.6 and 2.5 respectively. Additionally, this class handles some high-

level connectivity logic, such as checking if a connection between two multicore sockets is

possible.

Figure 2.11: Class diagram of Unos Vision.

Figure 2.10, 2.11 and 2.12 demonstrate sequence diagrams focusing on the interactions

between an application and the X170 stack.

Figure 2.10 details the portion of the start-up procedure that is responsible for initialising

the XFNStack and scanning the network for devices.

Figure 2.11 demonstrates the toggling of a firewire multicore connection.

Figure 2.12 demonstrates the establishing of an internal connection.

2.5 Conclusion

This chapter summarised some of the key concepts required to understand an X170-based

audio network focusing on the connection management aspects of the Unos Vision ap-
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Figure 2.12: Sequence diagram summarising X170 communications at Unos Vision start-
up.

plication suite. A description of how an audio signal may be routed has been discussed

and a high level overview of the Unos Vision application has been presented using UML

diagramming techniques. An introduction to the iPhone OS platform and the Juce appli-

cation framework gives a basic understanding of some aspects to consider when porting an

application to a mobile platform, and a possible programming approach to maintaining

cross-platform compatibility has been discussed.
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Figure 2.13: Sequence diagram describing multicore patching.

Figure 2.14: Sequence diagram summarising internal routing of a device.



Chapter 3

Porting Unos Vision

This chapter summarises the process for porting a desktop application to a mobile plat-

form. The iPhone OS development environment is briefly introduced, detailing several

utilities that aid in debugging mobile applications. This is followed by a description of

the modifications required of the mobile application, and finally there is an analysis of

the functionality and the usability of the mobile application performed.

The initial prototype was built to test the underlying functionality of the Unos Vision

application and its compatibility with a mobile platform. It was therefore chosen to limit

the changes implemented into this prototype so that any major issues in the application’s

design could be exposed. This prototype provided a starting point from which a more

suitable mobile-based audio networking application could be based.

3.1 Environment

The Apple iPhone Software Development Kit (iOS SDK) allows a user to create applica-

tions and compile them into iPhone OS compatible Arm machine code using the XCode

Integrated Development Environment. In addition to being able to compile and deploy

an application to an iPhone OS device, the iOS SDK integrates a simulator component

in the the XCode IDE that allows an application to be tested in a simulator environment,

simulating either an iPhone OS 3, iPad or iPhone OS 4 device. Ballarb [2007] [4] recom-

mends to not solely depend on the simulator environment during the testing phase of a

mobile application, but to use the simulator to test application logic and thereafter use

an actual device to test usability. Factors behind this reasoning include [4]:

34
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• The simulator and the device are based on different architectures, where the simu-

lator uses an x86 instruction set and the device uses an Arm instruction set.

• The simulator depends on a mouse pointer for interaction, while the device uses

touch-based interaction. The end-user will interact with the simulator in a different

manner from that of the device.

• Simulator code may work differently from device code.

Another limiting factor of the simulator is that of the hardware configuration. When using

the simulator the application relies on the host computer’s hardware, while the device will

use its own hardware. This may cause the simulator to hide any potential hardware issues

in terms of performance. It is for these reasons that the simulator was only used to test

application functionality in the initial stages of the porting process. For the final stages

of development, the focus was on optimising the application for a physical device.

Apple’s Instruments utility allows a user to measure the hardware resource usage of a

variety of Apple devices, including iPhone OS devices, and can aid a user in identify-

ing hardware bottlenecks. It features a variety of tools that allow a user to customize

which resources to monitor, the majority of which provide a graph-structure for display-

ing the data. For the purpose of the prototype the following tools were used to test the

application’s performance:

• WiFi monitor - Measures the 802.11 wireless antenna’s usage

• Memory monitor - Measures the physical memory and virtual memory usage

• CPU monitor - Measures the CPU load of a device and can distinguish the load

distribution between the operating system and user applications.

3.2 Implementation

This section describes the changes made to the Unos Vision application to get a satisfac-

tory level of functionality on the iPhone OS platform. The implemented changes focused

on providing a basic level of interaction between the user and an audio network. The

main objectives of this prototype were:
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• Get Unos Vision to compile and start up on an iPhone OS device.

• Create and destroy multicore connections, as well as manage the internal routing of

a device.

• Load and control desk item components.

3.2.1 Prerequisites

The XFNDLL and Juce source files have to be compiled as static libraries in the XCode

environment. This will produce a libjuce.a and a libXFNStack.a file, which can be added

as an external resource in the Unos Vision application. This will allow the application to

use the XFNDLL set of classes and the Juce Library with no changes required of the base

code.

When compiling the Unos Vision prototype application the Unos Vision, XFNDLL and

the Juce library source code all need to be compiled to the same architecture. When

deploying to a physical device, all three sets of source code need to be compiled for the

Arm architecture, and when deploying to the simulator environment all three sets of

source code need to be compiled for the architecture of the operating system hosting the

simulator.

3.2.2 Modifications

Several modifications to the application logic and the user interface had to be made before

the prototype was at a useable level.

In the desktop version of Unos Vision, on application start up a modal dialogue window

is presented to the user listing all the IP addresses of the network interfaces on a host

computer. The purpose of this window is so that the user can select the IP address

connecting the host computer with the X170 network. The modal behaviour caused issues

in the iPhone environment where the modal window would not display and would cause

the application to lock-up. Since current iPhone devices have a single wireless interface

called ”en0” [2], this issue was resolved by disabling the modal window and setting the

IP address to the value taken from the ”en0” network interface.

The horizontal layout of the devices view, as displayed in figure 2.6, did not display

correctly due to the limited horizontal screen space of the iPhone device. This view was
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modified so that it had a portrait layout. Additionally, the size of the scroll bars in this

view was increased to accommodate touch-based input.

It was found that six container layout, as displayed in figure 2.7, provided a suboptimal

user experience on a small-screen device. Unos Vision has a tab-based layout that divides

the six containers into six separate tabs, as shown in Figure 3.1, which can be used to

accommodate small-screen devices. The prototype application was modified so that it

would start in this tab-based layout.

Figure 3.1: Screenshot of Unos Vision’s tab-based layout.

The iPhone OS provides an application with a ”sandboxed” environment that manages

the resources that an application has access to [2]. One of the resources that are restricted

is that of access to the file system. The directories that an application has read and write

access to are:

• <Application Home>/Documents/

• <Application Home>/Library/ - including child directories

• <Application Home>/tmp/

To adhere to the sandbox rules, any components of the Unos Vision application that

required access to the file system, including desk items, were modified to use one of the

above directories.

The prototype application was further modified to remove redundancies, such as toggling

the full screen mode of the application. The final effect of these changes can be seen in
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figure 3.2, demonstrating the devices view, the multicore matrix and a desk items control

panel respectively.

Figure 3.2: Screenshots of the final iPhone application prototype.

3.3 Evaluation

After implementing the changes in section 3.2, it was found that the core functionality of

the Unos Vision application was preserved. The prototype was able to provide the same

level of functionality as the desktop application, allowing a user to manage multicore

connections between devices, manage the internal routing of a device and display and

manage desk item components.

An issue that was experienced with the prototype application was that of hardware perfor-

mance. When the application interacts with devices on an audio network and downloads

desk item files, it needs to parse all the data that it receives. This can be a hardware

intensive process in terms of network bandwidth and CPU usage. Figure 3.3 shows a

screen captured from Apple’s Instrument Utility over a period of one minute. This is a

recording of the prototype application while it was downloading desk item data from each

device in a network containing four X170 devices.

It can be seen that during this process the device’s wireless network and memory usage

is at 100%. The CPU spends the majority of this time interval at 100% usage with

usage dropping at irregular intervals. This performance issue becomes apparent when

navigating the tab-based layout of the application as response times of interactions from

the user become large. This prompted an evaluation of the user interface so as to provide
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Figure 3.3: 1 Minute recording of Apple’s Instrument utility measuring the prototype’s
hardware usage.

a basis for designing a simplified means of interaction with the application that required

minimal interactions from the user.

3.3.1 User Interface Evaluation

A simplified version of the Keystroke-level model was used in order to test the effective-

ness of the tab-based GUI. The Keystroke-level model, commonly known as KLM, is a

predictive evaluation model that aims to estimate the execution time of a task by creating

an abstract representation of that task [20]. The analysed tasks are represented by the

actions that are required in order to perform a function. For the purpose of this project

the following abstractions were used:

• ”C” to represent the user tapping the screen

• ”F” to represent the user finding a desired cross-point by using the scroll bars on

each axis of the grid.

Any character encased in square brackets, such as ”[F]”, portrays an optional operator

that may be required under certain circumstances.

Two scenarios were used to test the effectiveness of the user interface, each consisting of

the processes as mentioned in section 2.1.2. In both scenarios, the ”[F]” variable indicates

a user navigating the grid structure for the required cross-point. This variable is optional

since its occurrence is related to the number of items on either axis of the grid structures.

In some cases, the small screen of the iPhone OS device prevents all items from being
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displayed, thus requiring a user to scroll along the items of a grid to find the desired

cross-point.

Table 3.1 and 3.2 each summarise their respective scenarios and provide the number of

interactions required for the actions in terms of a worst and best case scenario, where the

worst case scenario assumes all optional interactions are required to complete a task and

the best case scenario excludes any optional tasks.

In both scenarios it is assumed that the device grid of the connection manager view is set

to the initial subnet.

Scenario 1

This scenario involves connecting two end-points that exist on the same subnet.

Table 3.1: KLM analysis on creating a connection between 2 devices in the same subnet.
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Scenario 2

This scenario involves connecting two end-points that exist on remote end-points. The

shaded region represents the task of connecting two routers in a subnet, thus bridging

two remote subnets. This action needs to be repeated for every subnet dividing the two

desired end-points.

Table 3.2: KLM analysis on creating a connection between 2 devices in remote subnets.

Looking at the data from Scenario 1, it can be assumed that any connection between two

end-points in the same subnet should take between seven and eleven actions to complete.

Alternatively, looking at the data from Scenario 2, an equation to describe the action of

connecting two end-points is derived in figure 3.4.

Figure 3.4: Equation describing relationship between the number of subnets and the
number of actions required to complete a task.

This attribute of the tab-based layout is demonstrated in figure 3.7. It can be said
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that when establishing connections between devices on different subnets, the number of

interactions required to create a connection is proportional to the number of subnets that

need to be traversed.

Figure 3.5: Graph showing relationship between the number of subnets in a network and
number of actions required to complete an end-to-end connection.

3.4 Summary

This chapter provided a description of the process undertaken when porting an appli-

cation. While the application logic functioned correctly, the user interface provided an

unsatisfactory level of usability. It was thus determined that for the prototype application

to become feasible, it would require a modification of the application logic to provide a

simplified means of controlling an audio network.



Chapter 4

Patchbay Analysis

In chapter three it was suggested that the tab-based interface of the Unos Vision appli-

cation did not provide an effective means of control over an audio network. This chapter

explores an alternative ”plug” oriented patchbay mechanism to handle the connection

management component of Unos Vision.

An overview of connection management systems is discussed, providing some comparisons

to the X170 mechanisms for network connection management. Several patchbay designs

are described and a grid-based mock up is designed and analysed. This mock up is

then compared to the native Unos Vision mechanism for connection management and it

is concluded that a patchbay alternative to the Unos Vision application would provide

benefits in terms of user interaction.

4.1 Patchbays

A patchbay is a system that allows for audio signals to be routed between devices. They

are commonly classified into two groups [9]:

• Hardware patchbays

• Software patchbays

In a hardware patchbay system, analogue audio signals are routed using physical cable

connections between an audio source, an intermediate patchbay device and an audio des-

tination [9]. In digital audio networks, audio signal routing is managed by a control
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application that initiates the connections between audio devices [9]. In terms of patching

audio signals, a hardware patchbay has the disadvantage of requiring individual physi-

cal cable connections between end-points for each audio signal that needs to be routed,

while in a software patchbay a single cable connection may support an array of virtual

connections between devices, thus reducing cable clutter [9].

For the purpose of this research project only software-based patchbays will be discussed

and from here on patchbays will refer to software patchbays.

4.1.1 Plug Oriented Patchbay

Unos Vision currently provides a user with low-level access to an audio network by allowing

a user to control the multicore routing between devices as well as the internal routing of

devices. The term ”plug” oriented refers to the abstraction of multicores away from the

user, thus preventing a user from managing the routing of multicore connections. This

means that the user controls the end-to-end connections between the plug parameters

of devices while the same underlying application logic controls the multicore routing,

facilitating the end-to-end routing. This has the advantage of providing a simpler means

of controlling a network since the user’s focus is shifted to only managing the end-to-end

connections in an audio network.

Patchbay Variations

Following is a list detailing four common patchbay approaches [9] [16]:

• List-based

• Tree-view-based

• Tree-grid-based

• Graphical

List-based patchbays display all the plugs available on an audio network generally using

two list structures, one focusing on outputs and the other on inputs as shown in figure

4.1. A user can specify which two plugs to route audio between by selecting an item from

each list [16].
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Figure 4.1: mLan List-based Patchbay [16]

Figure 4.2 demonstrates a Tree-view-based patchbay. This approach is similar in structure

to the list patchbay but instead of listing all the available plugs on devices in an audio

network, a collapsible tree-like structure is used to group the plugs by their associated

device and each device is grouped by its subnet or bus[9].

Figure 4.2: NAS Explorer Patchbay [16]

Figure 4.3 demonstrates a tree-grid-based patchbay displaying all the busses, devices and

a device’s associated plugs using a grid structure. Each axis is populated with a tree-view

structure containing busses, devices and plugs, where each bus is expandable to reveal the

devices in that bus and devices are expandable to reveal all the plugs on that device [9]

[16]. The x axis of the grid is used to represent outputs and the y axis represents inputs.

A user can specify between which two plugs an audio signal will be routed by selecting a

cross-point between the desired two plugs.
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Figure 4.3: Tree-Grid Patchbay [16]

Figure 4.4 demonstrates a graphical patchbay that uses a visual representation of each

device and its plugs to represent an audio network. In most systems, a user is required to

select the desired input and output plugs on the device graphic to specify the end-points

of a connection [?] [16].

Foulkes [2008] analysed the number of clicks required to navigate to the desired plugs and

to create a connection between those two plugs in each of the above approaches. The

results are summarised in Figure 4.1.

Table 4.1: Table of results for Foulkes’ [2008] study on the number of interactions required
to complete a task on various patchbay solutions.

Foulkes [2008] determined that the tree-grid patchbay would be the most optimal solution

to audio network connection management even though it is not the most optimal solution

in terms of the number of clicks. He goes on to say the tree-grid’s benefit comes from

not having to select the input and output plugs explicitly when attempting to route an
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Figure 4.4: Yamaha mLan Graphic Patchbay[16]

audio signal. Figure 4.5 demonstrates this implicit behaviour; by selecting a cross-point

between two plugs in the grid structure, a user is specifying both the input plug and the

output plug in a single action. The grid structure can be used to display the structure of

the network in a logical manner and the cross-points can be used to display the connection

status between any two plugs [16].

Figure 4.5: Grid-based patchbay mock-up

4.2 Evaluation of Patchbay Design

To test the effectiveness of the tree-grid plug oriented patchbay solution the simplified

version of the Keystroke-Level Model from section 3.3.1 was used. This allows for a direct
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comparison to be made between the plug oriented and Unos Visions native connectivity

approach.

4.2.1 Scenario

Consider using the plug oriented approach to connection management to fulfil scenarios

1 and 2 section 3.3.1. Both of these scenarios will use the same actions since only a

single grid-structure is used and no navigation between tabs is required. This applies to

scenarios where a connection is established between two devices in the same subnet and

when connections are established between remote subnets.

Table 4.2: KLM analysis on tree-grid patchbay.

Using the data from table 4.2, the worst case scenario for routing audio between any two

end-points requires six actions from the user and in the best case should require three

actions. Figure 4.6 demonstrates this behaviour and combines the data from table 3.2 so

that a comparison can be made with the native Unos Vision design.

Figure 4.6: Graph comparing tree-grid patchbay to the native Unos Vision design.

Figure 4.6 shows that, even in small networks consisting of single subnets, the plug ori-

ented patchbay approach requires fewer interactions form the user to effectively manage
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an audio network. One scenario omitted from figure 4.2 is that of managing the routing

between devices in the same subnet. In section 3.3.1, it was said that this scenario would

require seven interactions for the best case scenario and eleven in the worst, which still

compares unfavourably to the plug oriented approach.

4.3 Conclusion

In terms of interaction design and by using predictive evaluation methods it can be con-

cluded that a plug oriented patchbay design using a tree-grid approach provides a higher

level of usability when compared to the traditional design of the Unos Vision tab-based

layout. A grid-based plug oriented approach is able to give an end user an overview of an

audio network and can simplify the management of an X170 audio network by limiting the

number of actions required to manage the routing of audio signals between end-points.

The disadvantage is that it does not provide the same level of control over multicore

utilization.



Chapter 5

Patchbay Implementation

In chapter four it was suggested that a plug oriented patch bay system, when compared

to the native tab-based layout of the Unos Vision application suite, would provide a

more satisfactory means to control an audio network. This chapter explores extending

the prototype application developed in chapter 3 through the addition of a patch bay

component. The focus of the prototype will be on the low-level logic requirements of a

patchbay system to determine whether an end-to-end connectivity solution based on the

X170 protocol is possible.

Initially a list of requirements relating to a patchbay system is discussed, detailing some

mechanisms that need to be implemented to make the X170 protocol function as an end-

to-end connectivity solution. A pseudo code solution is developed to aid the integration

process of the patchbay logic and the structure of the proposed patchbay solution is dia-

grammatically explained using the UML modelling techniques discussed in section 2.4.3.

Finally, the patchbay design is implemented so that any issues regarding the programming

of such a system are exposed.

For the purpose of this project, the prototype was developed as a proof-of-concept ap-

plication designed as an alternative means of connection management. It was therefore

limited to only function within a single subnet. A basic algorithm on which to base a

potential cross-subnet implementation is proposed, but it lacks the functionality of a full

plug-oriented patchbay system and is not a feasible solution.
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5.1 Goals

The goals of this prototype can be summarised into the following points:

• Identify the requirements of a patchbay that uses the X170 protocol to manage a

network.

• Identify any shortcomings of the X170 protocol when implementing it as a patchbay

solution.

• Identify any issues with the Unos Vision application, Juce application framework

and the XFNDLL component when implementing a patchbay solution.

5.2 Patchbay Design

This section defines the logic and design of a patchbay component concentrating on theo-

retical concepts. The basic requirements of a patchbay system are defined and modified to

complement the Unos Vision application. A possible algorithm is proposed and a model

is generated to define where the Unos Vision needs to be modified to prove patchbay

capabilities.

Following is a proposed list of high-level requirements that a grid-based patchbay appli-

cation should be able to perform [16]:

• Establish audio connections between device plugs.

• Break audio connections between device plugs.

• View network topologies at different levels (Network, Bus and Device levels).

Figure 5.1 displays an updated version of the use case diagram in chapter 2 that reflects

the above requirements. Due to the difference in the way that Unos Vision and the

plug oriented patchbay solution manage connections, the ”Make connections” and ”Break

connections” use cases are considered to be different from the connection management

approach of a plug oriented connectivity solution, hence the additions of a ”Make Plug

Connection” and ”Break Plug Connection” use cases.
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Figure 5.1: Updated version of Unos Vision use case including patchbay components.

5.2.1 Patchbay Algorithm

In chapter 2 the X170 protocol was discussed and it was mentioned that the protocol

provided no means of establishing a connection directly from an audio input to an audio

output between remote devices. The user needs to first establish a multicore connection

between the devices before an audio signal is routed. It is for this reason that a list

of requirements needs to be compiled relating to the special mechanisms required for

managing multicore connections.

The following considerations need to be made when implementing a plug oriented patch-

bay that uses the X170 protocol:

• Multicores need to be managed by the patchbay application since the user only

interacts with audio inputs and outputs.

• If there are no active multicore connections between two devices that need to be

patched, a new multicore connection needs to be created. If there is an active

multicore connection, that multicore should be reused. This limits the number of

active multicore connections between any two devices.

• If a multicore connection exists between two devices and there are no active mul-

ticore sequences in that multicore, that multicore needs to be disconnected. If two
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end-points are being disconnected and there are still active multicore sequences in

that multicore, the multicore must not be disconnected. This limits the number

of inactive multicore connections in an audio network and prevents any multicore

connections from being unintentionally disconnected while an audio signal is still

being routed.

• If an error occurs during the multicore connection process or while managing the

internal routing of a device, any changes to the multicore connections between de-

vices and to the internal routing of devices need to be reverted. This prevents any

unintentional changes to a network without the user’s knowledge.

Annex 5.2, 5.3 and 5.4 describe a basic algorithm for providing end-to-end connection

management in an X170 network. These algorithms do not indicate any form of error

handling, so if an error occurs during the patching process and changes made to the

network will persist until the errors are manually fixed.

There are three scenarios to handle when it comes to patchbay routing.

• Connecting an audio input on a device to an audio output on that same device

• Connecting an audio input on a device to an audio output on a remote device on

the same subnet

• Connecting an audio input on a device to an audio output on a remote device on a

remote subnet

Figure 5.2 provides a pseudo code algorithm for handling these three scenarios.

Figure 5.2: Pseudo code handling the 3 possible connection scenarios.

When a connection is required between two audio pins on the same device a simple X170

message can be constructed to handle the procedure. There is no need for a complex

routing algorithm since an audio signal can be streamed without the need of a multicore
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connection. This means that scenario 1 can be achieved in a single action; construct an

X170 connect message using the specified audio pin addresses.

Figure 5.3 describes the process for creating a connection between audio pins on remote

devices that are on the same subnet, as described in scenario 2.

Figure 5.3: Pseudo code handling the routing of an audio signal between 2 devices on the
same subnet.

Figure 5.4 describes the process for creating a connection between audio pins on remote

devices that are on remote subnets as described in scenario 3. This section is subdivided

into for smaller components:

1. Connect the source device to a router

2. Find a route between routers until the destination subnet is found

3. Connect the final router to the destination device

4. Connect the audio pins on both devices to the same multicore sequence

5.2.2 Object Model and Sequence Diagram

Figure 5.5 demonstrates the objects with which the patchbay component will need to

interact. The objects have the following functions:

The MainWindow object is responsible for the overall application layout and behaviour.

All components, including the NetworkView tab and its children tabs are added to the

application’s interface in this class.
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Figure 5.4: Pseudo code handling the routing of an audio signal between 2 devices on
remote subnets.

The NetworkView object is responsible for the layout of the Connection Manager tab in

figure 2.7 and contains the method responsible for grid cross-point button clicks. This is

the class that contains the patchbay connection logic.

The PatchBayMatrix inherits from the MatrixComponent and contains the code to rep-

resent the patchbay grid object. This is the class that is responsible for representing the

devices on the MatrixComponent and contains the logic for expanding and collapsing a

subnet or device group.

The Network object is a singleton object that represents the network. This class allows

access to the devices on a network.

The Bus, Device, MulticoreSocket and DeviceStateMatrix represent the subnets, devices,

multicore sockets and the internal routings of a device respectively.

Figure 5.6 displays a sequence diagram outlining the basic flow of a grid button click.

This diagram has been simplified to abstract any interactions with lower-level classes
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Figure 5.5: Object model of Unos Vision patchbay prototype.

and entities, such as the UMANDLL and XFNDLL components, since they have been

described in chapter 2.

5.3 Implementation

This section concentrates on the integration and implementation of a patchbay component

into Unos Vision. The structure of the application will be based on the design listed in

section 5.2 and will be used as a prototype to demonstrate the feasibility of a plug oriented

patchbay component in the Unos Vision application.

5.3.1 Tree-Grid Structure

In chapter 4 it was concluded that a tree-grid approach to connection management pro-

vides a more effective means of managing connections when compared to the native Unos

Vision design. The MatrixComponent class is able to provide some of the functionality of

a tree-grid design.

The MatrixComponent handles the process of creating a grid object which consists of a

matrix of buttons. Each button has a toggle state which is used to track the current

status of a cross-point. The class inheriting from the MatrixComponent needs to pass

two component arrays to the MatrixComponent, one for the grid row and the other for
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Figure 5.6: Sequence diagram of a patchbay grid button click.

the grid column, each consisting of labels. The MatrixComponent then creates a grid

based on these arrays and adds button listeners to each cross-point. This listener passes

the matrix object containing the cross-point, the button clicked and the row and column

index of the button to the gridButtonClicked() method in the NetworkView.

The MatrixComponent has no mechanisms for providing a tree-grid-based grid approach

so the GridMetaData class in annex A.1 was created. The GridMetaData class describes

each individual row and column in terms of the group it represents, its index in its

parent’s group and whether it is in a collapsed state. When a cross-point is clicked, the

NetworkView class can determine the type of the cross-point as demonstrated in annex

A.2. If the cross-point is neither an audio input nor an audio output the group is expanded,

else the patchBayConnect() method is called.

The logic that expands and collapses a group is contained in the PatchBayMatrix class

and is demonstrated in annex A.3. The toggleGroup() method uses the GridMetaData

class to traverse the array that contains the labels for each axis. Once it has found the

row or group to expand, it retrieves the device or subnet object from the network class
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and adds its children to the array. The current grid object is then cleared and reinitialised

using the new arrays containing the added children. Collapsing groups work in a similar

fashion except that labels are removed from the arrays.

The initial populating of the grid is done by iterating through the network object and

adding each subnet to the row and column array in the PatchBayMatrix class, as shown

in annex A.4.

5.3.2 Connection Management

The connection management component of the patchbay is handled in the NetworkView

class in the gridButtonClicked() method. As with the toggleGroup() method, the connec-

tion management component uses the GridMetaData class to parse the network object.

In annex A.4 the GridMetaData class is used to get the indices of the source and desti-

nation subnets, devices and audio pins with respect to its parent Network, Subnet and

DeviceMatrixState class respectively. Shown in annex A.5, these values are passed to the

patchBayConnectJob() method which determines if the connection is an internal routing

job, a routing between two devices on the same subnet or a routing between two devices

on different subnets. The application determines whether a connection is being created

or destroyed by checking the current status of the cross-point.

The procedure for handling the internal routing job is simple as it requires no routing

logic. Annex A.6 demonstrates the procedure for handling such an event using the De-

viceMatrixState’s object from the source device to call the native handlePatchRequest()

method.

The handling of the routing between devices in the same subnet becomes more com-

plex when compared to the internal routing mechanism and as such is divided into two

main components; selecting the correct multicore connection between the two devices and

selecting a common, inactive multicore sequence between the two devices.

Annex A.7 shows the establishing of the multicore connection between the two devices.

The first part of this procedure iterates through all the multicore sockets on the source

and destination devices in an attempt to find an already established multicore. If this

fails, a new multicore connection is created. A wasMcCreated Boolean variable allows the

application to track changes made to the network so that any changes may be reverted

in the case of a patch job failing. The setPatchBayMulticore() method is responsible for
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the actual creation of the multicore stream between the two devices and if this method

fails, a false value is returned to indicate this failure to the calling function.

Following Annex A.7, annex A.8 demonstrates the high-level process of managing the

internal routing of both devices. The wasMcCreated variable is used to undo any pre-

viously modified multicore connections if the setPatchbayInternalRouting() method fails

to correctly handle the internal routing of both the source and destination devices. The

setPatchBayMulticore() method is called using the inverse of the createCon variable to

revert the changes.

Interacting with Subnet, Device and MulticoreSocket objects has been achieved by using

the inbuilt indexing system. This index allows:

• A multicore socket to be accessed relative to the other multicores in a device.

• A device to be accessed relative to the other devices on a subnet.

• A subnet to be accessed relative to the other subnets on a network.

In addition to this indexing feature, each Subnet, Device and MulticoreSocket object has

an alternative means of being identified. For example, an application is able to identify

whether a Device object refers to a router or whether a MulticoreSocket is an input or an

output. The DeviceMatrixState has no such facilities. The DeviceMatrixState is a simple

grid-like structure that contains two arrays, each describing a row or column using a string

object, and a set of cross-points representing the state of the internal connections on a

device. This means that there is no explicit means of distinguishing a specific cross-point

as being either a multicore sequence or an audio input or output.

To define the cross-points in a DeviceMatrixState an application needs to use some form of

string comparison or regular expression to identify the column or row type. For the pur-

pose of patching multicore sequences to audio inputs and outputs, a method using string

comparisons was used. This was because only multicore sequences need to be iterated to

connect a user selected audio input or output to an application selected multicore.

Annex B9 shows the procedure for identifying a multicore sequence in a DeviceMatrixS-

tate using a string tokenizer and direct string comparisons. A multicore sequence in a

DeviceMatrixState takes the form of ”MulticoreA B”, where the first nine characters indi-

cate that the cross-point belongs to a multicore, the ”A” represents the multicore socket

index and ”B” represents the multicore sequence number.
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Once a multicore sequence in a DeviceMatrixState object has been identified the code in

annex A.10 is executed which checks if the point is already connected to the desired audio

input or output. If it is not, a connection is created by calling the handlePatchRequest()

method of the DeviceMatrixState class. Annex B.10 also demonstrates a mechanism for

reverting changes if the process does not complete. The wasConCreated, srcConCreated

and destConCreated Boolean variables monitor the state of the connection creation process

allowing a decision to be made as to what changes need to be reverted to return the internal

routing to its previous state.

Once the multicore connection has been established and the internal routing has success-

fully been patched, the patchConnectJob() method returns a true value is returned to the

gridButtonClicked() method in the NetworkView class which then toggles the state of the

patchbay grid button. Figure 5.7 displays the final product running on an iPhone OS

device.

Figure 5.7: Screenshots of the final patchbay implementation running on an iPhone OS
device.
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5.4 Limitations of the Prototype

The discussed implementation of the patchbay prototype does not provide a real-time

view of the network status. On start-up, the application does not pre-scan the network

to check for any active patchbay connections between audio pins. Any changes made to

the network by any other client applications on an audio network are not detected by the

prototype.

The prototype does not allow for the routing of audio signal across subnets and is limited

to routing between audio pins in the same subnet.

The prototype has a heavy reliance on the desktop implementation of Unos Vision. Var-

ious attributes of audio networks, such as the establishing of clock sources and sampling

frequencies, need to be set by a desktop version of Unos Vision as the iPhone OS prototype

has no mechanisms for setting these options.

When destroying connections, the prototype does not check for any active sequences in a

multicore socket and thus does not destroy a multicore connection between two devices.

This will leave unused multicore connections in an audio network.

5.5 Testing

The prototype application was designed to test the possibility of implementing automatic

routing mechanism between devices in the same subnet. A simple audio network consisting

of two evaluation boards, a wireless router, the iPhone prototype application and a Unos

Vision desktop client was created to test the functionality of the prototype. Figure 5.8

shows the topology of the audio network. The router in figure 5.8 refers to a standard

Ethernet router with wireless capabilities and not an X170-based router.

5.5.1 Testing Scenarios

The following list contains the high-level functionality that was tested:

• The ability to correctly represent a network in a grid environment.

• The ability to create a patch job between two audio pins on the same device.
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Figure 5.8: Network topology of the testing environment.

• The ability to create a patch job between two audio pins on the remote device.

To test the above functions four scenarios were defined:

1. Load the patchbay program from a fresh instance. This will determine if the proto-

type application scans the network and correctly represents the devices.

2. Create and destroy an internal connection from the MP3 player to Analogue Speaker

3. This would test the ability to manage the internal routing capabilities of the

prototype.

3. Create and destroy a connection from the MP3 player to Analogue Speaker 1. This

would test the ability to manage the internal routing mechanisms as well as the

multicore management of the prototype.

4. Create a connection from the MP3 player to Analogue Speaker 1 and create and

destroy a connection between the MP3 player and Analogue Speaker 2. This would

test the ability to manage the internal routing mechanisms as well as the concept

of multicore reuse when dealing with multicore management.
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Expected Results

1. The patchbay grid should display the network topology in a grid-like structure.

2. When the cross-point between AnIn1 and AnOut3 is selected no multicore connec-

tions should created and audio should stream from the MP3 player to analogue

speaker 3. When the cross-point is selected for the second time, the connection be-

tween AnIn1 and AnOut3 should be destroyed and audio should not be streamed.

3. When the cross-point between AnIn1 and AnOut1 is selected a multicore connec-

tion between the two devices should be created, the internal routing of each device

should be correctly set and audio should be streamed from the MP3 player to ana-

logue speaker 1. When the cross-point is selected for the second time, it is expected

that the connection between AnIn1 and AnOut1 is destroyed and audio is no longer

streamed. Since no mechanisms have been implemented for destroying multicore

connections when no streams are active, it is not expected that the multicore con-

nection will be destroyed.

4. For scenario 4, it is expected that when the cross-point between AnIn1 and AnOut1

is selected, a multicore connection between the two devices will be created, the

internal routing of each device will be correctly set and audio will be streamed from

the MP3 player to analogue speaker 1. When the cross-point between AnIn1 and

AnOut2 is selected the multicore connection between the two devices will be reused,

the internal routing of each device will be correctly set and audio will streamed from

the MP3 player to analogue speaker 1 and analogue speaker 2. When the cross-point

between the AnIn1 and AnOut2 is selected for the second time, the connection

between AnIn1 and AnOut2 will be destroyed and audio will not be streamed to

Analogue Speaker 2. The multicore connection and the internal routing of the Eval

Board 2 should remain unchanged, and the internal routing from AnOut1 to a

multicore sequence should remain unchanged.

To confirm the behaviour of the application and measure the results the Unos Vision

Desktop Client was used as a monitoring tool to scan the multicores in the network and

the internal connections of the devices. For a scenario to pass its behaviour would have

to match that of the expected results listed above.

Results

• The prototype successfully displayed the network structure in a tree-like structure.
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• A connection was successfully established between the two audio pins and audio was

played from Analogue Speaker 3. No additional multicore connections were created.

On disconnection of the audio pins the stream was halted and Analogue Speaker 3

stopped playing audio.

• A connection was successfully established between the two devices and audio was

allowed to stream from the MP3 Player to Analogue Speaker 1. When destroying

the connection, the audio stream was discontinued and Analogue Speaker 1 stopped

playing audio. The internal connections were destroyed, but the multicore connec-

tion remained.

• The first connection action completed successfully resulting in audio being streamed

from the MP3 player to Analogue Speaker 1. When the connection between AnIn1

and AnOut2 was established, audio continued being streamed to AnOut1 and was

now being streamed to AnOut2, resulting in both Analogue Speaker 1 and Analogue

Speaker 2 playing audio. No additional multicore connections were created and both

streams was properly routed using a single multicore connection. When destroying

the connection between AnIn1 and AnOut2, the multicore connection was left intact

and the internal routing of Eval Board 2 was left unchanged. Analogue Speaker 1

still played audio and the internal routing of Eval Board 1 was correctly modified

to stop the streaming of audio between AnIn1 and AnOut2.

5.6 Summary

This chapter summarised the process for designing and implementing a simple plug

oriented patchbay application interacting with audio devices using the X170 protocol.

Through the use of various UML diagramming techniques and pseudo code algorithms,

a basic model was developed. This model provided the basis on which to structure a

prototype application based on the Unos Vision Application.

When testing the application it was found that it provided sufficient mechanisms for

creating connections within a single subnet. The application did however have issues

of not destroying inactive multicore connections resulting in the possibility of a network

becoming fragmented. This issue of fragmentation may become more apparent in networks

consisting of a large amount of devices.
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The ability to route multicores across subnets has been discussed with a basic starting

algorithm proposed, but more work needs to be done to develop an algorithm that will

handle all the requirements of cross-subnet multicore routing.



Chapter 6

Conclusion

The main objective of this research project was to design a portable audio networking

application that will provide an audio engineer the flexibility of being able to control an

audio network from any location. The application needed to represent the topology of an

audio network and be able to manage the connections and devices within that network.

A prototype based on a desktop application was developed for the iPhone OS. The proto-

type was analysed using a predictive analysis technique which resulted in the conclusion

that the application interface and logic needed to be redesigned. After analysing alternate

methods of network connectivity a new prototype was designed and implemented. After

comparing the two prototype applications it was discovered that the redesigned proto-

type provided better mechanisms for controlling audio networks, but lacked the technical

functionality to completely replace a desktop-based audio connectivity solution.

6.1 Outline

It was decided to base the application off of an existing audio network application due

to the complexities and the vast requirements of an audio networking application. For

this purpose the Unos Vision application suite was chosen. In chapter 2 the capabilities

of Unos Vision and its structure is discussed, providing descriptions on the underlying

X170 protocol that enable Unos Vision to communicate with audio devices. During the

analysis, it was discovered that Unos Vision is based on the Juce application framework

which provides support for cross-platform compilation. One of the platforms supported
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by Juce is the iPhone OS, which motivated the decision of using the iPhone OS as the

platform for the mobile application.

Chapter 3 describes the process for porting the Unos Vision application to the iPhone

OS to create an initial prototype. This prototype was used to identify weaknesses in the

design of Unos Vision in situations where screen space is limited. It was concluded that

the native design of Unos Vision provided an unsatisfactory means with which to control

an audio network as the interface was too complex for a small-screen device.

Chapter 4 explored the possibility of modifying the Unos Vision application to provide

a ”plug” oriented patchbay solution. Various connectivity methods were analysed and a

tree-grid patchbay was chosen. This design was then compared to the native Unos Vision

design and it was found that the patchbay solution provided a more optimal means of

control over an audio network when using small-screen devices.

Chapter 5 discusses the design, integration and testing of a tree-grid patchbay solution

based on the Unos Vision application. A simple prototype that handled the routing of

audio signals within a subnet was built so that any immediate issues with the patchbay

logic concerning the X170 protocol could be exposed. It was concluded that a patchbay

solution using the X170 protocol is possible, but extensive work needs to be done to

provide an optimal method for routing audio signals across subnets.

6.2 Success of the Project

The objective of this project was to provide a mobile audio network connectivity solution

that would provide a high level of control over an audio network. By analysing the results

from section 5.5 it can be determined that this objective has been partially achieved.

The final prototype provided control over an audio network as, but the establishing of

end-to-end connections was limited to patching audio pins that were in the same subnet.

Additionally, omissions of some connection management rules in the prototype’s logic

meant that multicore connections managed by the prototype could become fragmented.

Some solutions were proposed detailing how to improve the prototype but further work

is still required to develop an optimal mobile application that can substitute a desktop

application.
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6.3 Extensions

Optimisation of the Unos Vision GUI

Many of the features of Unos Vision are inaccessible due to the touch-based inter-

action of the iPhone OS. The prototype application needs to be analysed from a

Human-Computer Interaction perspective so that the user interface can be optimised

for the iPhone OS and other touch-based platforms.

Removal of desktop application dependency

The prototype application has a heavy reliance on a desktop application setting

up the various aspects of an audio network, such as clock synchronization between

devices, before being able to establish connections between devices. The backend

of the application requires further work to optimise the connectivity aspects of the

application so that it no longer relies on the desktop version of Unos Vision.

Extending the routing algorithm

The prototype is unable to route audio signals across subnets. An algorithm may be

developed to allow for this functionality keeping in mind the requirements mentioned

in chapter 5.
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Appendix A

Patchbay Source Code Samples

A.1 GridMetaData Class

71



A.2. GRIDBUTTONCLICKED() METHOD IN THE NETWORKVIEW CLASS 72

A.2 gridButtonClicked() method in the NetworkView

class



A.3. CODE SAMPLE FROM TOGGLEGROUP() METHOD 73

A.3 Code sample from toggleGroup() method



A.4. POPULATING OF GRID OBJECT 74

A.4 Populating of Grid object

A.5 Code sample distinguishing the different patch

job types



A.6. CODE TO ESTABLISH A CONNECTION BETWEEN 2 AUDIO PINS ON THE
SAME DEVICE 75

A.6 Code to establish a connection between 2 audio

pins on the same device

A.7 Code sample demonstrating the selection and

creation of a multicore connection between 2 de-

vices in the same subnet



A.8. HIGH LEVEL CODE SAMPLE HANDLING INTERNAL CONNECTIONS OF 2
DEVICES IF A MULTICORE CONNECTION HAS BEEN ESTABLISHED 76

A.8 High level code sample handling internal con-

nections of 2 devices if a multicore connection

has been established

A.9 Work-around code distinguishing multicores from

audio pins



A.10. SAMPLE CODE THAT REVERTS NETWORK CHANGES IF AN ERROR
OCCURS IN THE CONNECTION PROCESS 77

A.10 Sample code that reverts network changes if an

error occurs in the connection process


