BUILDING A ROBUST FACIAL RECOGNITION SYSTEM BASED ON GENERIC TOOLS

Submitted in partial fulfilment
of the requirements of the degree of

BACHELOR OF SCIENCE (HONOURS)

of Rhodes University

David Pilkington

Grahamstown, South Africa
November 7, 2011
Abstract

Many software packages offer tools for image processing, manipulation, and recognition. These tools are designed for the recognition of general images and this design for generic recognition has various weaknesses. When considering the use of these generic tools in the design of facial recognition system, these weaknesses may limit the robustness of the system. These weaknesses include the negative effect background noise has on the recognition rate, as well as the negative effect that variable lighting has on the systems performance. The introduction of preprocessing improves the systems performance, especially on images with noisy backgrounds, therefore resulting in a more robust system.
ACM Computing Classification System Classification

I.4.8[Scene Analysis]: Object recognition
I.4.6[Segmentation]: Pixel classification
G.1.2[Numerical Linear Algebra]: Eigenvalues and eigenvectors (direct and iterative methods)
I.5.4[Applications]: Computer Vision
Acknowledgements

I would like to acknowledge the financial and technical support of Telkom, Tellabs, Stortech, Eastel, Bright Ideas Project 39, and THRIP through the Telkom Centre of Excellence in the Department of Computer Science at Rhodes University.

I would also like to thank James Connan for the help, support, and guidance offered during the course of this year. Thank you for the many meetings discussing not only project related work, but also work currently being done in other fields, peeking my interests and broadening my horizons.

Thank you to all my family and friends for the constant encouragement offered throughout the year, and especially to my parents who have never stopped believing in me.

And finally, a special thank you to Kelsey Harvey for the love and support offered throughout the year. Without the constant encouragement offered by you, this document and year would never have been completed.
Contents

1 Introduction .. 5
 1.1 Background and Motivation 5
 1.2 Research Problem .. 6
 1.3 Methodology .. 6
 1.4 Goals ... 6
 1.5 Document Layout ... 7

2 Related Works ... 8
 2.1 Introduction ... 8
 2.2 Facial Detection ... 9
 2.2.1 Attentional Cascade 9
 2.2.2 Statistical Models 11
 2.3 Facial Recognition .. 13
 2.3.1 Principle Component Analysis 13
 2.3.2 Machine Learning 16
 2.3.3 Hybrid Systems 18
 2.4 Image Processing ... 19
 2.4.1 Segmentation 19
 2.5 Chapter Summary ... 22

3 Benchmark System ... 24
 3.1 Introduction ... 24
 3.2 Design ... 24
 3.2.1 Image Database 25
 3.2.2 Testing Framework 25
 3.3 Implementation ... 26
 3.4 Benchmarking .. 27
 3.4.1 Hardware Specifications 27
CONTENTS

3.4.2 Benchmark Results ... 27
3.4.3 Analysis of Results ... 28
3.5 Identified Weaknesses .. 28
3.6 Proposed Solutions .. 29
3.7 Chapter Summary ... 30

4 System Design and Implementation 32
4.1 Introduction .. 32
4.2 Overall System Design .. 33
4.3 Face Detector .. 33
4.4 Skin Segmentation ... 36
 4.4.1 Histogram Object ... 37
 4.4.2 Skin Modeling ... 38
 4.4.3 Segmentation ... 40
4.5 Face Recogniser ... 41
 4.5.1 Principle Component Analysis 41
 4.5.2 Projection ... 42
 4.5.3 Recognition ... 42
4.6 Chapter Summary .. 44

5 Experimental Design and Results 45
5.1 Introduction .. 45
5.2 Design .. 45
5.3 Results .. 46
5.4 Analysis of Results .. 48
5.5 Chapter Summary .. 52

6 Conclusion 53
 6.1 Possible Future Work .. 54

A Glossary 59
List of Figures

2.1 Rectangles reflecting the integral images ... 10
2.2 Viola-Jones - Identified Faces .. 10
2.3 Viola-Jones - ROC Curve for the Face Detector 11
2.4 Eigenfaces - Test Results ... 15
2.5 Artificial Neural Network - Test Results ... 17
2.6 Logic Flow of the Hybrid System ... 18
2.7 Comparison of Acceptance Ratio and Execution Time 19
2.8 Colour Space Comparison ... 21

4.1 Overall system design in flow chart form ... 33
4.2 Face Detector Demonstration ... 34
4.3 Face Detection Algorithm ... 35
4.4 Face Detection Process ... 35
4.5 Nose Detection Algorithm ... 36
4.6 Nose Detection Process ... 36
4.7 Colour Space Selection ... 38
4.8 RGB Histograms ... 38
4.9 Segmentation ... 40
4.10 Recogniser Training Algorithm ... 41
4.11 Finding the Nearest Neighbor .. 43

5.1 Threshold Testing ... 47
5.2 Euclidean Distance Comparison ... 49
5.3 Average Image Comparison ... 50
5.4 Timing Comparison ... 51

6.1 Movement of the Bounding Box .. 55
List of Tables

3.1 Test Descriptions ... 26
3.2 Subject Descriptions ... 26
3.3 Benchmark Test Results 28

5.1 Framework 2 Description 46
5.2 Robust System Basic Test Results 46
5.3 Framework 2 Test Results 47
5.4 Subject Analysis .. 47
Chapter 1

Introduction

1.1 Background and Motivation

The face is the primary focus of attention in modern society and play a significant role in an individual's identity [13]. The human ability for facial recognition is remarkably robust as despite of the large changes in viewing conditions, the human mind is able to recognise thousands of faces [13]. Thus, in today's technological world, attempts are being made to transfer this ability to computer systems. These systems can be used in a large variety of manners such as criminal identification, security systems and human-computer interactions [13]. However, this presents problems due to the complex, multidimensional nature of the human face [13]. And thus, tools need to be used to reduce the noise within the images so that a more robust face recognition can be implemented [13].

There exist multiple packages that offer tools that can be used to implement computer vision systems. These packages provide many generic tools that can be used for various image processing and manipulation tasks. While these tools may offer many uses to many users, those that wish to use them for a robust facial recognition system may find the tools ill-suited to some aspects of the system. The reason for this is due to the inherent generic nature of the tools as they are not tailored specifically to the needs of a facial recognition system.

One such package is EmguCV. This is a C# wrapper for the OpenCV package which is in C++. This package offers the EigenObjectRecognizer as a generic image recogniser and this will be used in the research that follows.
1.2 Research Problem

The tools provided by the packages mentioned above do not always produce a system that can recognise faces in varying conditions and thus the following research question is posed: What effects will preprocessing have on a system built on generic tools?

To answer this, the following questions must first be answered.

- What is the performance of the generic recognition tool?
- What points of weaknesses can be identified with the tool?
- How can these weakness be used to develop a system that proves to be more robust than the generic tools?

1.3 Methodology

To determine whether the system proposed and developed in this document is in fact more robust than the generic tools provided by the package, two systems will be developed and their performances will be compared.

These two systems will consist of:

- A benchmark system that consists only of the generic tools provided by the package for image recognition.
- Weakness are identified within the benchmark system.
- A system whose components have been designed and developed to compensate for weaknesses identified from the testing of the benchmark system mentioned above.

Both of these systems will undergo a similar testing framework to compare performance. The developed system will also undergo additional tests to identify potential improvements that can be made in future work in order to improve the robustness of the system.

1.4 Goals

The goal of this thesis is to develop a facial recognition system that is robust in nature. This implies that it has the following characteristics:
• The system should be able to identify faces even with varying amounts of background noise.

• The system should be able to achieve a high rate of positive recognition.

• The system should be able to reject an individual not within the training set yet have low rates of false rejects where an individual within the system is wrongly rejected.

• The system should not be highly susceptible to the changing of lighting conditions within the image.

1.5 Document Layout

Chapter Two contains a review of the literature that covers work related to the field being researched and thus provided a theoretical background against which this thesis is based.

Chapter Three contains the design and implementation of the benchmark system that is built only of the generic tools provided by the EmguCV package for image recognition. The testing and results thereof are also discussed. From these results, weaknesses of the system are identified and possible solutions proposed.

Chapter Four discusses the design and implementation of the developed system. The overall design of the system as well as the design and implementation of each individual component is discussed.

Chapter Five reviews the performance of the system based on the testing frameworks described. These results are then analysed and compared against those of the benchmark system obtained in Chapter Three. More detailed testing is also done on the developed system.

Chapter Six concludes the thesis and makes suggestions for possible extensions that can possible lead to the system being even more robust.
Chapter 2

Related Works

2.1 Introduction

The field of Biometric Identification involves the use of physiological and behavioural characteristics to uniquely identify a particular individual [8]. These methods vary in invasiveness. From the most extreme case of DNA testing, to the less invasive finger/hand printing, to the least invasive of all, facial recognition.

It is this least invasive technique (that of facial recognition) that will be the main focus of this review. All other forms of biometric identification fall out of the scope of this review and thus will be overlooked.

The main challenge in the field of facial recognition is that of variable input. This means that the input provided to the system is never the same as the test cases maintained within the database. This variability is caused by illumination variability, facial features and expressions, and occlusions, etc [11].

When considering the field of facial recognition, in terms of biometric access control, one notices that the system used for the biometric identification of an individual has three components, those being: Facial Detection, Facial Recognition, and Image Processing [8].

The facial detection component is responsible for the identification of possible faces within the provided image. The facial recognition component is then responsible for the comparison of the previously identified faces against a pre-existing image database in an attempt to identify the individual in the image. Finally, the image processing component is the most pervasive of all as it is called by all other components to process the image to
transform it into a state that is most suitable for the respective component[8].

Each of these fields have a variety for algorithms that have been developed to suite varying contexts. The more appropriate algorithms (with regards to biometric access control systems) will be reviewed according to their strengths and weakness with regards to the algorithm itself, as well as the algorithms compatibility with other components.

2.2 Facial Detection

Facial detection refers to the identification of faces within the specific image. This serves to reduce the surface area of the image to aid the process of recognition[6]. Only the face of the individual is then passed to the face recognising component so as to reduce the background noise that may interfere in the recognition process. This poses a problem as the human face has been described as 'a dynamic object and has a high degree of variability'[6].

2.2.1 Attentional Cascade

The attentional cascade is one of the algorithms that has shown the most promising results for the detection of faces within real-time video [15]. One of the most prominent implementations of this algorithm was developed by Viola and Jones.

Representations

Viola and Jones developed a new representation of the image for use in their face detection algorithm, it was called the 'Integral Image' [15].

The rectangle features of the image can be computed rapidly with the use of the integral image as an intermediate representation [15]. The integral image at the location x, y contains the sum of the pixels above and to the left of the x and y coordinates[15] and can be represented by the formula below:

$$ii(x, y) = \sum_{x' \leq x, y' \leq y} i(x', y')$$ (2.1)

A graphical representation of the integral image can be seen below:
2.2. FACIAL DETECTION

In the above figure, the value of the integral image at point 1 can be calculated by summing the pixels within the rectangle A. The integral image at point 3 would be the sum of the pixels in rectangles A and C. The integral image at point 4 would thus be equal to the sum of the 4 rectangles A, B, C, and D [15].

Learning Classifications

Many of the machine learning approaches make use of a training set of both positive and negative examples [15]. The algorithm used in [15] is that of AdaBoost. It has been stated that generalisation performance is directly related to the margin of examples, and thus AdaBoost is suited to this as it achieves large margins rapidly [15].

These classifiers are then organised in a cascade to increase the detection performance as well as reducing the required computation time dramatically [15]. The basic algorithm behind this approach is that simpler classifiers reject the majority of the image. The more complex classifiers are then called upon to reduce the rate of false positives posed by the simpler and less discriminatory classifiers [15].

Results Obtained

Below are the outputs of the system developed in [15].

Figure 2.2: Viola-Jones - Identified Faces
2.2. FACIAL DETECTION

From this image, we can see that the detector has able to detect multiple faces within an input image.

From the testing conducted in [15], the following results were obtained:

![ROC curve for face detector with step size = 1.0](image)

Figure 2.3: Viola-Jones - ROC Curve for the Face Detector

Here we can see how the detector generates an almost 95% correct detection rate [15] showing the accuracy of the system to be high.

Advantages

As mentioned above, the cascading classifier algorithm produces highly efficient detection results. When compared to other detection algorithms, the attentional cascade required only 0.7 seconds to scan a 384 x 288 image, the fastest of any published facial detection system[15].

Disadvantages

During the construction of the cascade of classifiers, more and more discriminatory classifiers are needed that offer higher detection rates and lower false positive rates. The more specific the classifier, the more features it has and thus requires more time to compute[15].

2.2.2 Statistical Models

There are several statistical approaches to face detection. These include, but are not limited to, information theory, a support vector machine, and the Bayesian Decision Rule[6].
Calmenarez and Huang proposed a system that was fundamentally based on Kullback relative information/divergence[6]. This was a nonnegative measure of the difference between the two probability density functions P^n_X and M^n_X where X^n was a random process[6]. A joint histogram was used to create the probability functions of the classes for positive faces and negative face examples. The value of a pixel is largely dependent on the value of the adjacent pixels and thus X^n is treated as a first order Markov process[6].

Another system was proposed by Schneiderman and Kanade where the probability function is derived based on a set of operations, modifications, and simplifications to the image[6]. These can be seen below[6]:

- The image resolution of the face image is normalised to 64x64
- The face images are then decomposed into 16x16 subregions.
- The subregions are then projected onto a 12-dimensional subspace, constructed with the use of Principal Component Analysis.
- The entire face region is then normalised to have zero mean and unitary variance.

Advantages

All of the systems tested in [6] show high correct detections within the varying image databases used. This shows that the usefulness of this approach, that of statistics, is pervasive as it has encouraging results in many different test cases.

Disadvantages

While the systems should a good correct detection dimension to the testing, many of them (most notably Colmenarez and Huang) proved to have a high false positive rate [6] and this can prove detrimental in the case of real time Facial Recognition System where efficiency is key.

[6] also states that the feature based statistical systems can almost only be exclusively used in real time systems as they require colour information as well as motion in some cases.
2.3 Facial Recognition

Once the face has been detected by the facial detection component of the system, it must then be compared to a database of known personnel to confirm the identity. The two main approaches reviewed here are that of Principle Component Analysis as well as that of Machine Learning.

2.3.1 Principle Component Analysis

The method of Principle Component Analysis (PCA) moves away from the use of natural bases to that of orthonormal basis [8]. It is a mathematical procedure whose aim is to transform a number of possibly correlated variables into a smaller number of uncorrelated variables called principle components[13].

An example of this basis is Karhonen-Loeve (KL) where the KL bases are made up of eigenvectors of the covariance matrix of the face, KL bases are thusly also known as eigenfaces [8]. Due to the nature of PCA, any face can be represented along the eigen pictures coordinate space as well as being reconstructed using a portion of the eigen pictures[13].

Principle Component Analysis Algorithm

The PCA algorithm is as follows [13]:

1. Obtain the initial training set of M faces and then calculate the eigenfaces from this set. Only the set of eigenfaces (M') that correspond to the highest eigenvalue are kept.

2. Calculate the corresponding distribution in M'-dimensional weight space for each known individual, and then calculate a set of weights based on the input image.

3. Classify the weight pattern as either a known or unknown individual according to the Euclidean Distance to the closest weight vector of a known person.

The calculation of the average face is seen below, where M represents the number of images within the training set and with Γ representing an image from the training set.
Thus once the average face has been calculated, we can see how each individual face differs from the average with the following vector:

\[\Phi_i = \Gamma_i - \Psi \]

This is then calculated for each of the images in the training set and the co-variance matrix is formed in the fashion shown above.

\[C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = A.A^T \]

Thus leading to the matrix

\[A = [\Phi_1, \Phi_2, ..., \Phi_M] \]

It is this set of vectors that is then subjected to the PCA to obtain a set of \(M \) orthonormal vectors \(u_1 ... u_M \). Then once the new vector have been formed, it is used in the formation of the weight vector \(\Omega \). To obtain the \(\Omega \) of contributions of the individual eigenfaces to a particular face image, \(\Gamma \), the face image undergoes a transformation into its own eigenface components and then projects onto the face space via the following operation.

\[\omega_k = u_k^T (\Gamma - \Psi) \]

These weights thus form the above-mentioned vector \(\Omega \). This represents the contribution of each individual eigenface within the representation of \(\Gamma \). Using this, one can use the Euclidean Distance (\(\varepsilon_k \)) between the \(\Omega \) of the input image and the \(\Omega_k \) (where \(k \) is an image in the training set that is closest to \(\Omega \)).

\[\varepsilon_k = \| \Omega - \Omega_k \|^2 \]
2.3. FACIAL RECOGNITION

Once ε_k has been calculated, it is then compared to a threshold value that is predetermined. If ε_k is less than the threshold, it is deemed to be close enough to Γ_k and is identified as such. If not, the face is not recognised.

Eigenfaces Results

The following results were presented from the testing reported in [13]:

When testing the various variables were changed, these included lighting, orientation, and scale.

- Graph A - Variable Lighting
- Graph B - Variable Scale
- Graph C - Variable Orientation
- Graph D - Variable Lighting and Orientation
- Graph E - Variable Scale and Orientation #1
- Graph F - Variable Scale and Orientation #2
- Graph G - Variable Scale and Lighting #1
2.3. FACIAL RECOGNITION

- Graph H - Variable Scale and Lighting #2

From the above we can see that the system produces a high rate of recognition but this rate is extremely susceptible to changes in the conditions of the images being test.

Advantages

The eigenface approach, and thus the use of PCA, has proved to be fast and relatively simple to implement as well as working well in a constrained environment [13]. [8] states that PCA is optimal in the sense of efficiency.

The nature of PCA also allows for modularity and thus compatibility with other methods such as machine learning[13] which leads to the possibility of cohesive hybrid systems to be reviewed below.

Disadvantages

While it has been stated that PCA has the optimal efficiency, it has also been stated that it does not stand to say that it is optimal on the basis of discriminating power and thus recognition as a whole[8]. This relies on the separation between different faces rather than the spread of all the faces [8].

[13] also states that the eigenface technique, and thus PCA, offers an unknown rejection rate. As most Facial Recognition Systems require a low false positive rate[13], there may be cases where the variable rejection is not acceptable.

Finally, [13] recognises the trade-off between the number of people that the FRS needs to recognise and the number of eigenfaces required for unambiguous recognition.

2.3.2 Machine Learning

The use of machine learning in the field of Facial Recognition Systems is most commonly represented by an artificial neural network (ANN) with a backwards-propagation learning algorithm [12]. The backwards-propagation learning algorithm is the most widely used and best known algorithm for use in multilayer perceptrons [11] and thus will be the only learning algorithm that falls within the scope of this review.
2.3. FACIAL RECOGNITION

Artificial Neural Networks with a Backwards Propagation Learning Algorithm

Within the layout of the ANN, each node requires an activation function that will decide the output of the node depending on the inputs [12]. The most commonly used activation function identified by [12] is the log-sigmoid function. This is due to the fact that the function outputs 1’s and 0’s and thus is suited to the use of boolean outputs[12].

As the ANN will receive input that is variable (termed 'noisy' by [12]) the training set of images is usually a combination of ideal and non-ideal images[12].

Results

During the testing presented in [12], the following results were presented:

<table>
<thead>
<tr>
<th>Architecture Of Neural Network</th>
<th>Training & Test database</th>
<th>Time of Training (sec)</th>
<th>Recognition Rate (RR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Neural Network1 “Net”</td>
<td>CMU faces, MIT faces & Web faces</td>
<td>1 hour 51 min 66 sec</td>
<td>Database Without Noise: 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salt & Pepper noise: 91.91 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poison noise: 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speckle noise: 93.86 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gaussian noise: 94.68 %</td>
</tr>
<tr>
<td>Artificial Neural Network2 “Net”</td>
<td>CMU faces, MIT faces & Web faces</td>
<td>2 hour 16 min 42 sec</td>
<td>Database Without Noise: 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Salt & Pepper noise: 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poison noise: 100 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speckle noise: 98.81 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gaussian noise: 98.81 %</td>
</tr>
</tbody>
</table>

Figure 2.5: Artificial Neural Network - Test Results

From the above, it can be seen that the neural network presented in [12] obtained extremely high rates of recognition. However the time taken to train the network is always within the range of a few hours.

Advantages

ANN’s, and thus machine learning, offer a highly effective rate due to their ability to learn[12]. In the tests conducted by [12], various ANN’s, trained using the method mentioned above, never achieved recognition rates of below 95 percent when they were left to train for over 2 hours. This recognition rate is remarkable and can increase with increased training time, until the recognition peak has been reached[12].
Disadvantages

One of major disadvantages of the use of a neural network is the required complexity. For every pixel that constitutes part of the input image, a separate node is required in the input layer of the ANN [8]. This means that even a relatively small input image of 128x128 pixels would require over 16 000 input nodes.

One method for combating this linearly increasing complexity is to make use of downsampling[11]. The method involves shrinking the image to a 20x20 facial feature vector that will thusly only require 400 input nodes, leading to a conceptually simple ANN.

When considering the training of the ANN according to the method suggested by [12], the ANN may become so adept at identifying the non-ideal images, that it will become less adept as recognising the more ideal input images[12].

2.3.3 Hybrid Systems

Hybrid systems use a combination of the above techniques to compensate for the weaknesses of an approach with the strengths of another. An example of this can be seen by the hybrid recognition system presented in [11]. Here, PCA is first used as a technique to identify patterns within the data i.e. feature extraction [11]. The logic flow of the hybrid system can be seen in Figure 2.6.

![Figure 2.6: Logic Flow of the Hybrid System](image)

The benefits of such hybrid systems are most clearly expressed in the performance results of the system. The system mentioned in [11] bore the results illustrated in Figure 2.7.

From this, we can see that by combining the PCA approach with the use of an ANN, the acceptance rate not only increase, but so does the execution time, thus leading to a more effective and efficient system.
2.4. **IMAGE PROCESSING**

![Figure 2.7: Comparison of Acceptance Ratio and Execution Time](image)

2.4 Image Processing

2.4.1 Segmentation

Skin Segmentation

The aim of skin segmentation is to locate the regions of skin within the input image\[4\]. This is used within the FRS to ensure that the computation, whether it be facial detection or recognition, focuses only on the segments of the image where skin has been identified rather than the input image in its entirety\[4\].

Before the skin segments of the input image can be demarcated, the ’skin colours’ within the image need to be identified\[4\]. This is done with the use of a human skin colour model whose general properties are described by \[4\].

- A low false rejection rate at a low false detection rate. This implies that few pixel bearing skin colour should be excluded and few pixels not bearing a skin colour should be included.

- Detection of varying skin colour types. As there are a variety of skin colour types, they all need to be classified under one unified class of ’skin colour’.

- Handling the ambiguity of skin and non-skin colours. This feature is needed as objects within the background of the image can possibly have colours that fall within the range of the skin colours within the model.

- Robustness to variations of lighting conditions. One of the least constant variables of a FRS is the lighting wherein it is used. The varying light can cause dramatic changes to the skin colours within the image and, while it is unrealistic for a model to
account for every possible lighting condition, the model should have some robustness in this area.

The skin model then needs a colour space as well as a colour classification algorithm in which to operate[4].

There are currently a vast number of classifications out these including, but not limited to: Multilayer Perceptrons, Self-organising Maps, Linear Decision Boundaries, etc [4]. The one used in [4] that showed an increase in performance was the Bayesian decision rule for Minimum Cost.

With regards to the various colours spaces that the model can operate in, as with the above classification algorithms, the variety is vast [4]. The colour spaces included, but are not limited to: RGB, YCbCr, HSV, normalised RGB, etc [4]. One of the finding of [4] was the there was no identifiable performance difference between the colour spaces with the colour histogram sizes greater than 128 bins per channel.

The advantages of this technique are:

- All colour channels show an increased performance over the exclusive use of chrominance channels[4].
- The coupling of techniques can prove to provide a more efficient skin classification algorithm [10]

These are, however, coupled with the following disadvantages:

- The coupling of techniques for increased efficiency can lead to the algorithm becoming overly complicated and thus requiring more memory and more computational resources[10].
- Already acknowledged by [4] is the fact that the background can contain items whose colour falls within the skin model and this noise can present issues for recognition techniques where noise can skew the results[8].

Results

A comparison of colour spaces is presented in [10].
2.4. IMAGE PROCESSING

From the above, a comparison is made concerning the different colour spaces. From this, we can see the use of HSV and RGB produces a better rate of recognition than the others presented thus showing why these are preferred for use in skin segmentation.

Background Subtraction

Due to the fixed location of many cameras, whose images are used as input for Facial Recognition Systems, background subtraction (also known as background differencing) is the most fundamental image operation for security systems[5].

Before one can begin the process of background subtraction, a ’model’ of the background must first be learnt[5]. This model is then compared to the input image and the known background segments are subtracted away. This model is not always sufficient however as, due to the context of the camera, the foreground and background are flexible concepts[5]. The complication is overcome by the developing of a scene model. In this, there are multiple levels between what is defined as the foreground and what is defined as the background[5].

This method aids in the identification of newer object that may have been placed in the scene but, as they are not the focus of the system, are still regarded as part of this background. This is accomplished by placing the new object in a ’newer’ level of the background, and, over time, it will shrink into the older levels of the model until it is part of the original background[5].
In the case of a massive environment change, global frame differencing can be used[5]. This kind of change can be identified by many pixels changing value at the same time[5].

The advantages of background subtraction are as follows:

This method makes use of the context of the camera to aid in the segmentation of the image and thus does not require the statistical computation that skin segmentation does[5].

Bearing the above in mind, the follow present challenges for the use of background subtraction:

- One of the major flaws of the background subtraction technique is that it assumes that all pixels are independent and thus only works well in simple backgrounds[5].
- By accounting for this weakness, by the use of modeling, the technique creates more disadvantages in the form of increase memory consumption and computation[5]. This approach also requires that there be a substantial increase in the data provided to create the more complex models[5].

2.5 Chapter Summary

As can be seen by the above literature, the field of biometric identification, and more specifically, Facial Recognition systems.

There are varying approaches to each component that makes up the Facial Recognition System. Those components being the detecting of the face, the recognition of the face and the processing of the image at various points of the system. Each approach has had its advantages juxtaposed with its disadvantages. This allows for the realisation that the use of a specific approach is context sensitive. Factors such as required efficiency and effectiveness, availability of computational resources, availability of memory (both primary and secondary), the hardware used to provide the input, the format of the input, an others need to be taken into account before choosing the correct components.

With regards to the system being developed in this project, the following techniques have been chosen based on their relevance and and the positive aspects associated with them that suite the context of the system.

For the facial detection component of the system, the attentional cascade will be used, more specifically one similar to that propose and developed by [15]. This choice has the
following justifications:

- The system uses real-time video as the input for the system. As mentioned above, the attentional cascade has proved to be the most efficient means of face detection when computational time is a factor that needs to be minimised. The attentional cascade has been shown to be able to have a detection rate of 15 fps (frames per second) and this suites the context of the system.

- With regards to the weakness identified, it can be counteracted by the nature of the system itself. The fact that the system will not need to be trained in real time means that all classifier training can be done during the developmental stages of the project and non has to be done while the system is in use.

The principal component analysis approach, more specifically the eigenface technique, will be used for the recognition component. The justifications are as follows:

- The efficiency shown by the algorithm again suite the real time context of the system and is suited to the rapid detection rates of the attentional cascade chosen above.

- The modularity of the approach allows for future expansion on the project. For more effective recognition results, the PCA component can be combined with a machine learning technique to create a hybrid recognition component.

Due to the latter, the approach of machine learning is not completely disregarded, but merely kept as a possibility for future development work on the systems

Finally, with regard to the image processing component of the system, skin segmentation will be used for the following reasons:

- The eigenface technique is more efficient with as little background noise as possible[8] and the use of skin segmentation will allow for this noise to be minimised.

- The background subtraction is too general for use in a biometric access control system, where security and precision is key, as the nature of the background (especially in the location context of the system, an office area with many people moving in and out of focus) is dynamic and thus the modeling approach offered as a solution above, does not apply.
Chapter 3

Benchmark System

3.1 Introduction

The purpose of the benchmark system is to identify a performance baseline against which the performance of the final system can be compared. This system will also be used to identify the shortfalls of the generic recognition tools provided by the package. These shortfalls will become the identified weaknesses of the system and will be used as the foundation for the design and implementation of components that will aim to compensate for these weaknesses. In this chapter, the design for the benchmark system will be discussed along with the implementation, testing, and examination thereof.

3.2 Design

The aim of the design for the benchmark system is to rely on only the recognition components provided by the EmguCV package. This component is known as the EigenObjectRecognizer which makes use of the PCA algorithm as a means of recognition citeemguweb. The constructor of this object takes in the following parameters:

- An array of grey scale images that are used to train the recogniser.
- An array of strings which act as the identifiers for each of the training images.
- A reference to a MCvTermCriteria which acts as the termination criteria for the PCA algorithm used within the eigenfaces technique.
3.2. **Design**

3.2.1 Image Database

The image database used in this research project was designed for the specific use of testing both the benchmark system and the developed system according to the goals set forth in Chapter 1.

The data set contains 30 images in total. These 30 images are composed of 6 images each of 5 individuals. These images have been captured using the tools provided by the EmguCV package so as to allow for greater consistency within the tests. These images of the individuals have been captured and stored based on the criteria mentioned in Table 3.2.

Each image is stored as a Portable Network Graphics (PNG) [9] file with a resolution of 640 x 480 pixels and are taken and stored in RGB format. The choice of PNG is due to the lossless compression of the file format which means that the exact image data can be restored from the compressed data[9]. This is preferred over the use of Joint Photographic Experts Group (JPEG)[9] files which makes use of lossy data compression. This means that the original image data is partially lost due when the image is initially compressed.

The images were taken at separate times as to maximise the variability within the images themselves. This results in increased variability in lighting, clothing, and facial expression.

The individuals\(^1\) chosen for the database are diverse in nature. There are representatives from a diverse selection of skin tones. This too allows for increased variability.

3.2.2 Testing Framework

The testing framework detailed here will be used both for the testing of the benchmark system and for the testing of the final system. This will ensure that both sets of tests will have undergone the same procedure as to ensure the integrity of the results they produce.

The entire testing process will consist of 5 tests. The details of these tests are detailed in Table 3.1:

\(^1\)All individuals participating in this database have done so out of their own free will and have signed a consent for allowing the use of their likeness in any documentation or publication resulting from this research.
Table 3.1: Test Descriptions

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 training images per individual</td>
</tr>
<tr>
<td>2</td>
<td>4 training images per individual</td>
</tr>
<tr>
<td>3</td>
<td>3 training images per individual</td>
</tr>
<tr>
<td>4</td>
<td>2 training images per individual</td>
</tr>
<tr>
<td>5</td>
<td>1 training image per individual</td>
</tr>
</tbody>
</table>

The aim of this testing process is firstly to establish a baseline against which the performance of the final system can be compared. But it also has the secondary function of establishing performance gain per training image used.

For the purposes of this testing, five subjects are used each with varying degrees of background noise in each image. The images captured for each subject have been designed to follow the following pattern:

Table 3.2: Subject Descriptions

<table>
<thead>
<tr>
<th>Subject</th>
<th>Image Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 Different backgrounds with the images taken over 3 different days at varying times during the day.</td>
</tr>
<tr>
<td>2</td>
<td>Static Background taken all at the same time</td>
</tr>
<tr>
<td>3</td>
<td>Taken at the same time but at varying angles of the same room</td>
</tr>
<tr>
<td>4</td>
<td>Taken with the same background over 2 days with people walking in the background</td>
</tr>
<tr>
<td>5</td>
<td>5 images with a static background and 1 image with a varied angel of the face</td>
</tr>
</tbody>
</table>

3.3 Implementation

The implementation of the benchmark system was implicitly simple due to the fact that only the primary, basic, generic tools are used in the system.

First, the images are loaded from file into the system. These are stored in an array of Image(Gray, Byte) objects as this is what the recogniser requires. While these images are being loaded into the system, the individuals name is extracted from the file name and simultaneously added to a string array. Once this process is complete, the EigenObjectRecognizer object is created with the following parameters[3]:

...
3.4. Benchmarking

3.4.1 Hardware Specifications

For the purposes of the testing, the machine that ran the testing framework had the following hardware and software specifications:

- Intel Core 2 Quad Q6600 @2.4 GHz
- 6 Gb DDR2-800 RAM (only 3.5 Gb usable due to operating system constraints)
- Windows 7 Ultimate (32bit)
- Logitech 300 WebCam

3.4.2 Benchmark Results

Using the testing framework detailed in Table 3.1, the following results were obtained:

- An array of Image(Gray, byte) images which serves as the training data for the recogniser.
- An array of string, the same size as the array mentioned above, with each element being the label of the corresponding image of the training array.
- A reference to a MCvTermCriteria object which serves as the termination criteria of the PCA algorithm used by the EigenObjectRecognizer.

When creating the recognition object, a MCvTermCriteria reference also needs to be passed to the constructor. This value is set to 0.001. For the purposes of this benchmark system, this is assumed as the default value as it is the value recommended on the package website under tutorials [1].

Once this process is complete, the test images are loaded from file into the system. This process is similar to the one mentioned for the loading of the training data. Once the loading process has been completed, the program enters the testing framework.

Once each of the tests has been completed, the results are both outputted to the screen and to file.
3.5 IDENTIFIED WEAKNESSES

Table 3.3: Benchmark Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result (recognition rate in %)</th>
<th>Database Load Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>0.3992</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>0.7962</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>1.4465</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>2.2438</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>3.3414</td>
</tr>
</tbody>
</table>

3.4.3 Analysis of Results

From the above results the following observations can be made.

First, the recognition rate is constant at 40%. This low rate is a testament to the effect that a variable background has on the system. As the recognition technique used by the EigenObjectRecognizer (that of eigenfaces), the background noise of the images leads to principle components being identified within the image that do not correspond with the face in question[13].

From these results we can see that the only correct recognitions are for subjects 2 and 3 (from Table 3.2). This means shows that the benchmark system can handle the static backgrounds and backgrounds that are similar but, even with an increase in the amount of training images, the changing backgrounds prove to be difficult for the recogniser to correctly recognise.

Another observation is the fast load time from the database. This is understandable as no image processing (besides the required grey scale conversion) is performed.

With these results and observations in mind, the weaknesses of the system can be identified and discussed.

3.5 Identified Weaknesses

Based on the results from the benchmarking procedure above, the following observations were made:

- The rate of recognition achieved by the EigenObjectRecognizer is low for images where there is a large amount of spurious background noise.
3.6. PROPOSED SOLUTIONS

- As the EigenObjectRecognizer makes use of the eigenfaces technique for recognition, the condition of invariance to variable lighting conditions is not met. This weakness is inherent in the eigenfaces technique [7].

- The Eigenfaces technique determines the correct result based on the Euclidean Distance between the test face and the neighbours within the PCA subspace [13]. If there is no threshold for the Euclidean Distance of the nearest neighbour, as in the case for the generic tool provided, that of the EigenObjectRecognizer, the nearest neighbour is always returned and thus there is a constant rejection rate of 0%.

These weaknesses will act as the inspiration for the components that will aim at compensating for these weaknesses in the attempt at creating a more robust system.

3.6 Proposed Solutions

Bearing the above weaknesses in mind, the following solutions are proposed to compensate for the weaknesses:

- To reduce the amount of spurious background noise of each individual image, the following two stage process is proposed:
 - First, given the input image, a face is identified within the image with the use of a Haar classifier provided by the EmguCV package. Once the face is identified, the image is to be cropped and passed to the next and final step in the noise reduction process.
 - The final step in this process is skin segmentation. In this stage, a skin model shall be built based on the identified face. This model shall be used to differentiate between the skin pixels and the non-skin pixels.

- To reduce the effects of the variability of lighting within the input images, the process of histogram equalisation will be used to alleviate the stress this variability would place on the system.

- The final proposed solution aims to allow for the system to reject a test image. This shall be done by applying a threshold to the eigenfaces technique. This threshold shall be applied during the recognition phase of the algorithm where the nearest neighbour is identified. Once the neighbour has been identified, if the Euclidean distance is above the threshold, the image should be rejected.
3.7 Chapter Summary

As a means for measuring the performance, the benchmark system is designed such that it contains only the bare minimum of components provided by the EmguCV package. This singular component is the EigenObjectRecognizer of the package.

The image database to be used for the duration of this research is one captured using the tools provided by the package. They are stored as PNG files on disk with a resolution of 480 X 640. There are 5 individuals within the database each with 6 images each thus making a database of 30 images.

The testing of this benchmark system, and the subsequent developed system, will consist of five different test to both gauge the effectiveness of the EigenObjectRecognizer as well as the performance gain per additional training image.

Based on the definition of a robust system in Chapter 1, when tested using a diverse image database, it is shown that the generic recogniser provided in the EmguCV package (namely the EigenObjectRecognizer) is not robust for use within a robust facial recognition system.

The weaknesses identified were:

- Low rates of positive recognition.
- Susceptibility to variable lighting conditions.
- Susceptibility to changes within the background (i.e. varying levels of background noise).
- No ability to reject an image.

With these in mind, the following solutions are proposed:

- Face detection and cropping.
- Skin segmentation.
- Histogram equalisation.
- Threshold application within the recognition component.

The weaknesses and shortfalls of the object have been identified and suggestions and proposed solutions have been put forward to circumvent these shortfalls from interfering in the performance of the overall system.
The following chapter will aim to explore the design and implementation of each proposed solutions as they form components of the more robust system.
Chapter 4

System Design and Implementation

4.1 Introduction

This chapter serves to explore the design and implementation of the potentially more robust facial recognition system. As mentioned before, the characteristics of the target system are:

- High rate of positive recognition.
- This rate of recognition should be able to be maintained even with varying levels of background noise.
- Low rate of negative rejection.
- Invariability to lighting conditions.

The following system attempts to fulfill all of these requirements in an effort to produce a system that can perform under more strenuous conditions than the original benchmark system. Each component is designed to implement one or more of the proposed solutions for the identified weaknesses mentioned in Chapter 3.

Below the overall system design will be laid out and will be followed by a detailed description of each individual component and their implementation, as well as how they will interact with the other components.
4.2 Overall System Design

The overall system is comprised of the following components which have been designed to counteract the identified weaknesses mentioned in Chapter 3.5 and to implement the proposed solutions mentioned in Chapter 3.6:

- The face detector, where the input image will have the face identified and will then be cropped so as to include only that face and as little of the background as possible.
- The skin segmentation will receive the cropped image from the face detector. It will then build a skin model from the supplied image and differentiate between the skin and non-skin pixels, those identified as non-skin will then have their RGB values changed to a predetermined set of values.
- Finally the segmented image will be passed to the recogniser where it will either be added to the image database used to train the recogniser or used to test the recogniser based on the images already added.
- The recogniser will have a threshold applied to it so as to allow for the rejection of an image whose closest match in the system does not meet the threshold.

4.3 Face Detector

The face detector used in the system is an instance of the detector provided by the EmguCV package. The reasoning for this is that it has proved to be robust. As can be seen below, the detector can detect a face in varying conditions. It also has the ability to detect multiple faces within the same image.
This detector is a Haar cascade based on the attentional cascade of Viola & Jones [2]. The configurations for this cascade are saved in a XML file that is provided within the EmguCV package. Numerous, pre-trained versions of this cascade are provided by the package and the haarcascade_frontalface_alt2.xml was chosen for the purposes of this system due to the fact that all of the input images will be of individuals who are front facing in the direction of the camera. The position makes the chosen, pre-trained, cascade a justified choice as it has been trained to detect front facing faces within an image [2].

This detector identifies rectangular areas within the image within which the classifier has identified a face.

As can be seen in Listing 4.1, a new instance of a HaarCascade object is created. This
object receives only a string as a parameter. This string is the filename of the pre-trained cascade whose configuration is stored within an XML file.

The detection process involves an input image being provided to the component. The cascade is then applied to the input image and the areas containing the identified faces are stored in a variable array. Once the faces have been identified, the rectangle whose area contains the first identified face is used for the rest of the image processing. This processes is depicted in Figure 4.3.

![Figure 4.3: Face Detection Algorithm](image)

Once this area is identified, the ROI (Region Of Interest) of the image is set to that rectangle and the image is copied across to a new image which is used as the return value. The setting of the ROI to the identified rectangle leads to only that section of the image being in the focus of the system and therefore only that section is copied over to the new image.

The process of face detection and the subsequent cropping is shown in Figure 4.4:

![Figure 4.4: Face Detection Process](image)

As can be seen above, the FaceDetector component greatly reduces the amount of background noise within the image. The image that will be used in the rest of the recognition/training process, Figure 4.4c is now not only smaller but also contains mainly the face data of the specific individual.
4.4 Skin Segmentation

Once the input image has been cropped, it is passed to the SkinSegmentor component. The aim of this component is to further reduce the amount of background noise within the image. This is done in a three step process:

1. Detect the nose within the input image.
2. This nose is then used to build a skin model based on a specific colour space.
3. Once this model has been created, its thresholds are applied to the pixels of the original input image.

As mentioned above, the first step within the segmentation process is that the nose of the individual is identified within the image. As with the FaceDetector component, this is done with the use of a Haar cascade which is pre-trained and provided by the package. Once the area which contains the nose has been identified, it is copied across to a new image which is to be used within the next stage of the process. This process is depicted in Figure 4.5.

![Image](image1.png)

Figure 4.5: Nose Detection Algorithm

The actual process from start to finish is depicted in Figure 4.6.

![Image](image2.png)

Figure 4.6: Nose Detection Process
Once the nose has been identified within the image, the nose image is used to build a skin colour model that will be used for pixel classification. Once this model has been built, thresholds are obtained from the model and are used for the classification of pixels within the image to classify each pixel as either a skin or non-skin pixel.

4.4.1 Histogram Object

The histogram object serves to act as a means of performing frequency analysis on the pixels of the face image.

The constructor of this object receives the size of the frequency bins and the lower and upper limits of the histogram.

Once this object has been created, data is fed into it using the accumulate() method which takes in an array of values from which each item within the dataset is analysed to determine which bin it should fall into.

As the bins are stored in an array, the index of the required bin must be calculated. This is done with the algorithm represented in 4.3 by shifting the value by z (or the zero shift value which shifts the values, temporarily, into the positive spectrum) as an index of an array cannot be a negative value. This is mathematically represented by the following transform which was developed for the purposes of this process:

\[
\begin{align*}
 z &= 0 - \text{lowerLimit} \\
 y &= \lceil (x + z)/\text{binSize} \rceil \\
 \text{index} &= \begin{cases}
 y - 1 & \text{if } y \neq 0 \\
 0 & \text{if } y = 0
 \end{cases}
\end{align*}
\]

Once the data has been accumulated within the frequency histogram, the outlying data must be trimmed. This is done by the trim() method of the Histogram object which takes an integer value as a threshold and all bins whose frequency falls below this threshold value have their frequency set to zero.

Finally, once the trimmed histogram has been obtained, the upper and lower limits of the histogram can be obtained. This is done by finding all bins who’s frequency is greater than zero. The lowest of these bins will have its lower limit extracted and used as the lower
limit of the histogram. The highest of the bins will have its maximum value extracted with that value representing the upper limit of the histogram. These two values are returned in a two element array.

4.4.2 Skin Modeling

Before this model can be built, the colour spaces that are to be used must be decided upon. This is done within the constructor with a choice between RGB, normalised RGB and HSV. The constructor receives an integer value as a parameter and uses this to determine colour space that is to be used for the duration of the segmentation.

![Figure 4.7: Colour Space Selection](image)

RGB Colour Space

The simplest colour space is that of the RGB spectrum. Here the face image (Figure 4.6c) is analysed on a pixel by pixel basis with the RGB value for each respective pixel is collected within an array and then used to populate the respective histograms. Once the histogram has been populated, the extremities are trimmed from the histogram and the limits are extracted and sorted as thresholds to be used in the final step of the segmentation process.

![Figure 4.8: RGB Histograms](image)
4.4. SKIN SEGMENTATION

Normalised RGB Colour Space

The normalisation of the Red, Green, and Blue values are transformed by the following transform[14]:

\[
\begin{align*}
 r &= \frac{R}{R + G + B},
 g &= \frac{R}{R + G + B},
 b &= \frac{R}{R + G + B}
\end{align*}
\] (4.4)

From the above we can see that the R, G , and B values are transformed into r, g , and b respectively. The sum of these three new values is equal to one as shown below[14].

\[
r + b + g = 1
\] (4.5)

Once again, after the transform has been completed, the data is fed to an instance of the histogram class where the frequency analysis is done once more. Once the histogram has been accumulated, the outlying values are trimmed and the limits are obtained from it. These limits then form the thresholds against which the pixels will be classified. During the classification process, each pixel being scrutinised must also have their RGB values normalised before the thresholds can be applied.

The use of the normalise RGB colour space has shown to reduce the lighting effects within the image itself. This can be advantageous as one of the identified weaknesses of the benchmark system was susceptibility to changes in the lighting conditions [14].

HSV Colour Space

The HSV colour space describes the colour of a pixel not by its RGB values but by its Hue, Saturation and Value [10]. The Hue value of the pixel serves to describe dominant colour of the pixel, the Saturation serves to describe the degree to which that dominant colour is present, and the Value component is used to store the information regarding brightness [14].

The HSV colour space requires a non-linear transformation of the RGB values to arrive at the corresponding HSV values [14]. The transformation is shown in:
4.4. SKIN SEGMENTATION

\[v = \max_{r,g,b} \] \hspace{1cm} (4.6)

\[s = \frac{\max_{r,g,b} - \min_{r,g,b}}{v} \] \hspace{1cm} (4.7)

\[h = \begin{cases}
\frac{g-b}{6(\max_{r,g,b} - \min_{r,g,b})} & \text{if } v = r \\
\frac{2-r+b}{6(\max_{r,g,b} - \min_{r,g,b})} & \text{if } v = g \\
\frac{4-g+r}{6(\max_{r,g,b} - \min_{r,g,b})} & \text{if } v = b
\end{cases} \] \hspace{1cm} (4.8)

As with the normalised RGB colour space, during the classification process, each pixel’s RGB values must undergo the transform before the thresholds can be applied.

4.4.3 Segmentation

Once the thresholds have been computed with the use of the pixel colour frequency histograms, the image is analysed on a pixel by pixel basis once more to apply the aforementioned thresholds. If the pixel falls within the thresholds, it is deemed to be a skin pixel and is left alone. If it falls out of the thresholds, it is deemed a non-skin pixel and has the RGB values changed to a predetermined value\(^1\).

The result of this process is depicted below in Figure 4.9.

\[\text{From the above image, we can see most if not all of the background noise is removed} \]

\[^1\text{For the purposes of representations in this document, that value has been set to (0, 255, 0) or green. Within the actual system, it is set to (255, 255, 255) or white as this has shown to produce better results in the testing phase.} \]
leaving only skin pixels within the image. While some of the skin pixels have been wrongly classified, the majority of the pixels have been classified correctly. Also noticeable in this image is the complication caused by facial hair. This is because, as seen on the chin of the face in the image, the facial hair is darker than the skin model built from the nose and thus is deemed to be non-skin pixels. While semantically this is correct (as hair is technically not skin), those pixels still form part of the face and thus should not, ideally, have their RGB values changed.

4.5 Face Recogniser

Once the input images have been segmented, they are passed to the constructor of the EigenRecogniser object. Along with this array of segmented images, an array of strings is also passed to the array which contains the true names of each respective image. Once these arrays have been stored within the object, the learn() function is called.

This array of images and strings serves as the training data for the recogniser to be used in the calculation of the PCA subspace and the projection thereof.

The training of the EigenRecogniser is depicted in Figure 4.10

![Figure 4.10: Recogniser Training Algorithm](image)

4.5.1 Principle Component Analysis

As mentioned above, the basis of the face recognition component is the Eigenfaces technique. This technique makes use of Principle Component Analysis (whose internal working were expanded on in Chapter 2) to extract the features of the face that are deemed most important.

The calculation of the eigenvectors and the average image is done by the static member function of the EigenObjectRecognizer. This method takes an array of grey scale images and an instance of MCvTermCriteria. The first acts as the set of training images that will
be used to calculate the eigenvectors. The MCvTermCriteria is used as the termination criteria that is needed of the PCA algorithm to be completed. For the purpose of this system, as the number of training images is not too great, the termination criteria is set to the number training images minus 1. Once this has been done, two items are returned from the function, those being a jagged array of float values that represent the eigenvectors and a grey scale image that represents the average face generated from the input face array.

This method serves at creating the PCA subspace against which the training images are projected to obtain the eigenvalues for each image.

Both of these returned items are used in the next step of the training process, that of projection.

4.5.2 Projection

Once the eigenvectors have been obtained along with the average image, each of the training images are projected onto the PCA subspace. From this, the eigenvalues are obtained and saved to another jagged array to be used later in the recognition process. This process is done by another static method of the EigenObjectRecognizer class, the EigenDecomposite(). This method taken in the following parameters[3]:

- The image that is to be projected onto the PCA subspace.
- The eigenimages that were created in the generation of the PCA subspace.
- The average face image that was also generated in the step mentioned above.

4.5.3 Recognition

The main objective of the recogniser object is to compare an input image against those in the database to determine which it is most similar to. This process is similar to the training process in the static method EigenDecomposite is once more called from the EigenObjectRecognizer. The eigenvalues are then obtained from this method and is then used in the calculation of the nearest neighbour.

Once the eigenvalues have been calculated for the input image, they are compared to the eigenvalues saved during the training phase. This comparison compares the Euclidean
4.5. FACE RECOGNISER

Distance between the input image and the training images in the PCA subspace. This is shown below in Figure 4.11.

![Diagram of finding the nearest neighbor](image)

Figure 4.11: Finding the Nearest Neighbor

Here we can see that a variant of the Euclidean Distance formula is used. While the formula for the Euclidean Distance is shown below \[^8\], it can be seen that the square root is not applied to the value. As the square root does not affect the relationship between the two points, it is removed so as to reduce the amount of required computations:

\[
d(x_i, x_j) = \sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2
\]

(4.9)

Finally, once the shortest Euclidean Distance has been identified and the index saved, the index is returned as the index of the nearest neighbour. However, if the distance to the nearest neighbour is greater than the threshold value, a value of -1 is return as the neighbour has been deemed to be too far to be regarded as a reliable recognition.

Once the index has been returned, a check must first be done to verify the validity of the recognition. This is done by checking the value of the returned index. If it equal to -1, then an empty string is returned as the label as no recognition has been made. If not, the index is used to identify the image label from the label array and that indexed value is returned as the identified individual.
4.6 Chapter Summary

The system developed for the purposes of this research was comprised of three components, those being the Face Detector, the Skin Segmentation component, and finally the Eigen Recogniser. These components were designed and developed with the aim of creating a more robust facial recognition system.

The face recogniser makes use of a Haar classifier that is supplied by the EmguCV package and is pre-trained. Once the face is detected within the image, the area without the face in is cropped, thereby greatly reducing the amount of background noise in the training image.

This cropped image is then passed to the Skin Segmentation component for further noise reduction. In this component, the nose of the face is detected (using another provided, pre-trained haar classifier) and is used to build a skin model based on the chosen colour space. This modelling process results in a set of thresholds that can be used to classify the pixels in the face image as either skin or non-skin with the non-skin pixels being set to a predetermined value.

Finally, the cropped and segmented images are passed to the recogniser where the training process takes place. This process involves the creation of a PCA subspace and the subsequent projection of each training image onto this subspace. The values obtained for this are then stored within the newly trained recogniser.

The recognition process therefore involves the projection of the test image onto the PCA subspace and then the identification of the nearest neighbour. Depending on the distance to this neighbour, a positive recognition is either returned or not.

In the following chapter, the testing of this system is explored with results and analysis thereof.
Chapter 5

Experimental Design and Results

5.1 Introduction

This chapter will explore the performance of this developed system against the performance of the benchmark system described in Chapter 3. Both of these systems will be tested using the same testing framework and image database described in Chapter 3. Once the performances of the two systems have been juxtaposed, analysis is done in an attempt to understand the difference in performance.

The purpose of this juxtaposition is to determine whether the components described and implemented in Chapter 4 have created a more robust facial recognition system that can fulfill most, if not all, of the requirements described in Chapter 1.

5.2 Design

For the purposes of testing the performance of the developed system, it will be tested by two frameworks. The first of which is the framework identified in Chapter 3. As the benchmark system underwent the same tests, it will provide a point of comparison between the benchmark system and the developed system.

Then, for more detailed analysis, the developed system will undergo the following testing framework:
5.3. RESULTS

Table 5.1: Framework 2 Description

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>5 test images and one training image per individual</td>
</tr>
<tr>
<td>Test 2</td>
<td>4 test images and 2 training images per individual</td>
</tr>
<tr>
<td>Test 3</td>
<td>3 test images and 3 training images per individual</td>
</tr>
<tr>
<td>Test 4</td>
<td>2 test images and 4 training images per individual</td>
</tr>
<tr>
<td>Test 5</td>
<td>one test image and 5 training images per individual</td>
</tr>
</tbody>
</table>

The Euclidean Distance to matches will also be measured along with the time taken to load the images into the database.

Finally, the applied threshold of the system will be tested on its ability to reject faces not within the system.

5.3 Results

A basic test of one test image and varying amounts of training images is listed below (from Table 3.1 against which the benchmark system was also tested).

Table 5.2: Robust System Basic Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result (recognition rate in %)</th>
<th>Database Load Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>22.0008</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>28.4859</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>31.4892</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>38.2192</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>45.2049</td>
</tr>
</tbody>
</table>

A more detailed set of tests produced the following set of results\(^1\). When the system was run through the same testing framework as mentioned above, the following results were obtained.

\(^1\)The use of the HSV colour space produce no better results than the use of the RGB colour space and thus, the results shown are from the use of the RGB colour space only.
5.3. RESULTS

Table 5.3: Framework 2 Test Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result (recognition rate in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32%</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>46.67%</td>
</tr>
<tr>
<td>4</td>
<td>70%</td>
</tr>
<tr>
<td>5</td>
<td>80%</td>
</tr>
</tbody>
</table>

This data is then transformed from a test by test analysis to a subject by subject analysis.

Table 5.4: Subject Analysis

<table>
<thead>
<tr>
<th>Subject</th>
<th>Test 1 Result</th>
<th>Test 2 Result</th>
<th>Test 3 Result</th>
<th>Test 4 Result</th>
<th>Test 5 Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>50%</td>
<td>33.3%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>25%</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>0%</td>
<td>0%</td>
<td>66.6%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
<td>75%</td>
<td>66.6%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>80%</td>
<td>0%</td>
<td>66.6%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

When testing the application of a threshold for the purposes of rejecting a subject that is not in the database of the system, the following results were obtained:
5.4 ANALYSIS OF RESULTS

Within the graph listed in Figure 5.1, it should be noted that Face 4 represents a positive recognition, Face 5 represents a negative recognition, and Object refers to an inanimate object and therefore an image that is not within the image database of the system.

All tests were run with both histogram equalisation present and again without it. As both sets of tests yielded the same results, the use of histogram equalisation has been deemed ineffective for use in this system.

5.4 Analysis of Results

The HSV colour space showing no improvement in recognition rate is shown to be a result of the size of the image database, as it has been shown to be of better use in a facial recognition system than the RGB colour space [10].

From the table above (Table 5.2), it can be seen that in the majority of the test cases within the basic tests, the developed system performs at levels that are double the performance of the benchmark system. As one of the main purposes of the system is to reduce the amount of spurious background noise within the image before it is passed to the recogniser, it can be assumed that it is this reduction of background noise that leads to a more focus image and thus a more robust system.

When considering the results obtained from applying the testing framework to the developed system, it can be seen that there is a progressive increase in the recognition rate of the system as the framework progresses. When the system only had one training image, the PCA algorithm could not generate a suitable subspace that allowed for a high recognition rate, thus, the relationship between the number of training images and the recognition rate appears to be a direct one. While this may be true for the current set of data, more testing is needed to see if this relationship will eventually plateau, however this investigation falls out of the scope of this research.

When regarding the subject by subject test data represented in Table 5.4, it can be seen that in most cases, the relationship mentioned above is maintained. Subjects 1 through 4 both show an increase in recognition rate when the number of training images has increased. The fringe case of subject 5 is explained as such. According to Table 3.2, the images recorded for subject 5 involved the capturing of 5 images with a static background and one image of the face from a varied angle. The recognition rate of Subject 5 is 80% (Test 1 of Framework 1) due to the fact that the tested images had been taken at short
intervals where the face did not have sufficient time to alter its expression too dramatically. Thus, these images are extremely similar to the singular training image and thus each is identified correctly.

A more focused image also leads to a closer match to the specific image in the PCA subspace. This is represented in the graph below where the Euclidean Distance of the recognitions is plotted for both the benchmark system and the developed system.

![Figure 5.2: Euclidean Distance Comparison](image)

The graph above represents the Euclidean Distance to the nearest neighbour. The sets of recognition tests were applied to both the benchmark system and the developed system.

From Figure 5.2 we can see the dramatic decrease in the length of the Euclidean Distance between the matches. As the scale of the graph is logarithmic, even a small improvement is dramatic. In some cases, there has been a 99.98% reduction in this distance.

Another point of interest that can be drawn from Figure 5.2 is from the last dataset. This subject was correctly recognised by neither the benchmark system nor the developed system. What can be seen from Figure 5.2 is that in a negative recognition, the Euclidean Distance to the nearest neighbour remains somewhat consistent with the one produced by the benchmark system, showing that the developed system improves the matches of positive recognitions and not that of negative recognition. This shows that the developed system does not simply reduce the Euclidean Distance of every recognition.

Other evidence to support the idea that the image is more focused is that of the average
5.4. ANALYSIS OF RESULTS

image produced within the EigenRecogniser. Figure 5.3a represents the average image generated by the benchmark system. It has various elements of the background included, some static and constant while others are blurred. Based on the results of the testing, it can be said that it is this background noise that is causing a lower recognition rate. Figure 5.3b represents the average image generated by the developed system. Within this image, the amount of background noise is drastically decreased and the average face of the individuals is easily discernible.

![Benchmark System](image1.png) ![Developed System](image2.png)

(a) Benchmark System (b) Developed System

Figure 5.3: Average Image Comparison

While these results have proved to be positive and led to an increase in the recognition rate, other results have not been as promising.

Firstly, the use of histogram equalisation has proven to have little to no noticeable effect on the performance of the system. As one of the aims of the developed system to reduce the affects of light variability, the results point to the fact that this aim has not been reached. As mentioned in Chapter 2, the eigenfaces technique is highly susceptible to varying lighting conditions and as this is implicit in the recognition process, it is inherent within the system.

The developed system has also proved to be slower than the benchmark system. This is due to the image processing that each image undergoes during the training and recognition. As can be seen by the graph, this increase in speed is linear. As the number of training images increases, the time taken to load the image database, from file into the system, increases. This linear relationship is due to the fact that each image undergoes the exact same procedure during the image processing. As each image is the same size,
each image has the same number of pixels and thus the time taken to analyse each image is similar.

![Figure 5.4: Timing Comparison](image)

While this presents a scalability problem for the developed systems certain implementation changes can be made to reduce the effects of this timing difference. These changes are outlined in the Possible Future Extensions section in Chapter 6.

Finally, the proposed solution of using a threshold as a means of rejecting images that are not within the database has proven ineffective. This is represented by Figure 5.1. Here, the Euclidean Distance to the nearest neighbour is depicted. From this, it can be seen that the distance for the positive recognition is much greater than both the negative recognition and the inanimate object. Thus, the application of a threshold would prove ineffective as the positive recognition would be discarded. A possible reason for this is the size of the image database. If this were to increase (i.e. the number of training images per subject) a closer match could be obtained and thus the thresholding could become viable. However, within the current system, it is not a viable means for image rejection.

Thus from these findings and comparisons, it can be seen that a reduction in background noise leads to less points of interest to be detected during the principle component analysis. This then leads to a closer match to the desired image and, ultimately towards a higher recognition rate.
5.5 Chapter Summary

The aim of this chapter was to evaluate the performance of the developed system and to compare it to the performance of the benchmark system outlined in Chapter 3.

When comparing the basic tests performed on both the benchmark system and the developed system, the following observations were made:

- The developed system consistently produced higher rates of recognition than the benchmark system.
- In test 5, where the number of training images was at a maximum, the recognition rate of the developed system was double the rate of the benchmark system.

With more detailed testing of the developed system, the following trends were revealed:

- As the number of training images increased, the recognition rate of the system increased.
- The system was able to correctly identify all of the subjects except for subject 5 proving that the varied angle of the face is problematic.
- For positive matches, the developed system produces a much closer match than that of the benchmark system based on the Euclidean Distance to the nearest neighbour.
- The applied threshold (whose aim was to give the system the ability to reject an image that is not within the system) produced mixed results in that it could reject some images but not all.
- The use of the histogram equalisation of the lighting conditions within the input images lead to no noticeable change in the performance of the system and thus, the system was still susceptible to changes in lighting conditions.
- The image processing leads to a dramatic increase in the time taken to load the database and this linear relationship (between the number of images in the database and the time taken to load them in the system) leads to a scalability problem within the system.

The size of the image database has proven to limit the results obtained by the tests and a larger database could yield better results.
Chapter 6

Conclusion

Based on the analysis of the results obtained in Chapter 5, the following conclusions have been drawn with the aims of the research as well as the proposed solutions mentioned in Chapter 3 in mind.

The aim of reducing the background noise of the input image was met. When comparing the original input image and the final segmented image, it can be seen that there is little to no background noise left within the image and that it contains mostly the face data of the individual concerned. This can be seen by the examples presented in Chapter 4, more specifically the resulting images presented in Figure 4.4c and Figure 4.9b. As has been shown by the performance of the developed system, this reduction in background noise has produced an increase in the recognition rate of the system. This is due to the noise reduction within the image by the facial detection and skin segmentation process. As shown in Figure 5.3b, the average face produced by the developed system is testament to this fact.

The aim of reducing the system susceptibility to lighting changes was not reached. The tools provided by the EmguCV package (such as histogram equalisation) proved to have no noticeable effect on the performance of the system. The use of the normalised RGB and HSV colour spaces also proved ineffective. A possible explanation for this is the use of the eigenfaces technique for recognition. As mentioned in Chapter 2, this technique is implicitly susceptible to changes in lighting conditions. Another possible reason for this is the size of the image database. As mentioned in Chapter 5, the size of the database seems to limit the results of the system.

The adding of the threshold to the nearest neighbour matching within the recognition
algorithm provided mixed results. Images that contained irrelevant objects such as chairs and other inanimate objects produced a Euclidean Distance that was not able to be differentiated from a positive match. While other faces tested that were not in the database proved to produce varying distances. This makes the use of the thresholds inconsistent and while they have been shown to work at some times, there have been times when they have been proven ineffective.

Finally, while the system has been shown to be more robust in the nature of the images that it can recognise, the process of background noise removal (namely the face detection and skin segmentation) has led to potential scalability problems. As shown in Figure 5.4, the load time of the image database using the developed system is substantially greater than that of the benchmark system. With a linear relationship, adding more images to the database will lead to a constant increase in the database load time with the current implementation.

Ultimately, while the system as shown to have some drawbacks, it has produced better recognition results than the generic recogniser provided in the EmguCV package with images that had varying backgrounds with various amount of background noise. Thus, it can be said that the system is robust even though it does not fulfill all of the aims set out in Chapter 1.

With the above conclusions regarding the research and results thereof in mind, the following future extensions have been proposed.

\section{Possible Future Work}

As the field of facial recognition is vast and constantly expanding, there is constant space for improvement. With regards to the developed system, the following aspects have been proposed as future extensions to the system.

The current data set used for the testing of this system is relatively small when compared to the standard databases provided online. To extend this research and perhaps improve the results of the system, the database could be expanded. It has already been shown that an increase in the number of training images leads to an increase in the recognition rate of this system, therefore an expanded image database should be able to improve the performance of the system.

Another possibility for future works is the comparison of face recognition techniques. As
6.1. POSSIBLE FUTURE WORK

As mentioned in Chapter 4, this research only makes use of the eigenfaces technique. Other techniques, such as artificial neural networks and hybrid systems, can be tested and the results compared to identify which of the techniques is more suited to the aims of this research.

As mentioned in the previous chapter, the developed systems loading of the database is almost fifteen times longer than that of the benchmark system. This is due to the image processing done on each image within the database. A possible method of improving this load time is parallelism. By parallelising the pre-processing of the database, many of the database images can be processed simultaneously. As each of the images undergoes the same procedure and there are no resources that need to be shared by these procedures, the method of parallelism is well suited to this task.

Another extension that can be implemented is to the skin segmentation component. There are other colour spaces that have proved to be effective in the field of skin segmentation such as TSL. These have shown to produce a more exact skin model and have the potential to produce a better segmented image [10].

Also in the field of skin segmentation, the actual segmentation process can be altered to create an image with even more noise reduction. This can be done by cropping the image both vertically and horizontally such that the image is made smaller till the border of the image is touching the border of the face without reducing the total number of skin pixels within the face. This process is demonstrated in Figure 6.1.

![Figure 6.1: Movement of the Bounding Box](image)

Finally, the current system can be fooled by holding up a photograph of an individual. The system will view this as a real individual and perform the recognition on it. There are various methods for the prevention of such an act such as a two stage image capture process in which the lighting conditions of the environment are changed in an attempt to create shadows around the nose and eye area. If these shadows are not present within the second image, the image can be regarded as a two dimensional individual and discarded.
while if the shadows are present, the individual can be classified as three dimensional and the process can continue.
Bibliography

Appendix A

Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>KL</td>
<td>Karhonen-Loeve</td>
</tr>
<tr>
<td>FPS</td>
<td>Frames Per Second</td>
</tr>
<tr>
<td>FRS</td>
<td>Facial Recognition System</td>
</tr>
<tr>
<td>PCA</td>
<td>Principle Component Analysis</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>HSV</td>
<td>Hue, Saturation, Value</td>
</tr>
<tr>
<td>RGB</td>
<td>Red, Green, Blue</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>TSL</td>
<td>Tint, Saturation, Lightness</td>
</tr>
<tr>
<td>YCbCr</td>
<td>Luminance and Chrominance</td>
</tr>
</tbody>
</table>