
Gaze Tracking Using A Regular Web

Camera

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

David Jonathan Wild

Grahamstown, South Africa

November 2012

Abstract

Traditional gaze tracking systems rely on either contact and invasive hardware, or ex-

pensive and non-standard hardware. To address this problem research has been done

into systems that use only simple hardware to create gaze tracking systems. This system

attempts to prove that is is possible to create a gaze tracking system using a regular web

camera and the free, open source Computer Vision library OpenCV. This is achieved by

researching various techniques required for such a system and then measuring the perfor-

mance of the created system. Analysis of the results concluded that while the error of the

system was greater than desired, in conjunction with the research done in this field, it is

possible to create a robust system using simple hardware.

Acknowledgements

I would like to thank my supervisor, James Connan, for assisting me in this project, my

family and friends who helped me through the rough patches, and the Rhodes University

Computer Science Department for their support and the opportunity to complete this

degree.

I would like to acknowledge the financial and technical support of Telkom, Tellabs,

Stortech, Genband, Easttel, Bright Ideas 39 and THRIP through the Telkom Centre

of Excellence in the Department of Computer Science at Rhodes University.

ACM Computing Classification System Classification

Thesis classification under the ACM Computing Classification System (1998 version, valid

through 2012)

I.5.2 [Design Methodology]: Feature Evaluation and Selection

I.5.4 [Applications]: Computer Vision

I.5.5 [Implementation]: Interactive Systems

K.4.2 [Social Issues]: Assistive technologies for persons with disabilities

General Terms: Gaze Tracking, Feature detection, Eye Movement, Computer Vision

Contents

1 Introduction 1

1.1 Is Gaze Tracking Useful? . 2

1.2 Problem Statement and Research Goals . 3

1.3 Structure of Thesis . 3

2 Background Literature 4

2.1 Introduction . 4

2.2 Human Eye . 4

2.2.1 Eye Structure . 5

2.2.2 Eye Movements . 6

2.3 Methods of finding the Eye . 8

2.3.1 Haar Classifiers . 8

2.3.2 Infrared Reflection . 10

2.4 Algorithms . 11

2.4.1 Real-time gaze Tracking Algorithm with head movement Compen-

sation (RTAC) . 11

i

CONTENTS ii

2.4.2 Neural Networks (NN) . 12

2.5 Summary . 13

3 Design 15

3.1 Design Decisions . 15

3.2 Web Camera . 16

3.3 Programming Language . 16

3.4 General Algorithm . 17

3.4.1 Loop steps . 17

3.4.2 Main Program . 18

3.5 Summary . 20

4 Implementation 21

4.1 Introduction . 21

4.2 Facial Detection . 21

4.3 Eye Detection . 23

4.4 Pupil Detection . 24

4.5 Corner Detection . 25

4.6 Calibration . 26

4.7 Main Program design . 27

4.8 Transforming to Window Coordinates . 28

4.9 Summary . 29

CONTENTS iii

5 Results 30

5.1 Testing . 30

5.1.1 Results . 30

5.1.2 Discussion . 32

5.2 Known Limitations . 33

5.2.1 Design Choices . 33

5.2.2 Implementation Choices . 34

5.3 Summary . 34

6 Conclusion 35

6.1 Effectiveness of the System . 35

6.2 Future Work . 36

Bibliography 37

A Full Table of results 41

B Installing OpenCV 44

B.1 Installing in Windows . 44

B.2 Linking your Visual Studio Project . 45

C Code Listings 47

C.1 Face Detection . 47

C.2 Eyes Detection . 49

CONTENTS iv

C.3 Finding Center of the pupil . 51

C.4 Finding the Corner . 52

List of Figures

2.1 Image of the Eye: Taken from http://www.vision-training.com/en/

Eye%20Anatomy/Eye%20anatomy.html . 6

2.2 Example of Haar features: Taken from [27] 9

3.1 Gaze Loop Steps: Logical Design . 17

4.1 Face detection Image . 22

4.2 Eye detection Image . 23

4.3 Left side of Face ROI . 24

4.4 Right side of Face ROI . 24

4.5 Image after Equalisation . 24

4.6 Image after Thresholding . 25

4.7 Pupil Detected . 25

4.8 ROI of Corner Search . 26

4.9 the Discovered Corner . 26

4.10 5 Dots into Calibration . 27

v

 http://www.vision-training.com/en/Eye%20Anatomy/Eye%20anatomy.html
 http://www.vision-training.com/en/Eye%20Anatomy/Eye%20anatomy.html

LIST OF FIGURES vi

4.11 Diagram of Distance Ratio’s . 29

5.1 Sample Console Output . 31

List of Tables

5.1 Table of results for point in Region 1 . 31

A.1 First Table of results for points . 41

A.2 Second Table of results for points . 42

A.3 Third Table of results for points . 43

vii

Chapter 1

Introduction

In his paper on non-invasive eye tracking technologies, Gao stated that gaze tracking

technology is still in the “embryonic stages” [6] of development and is not ready to be

used in daily life. Despite this statement there are already various systems, like the

Starburst system put forward in [16], and the Tobii system1 mentioned in [5]. Though

systems like these are available, we are yet to see a widespread usage of them because,

as mentioned previously, the field is still in it’s embryonic stages and is yet to become an

adopted technological advance.

A possible reason for this lack of integration into commercial society is that many of the

previous systems proposed, like the system in [15], require head mounted or invasive gear.

This creates the need to research into non-contact systems, such as the system put forward

in [8], which can perform at the same efficiency level. However, previous systems, like the

system designed in [19], required the use of a large fixed infrared camera, an LED array

as well as eye positioning cameras mounted on top of the screen to function efficiently.

This need for extra equipment is still a problem for regular users since they do not wish

to purchase additional hardware.

In an ideal scenario, the user would only need to install the software and buy some readily

available hardware to interface with their computer.

1The website for the system is http://www.tobii.com/pceye

1

http://www.tobii.com/pceye

1.1. IS GAZE TRACKING USEFUL? 2

1.1 Is Gaze Tracking Useful?

So it is apparent that gaze tracking requires further development, but is it worth develop-

ing these tools? This section gives some examples of application and research done with

similar systems to show the benefits of gaze tracking.

Gaze tracking has a large number of possible applications that benefit society. There are

many obvious benefits, such as aiding the disabled 2 or a new form of human computer

interaction. The interesting applications are more obscure and usually involve helping

researchers to see through their subject’s eyes.

In his paper from 1996, Tock attempted to track and measure a motor vehicle driver’s

eyes for eyelid separation. This was to aid in a larger system that could detect when

a driver was getting drowsy, which could reduce the number of road accidents due to

fatigue, potentially saving lives. [25]

In [2], gaze tracking was used to study the user’s visual behaviour when surfing the

Internet. The applications of this research affect advertising, website design, improving

usability in computer systems and optimising web browsers and websites for maximum

user experience.

An even more interesting study was presented in [21] where the researcher investigated

the behaviour of the eyes while reading a book and from that information was able to

infer information on how cognitive and lexical processing affects reading and learning.

This could lead to the development of cognitive development theories that aid in teaching

and learning through reading.

From these examples, it is apparent that gaze tracking could have a beneficial role in

society, and that it is worth researching into this field.

2As presented in [17]

1.2. PROBLEM STATEMENT AND RESEARCH GOALS 3

1.2 Problem Statement and Research Goals

This research project investigates the ability to create a gaze system that functions using

cheap hardware but efficiently enough to be useful. Since a large number of computer

users already have web cameras and they are relatively cheap to buy, the hardware used

in this system will be a regular web camera.

The final goal of this project is to ascertain whether it is possible to create a Gaze tracking

system using a regular web camera. The system will use the open source library Open

Computer Vision (OpenCV) to implement the techniques. Simple techniques that are

supported by OpenCV will implemented as a baseline comparison.

1.3 Structure of Thesis

The remaining chapters of this thesis are described below:

• Chapter 2 describes the background required to understand the proposed system

and some examples of other systems

• Chapter 3 gives an overview of the system design and describes certain decisions

made when designing the system

• Chapter 4 provides a step by step implementation of the system, providing the

OpenCV methods and describing the system structure

• Chapter 5 describes and discusses the results obtained from the system

• Chapter 6 outlines the conclusions drawn from this research and identifies possible

extensions of this project

Chapter 2

Background Literature

2.1 Introduction

Gaze tracking, as the name suggest, is tracking the gaze of a person. Thus, the objective

of a gaze tracking system is to track the focus of the user’s vision. So it is necessary

to be able to track the eye, and possibly other features, in an image. For this objective

more information on the relevant biology and behavior of the eye is required. To this end,

this chapter will present some background knowledge required for the creation of a gaze

tracking system, give some example algorithms already in use, and will describe some

techniques used within the proposed system.

2.2 Human Eye

Understanding the workings of the eye is paramount to any sort of eye or gaze tracking

system. In order to understand how to find the focus point of the gaze it is necessary

to first understand the relevant biology of the eye and what eye behaviour is relevant to

finding the focus point.

4

2.2. HUMAN EYE 5

2.2.1 Eye Structure

The important factor to consider when looking at the structure of the eye is where the

receptors of the eye are. As stated in [12], it would be a problem if there was a uniform

spread of receptors over the eye but instead there are higher density and lower density

areas. One such area is the fovea. As shown in figure 2.1, the fovea is a spot on the back

of the eye. According to [12, p3], the fovea covers a one degree width with the vertex of

the eye. This implies that the further away from the eye we get the larger the area of

uncertainty on the screen is. Outside of the fovea the clearness of person’s vision drops

to half or less that of the fovea and in [12] it was found that peripheral vision is not good

enough to focus or read text with. Considering that we wish to find the focus point of the

vision, the fovea then becomes the area to consider in our applications. It is mentioned

in [20] that to focus on an object a person will move their eyes such that the focus area is

within the fovea area. A problem with considering the fovea, as discussed in [12], is that

within the fovea there is still the one degree of error. If the focus area is sufficiently small

enough, then the focus point could shift without any eye movements since the focus point

would still be within the fovea‘s one degree of vision. The consequence of this is that it

is unlikely to get less than one degree of error when measuring using eye position. This

is consistent with the errors in [1], [8], [18], [23] and [28].

Another problem is that the fovea is within the eye socket and extremely small, as can

be seen by figure 2.1. This makes using it as a feature for tracking difficult. Instead the

pupil or Iris of the eye is tracked and the focus point inferred from that. This is possible

because the object of focus is kept in the centre of the eye so it is possible to find the

focus point by looking at the outer layers of the eye and inferring the fovea’s focus point

from those results. The area of interest thus become the Pupil or the Iris, as stated above.

[20].

2.2. HUMAN EYE 6

Figure 2.1: Image of the Eye: Taken from http://www.vision-training.com/en/Eye%

20Anatomy/Eye%20anatomy.html

2.2.2 Eye Movements

Regular human interfacing with a computer using a mouse is smooth. The mouse moves

smoothly across the working area while the user is moving it. We perceive the same of

our vision. In [11], [12] and [20], eye movements are described as a series of sudden jumps

with rest points in between. The jumps are called Saccades and the rests in between are

named Fixations [20].

Saccades

As stated above, saccades are extremely quick jumps between focus points. In [14], a paper

on Saccadic Suppression, it was found that “transsaccadic spatial memory is sacrificed in

order to maintain perceptual stability” [14]. This means that during the saccadic motion

no visual information is gained in order to maintain the perception of smoothness and

stability. This effect is known as saccadic suppression [20]. So to gain information into

 http://www.vision-training.com/en/Eye%20Anatomy/Eye%20anatomy.html
 http://www.vision-training.com/en/Eye%20Anatomy/Eye%20anatomy.html

2.2. HUMAN EYE 7

the focus points, it is not necessary to look into the saccades but rather the fixations

become the more valuable source of information.

It is noted in [20] that these quick movements need to be distinguished from three other

eye movements, referred to as Saccadic Eye Movements (SACs) in [7]. These movements

are pursuit, vergence and vestibular. Pursuit eye movements follow a moving focus point,

performing saccades to catch up if the point is moving too rapidly, but the general eye

movement is notably slower than that of a saccades. Vergence eye movements are when the

eyes move inward to focus on a point that is nearby. Vestibular movements are rotations

of the eye to compensate for larger head or body movements. These three movements are

less important than saccades for information processing and as such for Gaze Tracking.

[20]

Fixations

The rests in between saccades, where the eye is focusing and gaining visual information,

are called fixations. Jacob describes fixations as “a period of relative stability during

which an object can be viewed” [12, p5]. The reason for the term relatively in the above

statement is because there are still tiny movements during the fixations. These movements

are named smooth pursuit eye movements (SPEMs) in [7]. [12, p5]

There are three different types of these small movements and they are usually “within a

one-degree radius” [12, p5] which agrees with the previously mentioned fovea error. The

first is a constant tremor of the eye called a nystagmus. The second movement is known

as drift, which is where the eye occasionally drifts slightly off the focus point due to a

“less-than-perfect control of the oculomotor system by the nervous system” [20, p374].

These drifts are then compensated for by micro-saccades which are an even more rapid

eye movement then saccades, that brings the focus of the eye back to the object. [20]

As mentioned above we need only look at the fixations to find the focus of the eye. This

is good since the fixations last longer than the saccades. [20]

2.3. METHODS OF FINDING THE EYE 8

2.3 Methods of finding the Eye

The most precise methods for finding the eye accurately involve invasive or expensive

equipment. A method is mentioned in [12] that uses a contact lens that is fixed in place

on the eye. This reduces the problem to tracking something attached to the lens. The

problem with this method is that, while it is accurate, it is invasive and uncomfortable to

use. This makes it highly impractical as a solution to the problem. The aim of much of the

research into this field currently is to create an easily accessible and user sensitive device

that is not intrusive and could become commercially viable as a method of computer

interfacing that exceeds that of a mouse and potentially the keyboard too. Therefore the

ideal is to use non-contact and non-invasive techniques for Gaze and Eye Tracking. Of

course this introduces a new set of problems specific to these techniques, such as head

movements, which are considered in Chapter 3. This section will explain several relevant

techniques for finding the Eye. [12]

2.3.1 Haar Classifiers

Haar classifier objects are based on a compilation of Haar-like features. These features use

the changes in contrast values between adjacent rectangles of pixels to determine relative

light and dark areas. Two or three rectangles with relative contrast differences form a

single Haar-like feature. The features, as shown in figure 2.2 below, are then used to detect

objects in an image. These features can be scaled up and down easily by increasing or

decreasing the size of the pixel group. This allows Haar-like features to detect objects of

various sizes with relative ease. [27]

2.3. METHODS OF FINDING THE EYE 9

Figure 2.2: Example of Haar features: Taken from [27]

The rectangles themselves are calculated using an intermediate image called the integral

image. This integral image contains the sum of the intensities of all the pixels to the left

and above the current pixel. The equation for this is shown below. [27]

AI[x, y] =
∑
x′≤x
y′≤y

A(x′, y′)

However, the rotated features, as seen in 2.2, create a different integral image called a

rotated integral image based off the equation below instead. [27]

AR[x, y] =
∑
x′≤x

x′≤(x−|y−y′|)

A(x′, y′)

Using the integral image, or rotated integral image as needed, and taking the difference

between two or three connected rectangles it is possible to create a feature of any scale. A

benefit of Haar-like features is that calculating features of various sizes requires the same

effort as two or three pixels. This makes Haar features fast and efficient to use as well.

[27]

A requirement to create classifiers for specific objects is to train the classifiers using a set

of positive samples containing the image to be detected and a negative set not containing

2.3. METHODS OF FINDING THE EYE 10

the image. Once trained, the classifiers can be used to detect the objects. [27]

Some of the more popular uses of Haar Cascades are Eye and Face detection.

2.3.2 Infrared Reflection

The usefulness of using infrared light sources is that they enhance the contrast between

the pupil and the iris [26]. The following is an example of how to use the infrared

reflection to detect the eyes.

In [6], the authors firstly define a 60X60 pixel region (reduced from a 1280X1024 pixel

region) centered on a rough estimate of the centre of the pupil. Since different parts of

the eye have different refractive indexes to infrared light the pupil appears black and the

rest of the eye is not. Using a simple threshold algorithm to process a grey scale filtered

version of the image received from the camera, they can check for all points below the

threshold to find the ROI. The threshold equation used in [6] is given below. [6, p3609]

xpupil =
1

N

N∑
n=1

xn

ypupil =
1

N

N∑
n=1

yn

Similarly, an infrared camera was used in [13] in conjunction with a threshold algorithm

to determine the pupil location.

The general idea of using infrared is that the reflection of the infrared light simplifies the

process of pinpointing the centre of the pupil. This shortens a potentially time consuming

task and can increase the accuracy of the pupil detection, improving the efficiency of an

eye tracking system. The negative side of this is that the need for an infrared light makes

the product slightly harder to distribute. There could also be other light sources, or

shadows that disrupt this image and create “noise” [6] making it harder to calculate the

focus point, but this is a problem for most non-obtrusive systems.

2.4. ALGORITHMS 11

2.4 Algorithms

A Gaze tracking system is a combination of several different techniques, of which Eye

tracking is only a part. There are a great many methods of combining these techniques

to create algorithms. Some examples of Algorithms are given below in order to show the

differences, similarities and general structure of gaze tracking algorithms.

2.4.1 Real-time gaze Tracking Algorithm with head movement

Compensation (RTAC)

The explanation of RTAC in [8] begins by referring to the “Pupil Center Corneal Reflection

(PCCR)” [8, p395]. According to the PCCR, gaze direction calculations firstly acquire

the pupil-glint vector, and then use a gaze mapping function. The glint is the reflection of

the infrared light source in the eye. The pupil-glint vector is then the 2D vector between

the glint and the pupil. The algorithm then uses a mapping function to map this vector

to the 3D gaze direction. The mapping function is specified by the following functions:

θh = bθhVx + aθh

θv = bθvVy + aθv

Where θh is the angle between the gaze direction and the horizontal direction and likewise

θv is the angle between the gaze direction and the vertical direction. The coefficients, a

and b, are estimated using the sets of pairs of pupil-glint vectors.

The next step in this algorithm is the head movement calculation. The previous cal-

culation does not include adaption to head movements. As such, the system needs to

compensate for these head movements. This calculation is quite intricate. The basis for

it, however, is these two equations:

∆Ix = (b2x∆Lh + a2x)∆d
2 + (b1x∆Lh + a1x)∆d+ (b0x∆Lh + a0x)

2.4. ALGORITHMS 12

∆Iy = (b2y∆Lv + a2y)∆d
2 + (b1y∆Lv + a1y)∆d+ (b0y∆Lv + a0y)

These two equations describe the changes in head position in the horizontal and vertical

plane respectively. The derivation of these equations can be found in [8, p397]. Once the

head movement has been calculated then the system needs to compensate for this move-

ment. The compensation method employed by this algorithm uses two sets of equations:

the calculation of the proportional change in magnification and then using these values

to calculate the compensation value in the horizontal and vertical directions. [8, p397].

Then the next step is fixing the users head during calibration in order to get the initial

parameters required. After this calibration the user can move their head freely and the

parameters are compared to do the calculations.

In [8], it was found that this algorithm had an accuracy rate of approximately one degree,

and that there was little difference between different subjects. There was also little dif-

ference between different positions of the head, but the error did increase when the head

was moved near the boundaries of the camera’s vision.

2.4.2 Neural Networks (NN)

The first step of using Neural networks, according to [23], is Face and Eye detection.

The eye and face are detected using the intensities of the pixels in a region and then each

region is given a score. The scores are then arranged hierarchically and fed to an OpenCV

library for detection. [23]

The next step is to reduce the ROI to a smaller picture. This picture is usually extremely

small being less than a thousandth of the size of the original image and only containing the

eye. From there the image is processed to make a clearer input for the neural network. The

two processes applied are histogram equalisation that brightens the sclera and darkens

the boundary of the eyes, and resizing the image to a smaller format using a bicubic

interpolation. This reduces the pixel by fourfold which cuts the training time of the NN

from several minutes to a time generally less than 60 seconds. [23]

2.5. SUMMARY 13

The intensity of each pixel in the image is used as an input for the neural network. The

neural network employed a feed forward, two-layer structure. The actual Neural network

workings are dealing with Artificial Intelligence concepts rather than image processing

and as such will be left out.1 [23]

The error using the Neural Network approach in [23] was found to be approximately 1.5

degrees. The error found in [1] was the same and since the paper was published in 1994

which shows little progress in this particular algorithm, or suggests that there is an lower

limit to the error.

A Neural Network was used differently in [26]. Initially the system used blink detection

to pinpoint the location of the eyes. Once the eyes are found the Iris detection was done

using a combination of edge detection and circular Hough transforms, followed by corner

detection aimed at finding both the inner and outer corners. The Neural Network was

only used to map the relation between the eye features and the gaze direction. This is a

different approach than the one used in [23] in that the feature detection is done without

the Neural Network. [26]

Both algorithms for NN were effective but the Neural network added complexity to the

system and had to be trained which increased the calibration time.

2.5 Summary

In order to track the user’s gaze we need to know where the pupil is. By tracking the

pupil and other features we can work out where the gaze is. The system does not need

an excessively powerful camera as the fixations of the eye are the only meaningful data

required to find the gaze and these correspond to the longest time period of the eye

movement.

There are a large number of algorithms available for use, which employ an even larger

number of varying techniques. The fundamental requirements appear to be eye detection,

1More information on NN can be found in [10]

2.5. SUMMARY 14

pupil detection, detection of an additional feature, and then the transformation to the

focus coordinates. As such, this will be how this system will be designed.

Chapter 3

Design

The aim of this project is to create a Gaze tracking system using simple techniques, a

regular web camera and the Computer Vision library OpenCV. Since the logical design

of most Gaze Tracking systems is fairly standard, the overall design of this system is very

similar to existing systems. However, the tools used in these systems have a large amount

of variation in them. As such, the particular techniques used were chosen to be simple

techniques that were easily implemented as a baseline comparison.

The chapter will begin by detailing some design decisions, followed by the motivations

behind the use of the particular web camera and programming language, and finally move

onto the logical and actual design specifics.

3.1 Design Decisions

Traditional, non-contact Eye tracking systems had several problems that need to be taken

into consideration when calculating the focus point or when finding the eye. The first and

foremost of these is head movement, as mentioned by [23]. Older eye tracking systems

required the user to keep their head still in order to accurately capture the data. More

comprehensive systems, like [8], [9] and [13] , take this problem into account in their

algorithms. These algorithms all tend to incorporate infrared lighting.

15

3.2. WEB CAMERA 16

Another problem facing the field of Eye Tracking is known as the “Midas Touch Prob-

lem” [12, p15]. This problem is a direct result of the way the eye moves. People look at

a point to see if they are interested in it. So, currently, the eyes show where the user’s

interest is before the input device is brought into use. Now, if the eye is substituted as

a pointer that the mouse should follow, then the system might end up acting on com-

mands that the user did not intend. So it is necessary to be able to sort out meaningful

commands from simple observations, or non-meaningful movements. [12]

This Midas Touch Problem is solved in [22], specifically in regards to typing with eye

input, by implementing a dwell time activation. Dwell time activation is a simple concept

that reduces the likelihood of the Midas touch problem by having the eye-pointer only

interact with an object after a fixed period of time. The time in [22] was set to 403ms.

Another solution is to use blink detection as the basis for interaction commands.

This system will not deal will head movement cancellation as it is proposed as a simple

system and the technique requires an advanced implementation, as mentioned in sec-

tion 2.4.1. In order to avoid the Midas touch problem the system will not incorporate

Operating System click functionality. Therefore these two problems are avoided.

3.2 Web Camera

The web camera used for this project is the Logitech C300. It is a 1.3 megapixel web

camera. It costs R1461 in South Africa. This is a relatively cheap web camera and as

such suited the purposes of the project.

3.3 Programming Language

A natural choice to make is which programming language the system should be imple-

mented in. OpenCV supports three languages as a default: C, C++ and Python. In order

1found at http://www.pricecheck.co.za/offers/9061215/Logitech+960-000354+Webcam+C300/

http://www.pricecheck.co.za/offers/9061215/Logitech+960-000354+Webcam+C300/

3.4. GENERAL ALGORITHM 17

to minimise the time needed to create the system, C was discarded as I have minimal

experience in the language. A simple test was then run on Python to see if it was possible

to attempt to keep the system in real time but Python was found to be insufficient. C++

was the next choice to simplify the implementation of the system. This is because C++

has support in Visual Studio and has been covered in the undergraduate curriculum.

3.4 General Algorithm

The general algorithm of the system is split into two parts: the continuous loop to get

the gaze, and the main program.

3.4.1 Loop steps

The loop steps are the steps required to get all the necessary data from a single frame.

The simplest form of this design is shown below 2:

Figure 3.1: Gaze Loop Steps: Logical Design

2This step by step procedure is an adaption of design from [3]

3.4. GENERAL ALGORITHM 18

The first step is to get a single frame from the camera. Once the frame is retrieved the

face is detected. Face detection is done first in order to reduce the possible false positives

from the eye detection. Facial detection does this by reducing the search area to only this

facial area. A requirement of this is that the face detection needs to be a quick process in

order to not add extra delay to the system. The next step is the eye detection. This step

takes the area the face was found in and searches that area for the eyes. This step finds

each eye separately. Both eyes are used in order to increase the accuracy of the system.

Once the eyes are obtained, the pupil and corners are needed.

The exact method of finding the pupil within the eye differs between algorithms but there

are some consistencies. A particular technique is to detect circles in the image but this

requires cleaning of the image first. Since no special lighting was used, some form of

brightening of the image must occur in order to accentuate the differences between the

pupil and the white of the eyes. It is also necessary to reduce the noise in the image.

A threshold technique is useful to reduce the noise in the image. Edge detection is also

usually a good method of accentuating the border around the iris. Once you have included

enough noise reduction then it is possible to search the image for circles and find the circle

of the Iris. The center of the pupil can be approximated as the center of this discovered

circle. [4]

The inner corner of the eye was chosen as the second feature to check. The reason for this

was because it has been used successfully in [26]. The reason a second feature is required

is to create a vector to track the changes in the eye when it moves within the eye socket.

As such, this feature needs to be fixed relative to the movement in the eye. The nose was

used in [5], but the inner corner was decided on in order to have separate points within

the reduced region for each eye. Once the coordinates of both the eye and the corner are

obtained for both eyes, then the loop steps are complete.

3.4.2 Main Program

The main program incorporates the loop steps to create the gaze tracking system. Initially

the calibration program is run to get pupil and corner positions for certain fixed positions

3.4. GENERAL ALGORITHM 19

and then the main loop is entered.

Calibration

The aim of the calibration program is to find reference points that can later be used to

translate the pupil and corner positions into a position on the screen. The calibration

technique used in [5] is to present a black screen with a single green dot drawn on. The

user then looks at the dot and clicks to record the coordinates. The next dot is then

displayed until twelve dot positions are recorded. [5]

This system of getting reference coordinates is useful in a simple system like this one

because it provides the reference coordinates of the exterior of the window as well as

middle reference points. As such, the system uses a dot calibration system to get the

reference coordinates. However, only nine dots are used as this splits the screen into four

regions. If more regions are desired then more dots are required in the calibration.

Each dot‘s coordinates are also recorded several times to help reduce error. The most

recurring coordinates are then returned.

Main system

Once the calibration is done, the main system begins. The main system stores the results

of the calibration and then begins the loop steps. The difference in the loop steps here is

that several extra steps have been added. Firstly, the distances between the pupils and

the corners are calculated. Then using simple comparisons between the dot‘s distances

and the current focus, the region of focus is found. Once the region is reduced to one of

the four regions, the distances are converted to coordinates within the window.

To test the accuracy of the system the main loop incorporated drawing a single dot at

one of four positions located within each of the regions. Once this dot was drawn, all gaze

positions found after that are compared to the coordinates of the dot to record the error.

The error is recorded into a file as it is found. This concept of using circles to further test

the system is an extension of the calibration and was successfully used in [24] as well.

3.5. SUMMARY 20

3.5 Summary

The system will go through the calibration stage first, in order to provide reference points

for the main detection, after which the main program begins running a continuous loop

that calculates the pupil and corner coordinates and compares them to the calibration

points in order to calculate the gaze position.

Chapter 4

Implementation

4.1 Introduction

This chapter will go through the steps taken to implement the system from the design.

This will not include the setup of OpenCV in a Windows environment nor linking the

library in a Microsoft Visual Studio 2010 project since these can be found in appendix

B. This chapter will include some of the actual code based from the design, as well as

challenges found during development and how they were addressed.

The system has been implemented on a 64bit Windows 7 Operating System with 4GB of

RAM and an Intel Core i7 870 @2.93GHz Processor. All code has been done in Visual

Studio 2010.

4.2 Facial Detection

The face detection is the first step in the implementation of the system. It was decided

to use Haar detection for this step. Luckily, OpenCV has predefined Haar Classifiers that

come with the installation of the library.

21

4.2. FACIAL DETECTION 22

Figuring out how to correctly use the Haar Classifiers took research but eventually an

effective method was found.1 The first necessity is to load the classifiers. This can

be done using the below code. The classifier used for the face detection was haarcas-

cade frontalface alt2.xml.

Cascade = (CvHaarClassifierCascade*)cvLoad CascadeName, 0, 0, 0);

Once the cascade is loaded you can use it in the method for Haar Detection called

cvHaarDetectObjects, but first the image needs some minimal pre-processing. The image

is grey scaled to make the Haar detection more robust. Since a grey image is more useful

for the rest of the program as well, the grey image becomes the basis for the entire process.

The Haar detection method takes in an image, a Haar classifier cascade, the storage space

that the answer should be stored in and then several other optional parameters. The full

use of the function can be seen in appendix C.1. This function then returns a sequence

of faces detected, from which the x and y coordinates, and the width and height of the

face box can be extracted. Using these extracted values you can determine the area that

contains the face. For the sake of testing, a rectangle is then drawn around the face. A

screen shot of this is shown below in figure 4.1:

Figure 4.1: Face detection Image

1The basis for the algorithm was found at: http://nashruddin.com/opencv_eye_detection

http://nashruddin.com/opencv_eye_detection

4.3. EYE DETECTION 23

The Region of Interest (ROI) of the image is then set using the cvSetImageROI function.

Instead of working with only one image and simply set the ROI smaller as required by

the steps it made more sense to crop the region and return an image consisting only of

the reduced region. This was especially necessary since the eye detection later worked

with two different regions. This was performed by copying the ROI into another image

and returning that from the function.2

Now a reduced region in which to search for the eyes has been obtained.

4.3 Eye Detection

The eye detection is done in a similar method 3 to that of face detection in that it uses

the same method but a different classifier. The classifiers used for the left and right eye

detection are haarcascade lefteye 2splits.xml and haarcascade righteye 2splits.xml respec-

tively.

The eye detection is done separately for each eye Haar classifier, so the function found

in appendix C.2 is used twice in one iteration of the run process. The method follows

the same basic steps as the facial detection: use the Haar detection method, set the ROI,

copy only the ROI to a new image and return that image. A screen shot of the returned

image is shown below in figure 4.2.

Figure 4.2: Eye detection Image

However, during the testing it was found that the Haar detection for the eyes was not as

accurate as the face and often found the other eye as well. A method of solving this was

found in [4]. By first splitting the ROI from the facial detection into two separate halves

2The method for this was found at: http://nashruddin.com/OpenCV_Region_of_Interest_%28ROI%
29

3Also taken from: http://nashruddin.com/opencv_eye_detection

http://nashruddin.com/OpenCV_Region_of_Interest_%28ROI%29
http://nashruddin.com/OpenCV_Region_of_Interest_%28ROI%29
http://nashruddin.com/opencv_eye_detection

4.4. PUPIL DETECTION 24

of the face, one for the left and one for the right, the false positives from this problem

were completely eliminated. So the facial box from figure 4.1 was halved to get the below

two images. Then using these images the Haar detection was done separately.

Figure 4.3: Left side of Face ROI Figure 4.4: Right side of Face ROI

4.4 Pupil Detection

The next step in the process is pupil detection. This is by far the most difficult part of

the process. Figure 4.2 shows the image coming in to this function. As can clearly be

seen, the pupil is not highlighted at all. It is even difficult to see the edge of the Iris

correctly. This is partially due to the lighting in the testing room and an infrared system

would clearly highlight the pupil. However, pre-processing the image can make a major

improvement by highlighting the important information.

The pre-processing begins by equalising the histogram of the image. This distributes the

intensities of the lower contrast areas better and widens the differences between the light

and dark areas. The output of this is shown below in figure 4.5.

Figure 4.5: Image after Equalisation

It is obvious from the image that the light and dark areas are now more defined. To

reduce the noise the image was brightened as well. Applying a binary threshold then

further accentuates these differences reducing the noise the next step of edge detection.

An adaptive threshold was also considered in use but the testing found it to be less

effective. An image of the output to a binary threshold is show below in figure 4.6.

4.5. CORNER DETECTION 25

Figure 4.6: Image after Thresholding

To further reduce the noise a smoothing filter is applied. This reduces the overall noise

and allows patterns, like the circle of the Iris, to be more readily noticed. After the

pre-processing is done the pupil detection can be done. The function used for this is

called cvHoughCircles. It searches for in the image. It is a form of ellipse fitting which is

mentioned in several papers.

In order to make the function only detect the best circle in the image you set the parameter

called min distance to the size of the image. This parameter represents the minimum

distance allowed between two detected circles. Figure 4.7 below shows the pupil found in

an image.

Figure 4.7: Pupil Detected

In the testing, the system was inaccurate to the point of being unable to find the pupil.

Upon research it was discovered in [4] that the eyebrows interfere with the detection. As

such the image was further cropped, to the images seen above, to remove the eyebrow as

cleanly as possible.

The coordinates of the detected pupil center are then stored. These coordinates are

approximated to be the center of the detected circle.

4.5 Corner Detection

The Corner detection is the first step to not work directly off the prior step. Both the pupil

detection and the corner detection use the ROI from the Eye detection and can be called

4.6. CALIBRATION 26

without the presence of the other function. The corner detection works by equalising the

histogram of the image, to accentuate the edges, and then calling the OpenCV method

cvGoodFeaturesToTrack. This function finds the most prominent corners in the image.

The function has a parameter called maxCorners that allows the user to specify the

number of returned corners. The function also ranks the corners by strength so by choosing

the maxCorners to be one you get only the strongest corner back.

A problem was quickly discovered that the strongest corner in a complete image of the

eye could be either eye corner. As such the ROI for the search was then reduced further

to a small section centered approximately on where the corner should be. The size of the

ROI is shown below in figure 4.8. This required different reductions according to which

eye was being looked at, as can be seen in appendix C.4. By setting the ROI to this

smaller area the corner detection was more accurate. The output image of the function

is show below in figure 4.9.

Figure 4.8: ROI of Corner Search Figure 4.9: the Discovered Corner

The output coordinates of the corner found need to then be offset by the x and y coordi-

nates of the ROI used as the search window. This is to ensure that the pupil coordinates

and the corner coordinates are in the same reference frame and can be mathematically

compared.

4.6 Calibration

Now that it is possible to find the coordinates of both the pupil and the corner, the

calibration program can be created to get the nine fixed reference points required. This

is done first by showing a blank screen with one dot on, and once the user is ready to

record the gaze coordinates then the user will hit a key and the system will record the

coordinates. Once recorded the system will wait for the user to click in the window before

4.7. MAIN PROGRAM DESIGN 27

displaying the next dot, whereupon the user must press a key again to record the data.

This process is repeated for all nine dots. A screen shot of the dot calibration window is

shown below in figure 4.10.

Figure 4.10: 5 Dots into Calibration

For each dot, the calibration program stores 40 sets of coordinates and then checks them

for a stabilised set of coordinates. This redundancy is to reduce the error in the pupil and

corner detection. Since the detection stages work the majority of the time the calibration

checks that half of the coordinates are within an acceptable threshold of each other and

if not it reruns the process to get new coordinates. Once stable coordinates have been

found the calibration program ends and returns those stable coordinates for the nine dots

to the main program.

4.7 Main Program design

The main program runs in a very similar manner to the calibration program. It calls the

loop steps and then gets the coordinates for the pupils and corners from that function.

Once those are obtained it compares them to the calibration coordinates to determine

4.8. TRANSFORMING TO WINDOW COORDINATES 28

where the user is looking within the test window. These coordinates are then converted

to coordinates within the window using the method described in section 4.8. To help

increase the accuracy of the system a stabilising system similar to that mentioned in the

calibration was implemented. The difference is that during the main program, only ten

sets of coordinates were obtained before stabilising the value.

In order to test the efficiency of the system a test window, of the same size as the cali-

bration image, is displayed and on the user‘s click a dot is displayed until the user clicks

again, after which another dot is shown. There are four possible dot positions, one in the

middle of each of the four regions the window is divided into by the calibration program.

The results of this test are discussed in chapter 5.

4.8 Transforming to Window Coordinates

The first step to converting the pupil and corner coordinates to window coordinates is

to get the distances between the x and y coordinates of the corner and pupil. This is

done before the main loop for the calibration coordinates to avoid repeatedly processing

these constant values. The live data is then processed within the loop, and the distances

are passed to a conversion function. This conversion function is what outputs the final

coordinates.

The first part of the conversion function is to discover what region the eye is in by

comparing the distance to the distances found in the calibration. This is a necessary step

in order to know which points to use in the conversion. Once we have the region we

calculate the ratio of the distances between the fixed points and the live point, as shown

below in figure 4.11. The red dot in the figure represents the live point. The ratio is then

multiplied by the window height and width to get the window coordinates which are then

returned to the main function to use in the error recording.

4.9. SUMMARY 29

Figure 4.11: Diagram of Distance Ratio’s

4.9 Summary

This chapter focused on how the gaze system was implemented. The design is similar to

other systems but the techniques used between systems vary largely. As such this system

outlined exactly how each step in the design was implemented and which main OpenCV

methods were used.

Many problems were found in the actual implementation and were largely solved using

techniques found through further research or through error reduction using redundancy.

Chapter 5

Results

As mentioned previously in section 4.7, the error is measured using four test dots on the

screen and comparing the positions received from the system to the dot coordinates. The

results of the testing are given in this chapter, with a brief discussion, followed by the

known limitations of the system.

5.1 Testing

The system output was limited to which region the user was focusing on. The error was

measured in the distance from the center of the drawn test circle to the calculated position

of the user’s gaze.

5.1.1 Results

An example of the system console output is shown below in figure 5.1.

The majority of the output in figure 5.1 is simply error checking but the line showing the

gaze region output shows the result of the system’s processing. This is the result shown

to the user. The actual error results are recorded separately in a .csv file by the system.

30

5.1. TESTING 31

Figure 5.1: Sample Console Output

The results below in table 5.1 are a sample of the error results taken from the testing

phase. The full table can be found in appendix A.

Table 5.1: Table of results for point in Region 1

Dot X Dot Y Error in X Error in Y Error

Point 1
475 250 142 166 218
475 250 147 115 187
475 250 27 115 118
475 250 79 132 154
475 250 283 38 286
475 250 159 55 168
475 250 57 200 208
475 250 47 106 120
475 250 108 13 109
475 250 283 191 341
475 250 249 183 309
475 250 159 98 187
475 250 210 89 228
475 250 244 183 305
475 250 210 191 284
475 250 300 123 324
475 250 181 149 234
475 250 147 55 157
475 250 91 38 99
475 250 164 98 191

The first two columns of the table below show the coordinates of the point the user is

looking at. The second two show the error in the x and y directions and the finally the

error using Pythagoras’ formula is given in the final column.

All error is measured in pixel values in the window space. The top left of the window

is (0,0) and the bottom right value is (1900,1000). As can be seen, the system does not

provide reliable results. The error jumps fairly erratically, but still lies within the correct

5.1. TESTING 32

region. The maximum error for the system was calculated to be 341 pixels and the average

error was 198 pixels. This means that the system accurately determine the user’s gaze

within a radius of approximately 350 pixels.

It was also found during the testing that the optimum head placement for the Face and

Eye detection stages is approximately 30cm in front of the camera and close to the same

height. With the head placed larger distances away and lower heights the face detection

and eye detection stages would fail up to 7 out of 10 times which affects the real time

nature of the system severely. In this optimum position the Face and Eye detection stages

only failed, on average, 1 out of 10 times. If the detection stage failed then the system

would restart the loop steps mentioned in section 3.4. Since the system implemented

an averaging system, as discussed in section 4.7, that requires the full loop to occur a

certain number of times before a position is calculated, this failure in the detection stages

can cause a huge delay in the real time nature of the system. This can be avoided by

maintaining the specified head position.

5.1.2 Discussion

The results of this system showed a large error inherent in the implementation. This error

could be from several sources.

Firstly, the pupil detection method was found to be inaccurate to the point of finding

the wrong point more than a third of the time. To counter this, the system used an

aggregating system, as mentioned previously, to find where the majority of pupil center

locations were found, which better approximated the correct position from a set of points.

While allowing the system to detect which region the gaze was in, this technique did

not sufficiently decrease the error. A higher resolution camera could help with this by

increasing the relative distance between the pupil and corner, but this could be resolved

through techniques like interpolation to resize the image as well. Several alternative

techniques to pupil detection are discussed in [3] and were found to be accurate enough

for use in human-computer interfacing. These techniques, as well as the testing, were

5.2. KNOWN LIMITATIONS 33

all implemented using regular web-cameras, which suggests that the problem with this

system’s pupil detection is the technique rather than the hardware. However, infrared

cameras, in conjunction with an infrared light, do have better accuracy, on average, than

those of a regular web-camera.

Secondly, the corner as a feature to track introduced several problems in the implemen-

tation and further increased the error despite the alleviating steps taken. As previously

mentioned, the system in [5] uses the bridge of the nose, and several other static points,

as additional features to track and this could remove several of the problems created and

alleviate the error in the result by minimising the error in the corner detection. Alterna-

tively, a better technique, like the one used in [26], could be used to detect the location

of the corner.

Finally, due to the requirement for the averaging of the coordinate sets, the system ran at

a slower rate than intended. The delay between the system getting stabilised coordinates

became variable, based on if any of the techniques failed. The best case was nearly un-

noticeable delay between successive readings to the worst case of several seconds between

readings. Also, as previously mentioned, this delay is dependent on the head being in the

optimal position.

Several other limitations that did not affect the system’s results were discovered during

testing.

5.2 Known Limitations

Since the system is designed to be simple, there are certain limitations that either intro-

duce a large error, or simply limit the system.

5.2.1 Design Choices

As previously mentioned in chapter 3, the system doesn’t deal with head movement

cancellation. So the user is required to keep their head still during calibration and any

5.3. SUMMARY 34

change in head orientation during the main program will result in a large error in the

position detection until the head is placed back in the same position and orientation.

5.2.2 Implementation Choices

Using the Haar detection as the face detection means that any differences from the main

cascade in the pixel group intensities causes the system to be unable to find the face. So

any user with dark skin will be unable to use the system.

The system is implemented in Windows and Microsoft Visual Studio. As such the system

only works in a windows context. The algorithm however is not OS specific and can be

implemented in any Operating System (OS) and indeed any language, though the code

listings given in appendix C will only work in a C++ environment with OpenCV installed.

5.3 Summary

Within the capabilities of the system, the error is still rather large. However the system

can still determine the region of the user’s focus. This still leaves a great many applications

available for the system. Another benefit of gaze tracking systems, and in particular the

design of this system, is that the modular nature of the design allows techniques to be

replaced with better techniques, which are available, with relative ease. This means the

system can be upgraded quickly and effectively.

Chapter 6

Conclusion

The aim of this project was to create a Gaze tracking system using a regular web camera

and the OpenCV library. As has been shown in chapters 4 and 5, the system has been

created. However, whether the system is actually effective needs to be determined. This

chapter will also discuss possible future work.

6.1 Effectiveness of the System

The error results obtained in chapter 5 show that the system was ineffective. Considering

the simple nature of the implementation, it is possible that this is the cause. This result

is still inconclusive on whether or not it is feasible to create an effective gaze tracking

system using only a regular web camera.

As discussed in section 5.2, the system has been designed simply and this has affected its

strength. The research in chapter 2, and as discussed in section 5.1.2, shows that other

techniques are available and have produced better results in many cases. This means

that an effective gaze tracking system using a regular, or a simple infrared, camera is

possible to create, despite the inconclusive nature of this system. This removes the need

for contact and invasive systems and can remove the need for head mounted gear as well.

35

6.2. FUTURE WORK 36

This thesis has aimed to show it is possible to create a system that uses a regular web

camera to effectively track the gaze of the user and though this system is inaccurate, the

high error can be attributed to poor techniques rather than the need for better hardware.

Having further uncovered several techniques that can replace the ones used in this system

and have been found to have much better performance, the conclusion of this thesis is that

an efficient and accurate gaze tracking system can be created with a simple web camera.

6.2 Future Work

As discussed in section 1.1, the applications of gaze tracking are varied and extremely

interesting. To create systems effective and efficient enough for these application is the

goal of the work in this field. As such, possible future works for this project include:

• Finding better techniques through technique comparisons

• Removing the need for calibration

• Incorporating head movement cancellation

• Implementing a gaze tracker using a web-camera and a Raspberry Pi

• Implementing the system on a GPU

Bibliography

[1] Baluja, S., and Pomerleau, D. Non-intrusive gaze tracking using artificial

neural networks. Tech. rep., Pittsburgh, PA, USA, 1994.

[2] Buscher, G., Cutrell, E., and Morris, M. R. What do you see when you’re

surfing?: using eye tracking to predict salient regions of web pages. In Proceedings

of the 27th international conference on Human factors in computing systems (New

York, NY, USA, 2009), CHI ’09, ACM, pp. 21–30.

[3] Ciesla Michal, K. P. Eye Pupil Location Using Webcam. Online. Accessed on 31

October 2012. Available from: http://arxiv.org/ftp/arxiv/papers/1202/1202.

6517.pdf.

[4] CodeBox. opencv - Iris Detection. Online, November 2010. Accessed on 26 October

2012. Available from: http://codingbox.net/jinstall/index.php?option=com_

content&view=section&layout=blog&id=3&Itemid=16.

[5] Frieslaar, I. Moving the mouse pointer using eye gazing. Published through

Department of Computer Science, University of the Western Cape, 2011.

[6] Gao, D., Yin, G., Cheng, W., and Feng, X. Non-invasive eye tracking tech-

nology based on corneal reflex. Procedia Engineering 29, 0 (2012), 3608 – 3612. 2012

International Workshop on Information and Electronics Engineering.

[7] Grossberg, S., Srihasam, K., and Bullock, D. Neural dynamics of saccadic

and smooth pursuit eye movement coordination during visual tracking of unpre-

dictably moving targets. Neural Networks 27, 0 (2012), 1 – 20.

37

http://arxiv.org/ftp/arxiv/papers/1202/1202.6517.pdf
http://arxiv.org/ftp/arxiv/papers/1202/1202.6517.pdf
http://codingbox.net/jinstall/index.php?option=com_content&view=section&layout=blog&id=3&Itemid=16
http://codingbox.net/jinstall/index.php?option=com_content&view=section&layout=blog&id=3&Itemid=16

BIBLIOGRAPHY 38

[8] Huang, Y., Wang, Z., and Ping, A. Non-contact gaze tracking with head

movement adaptation based on single camera, 2009.

[9] Huang Ying, W. Z., and Xuyan, T. A real-time compensation strategy for non-

contact gaze tracking under natural head movement. Chinese Journal of Electronics

19 (July 2010), 446–450.

[10] Husken, M., Igel, C., and Toussaint, M. Task-dependent evolution of modu-

larity in neural networks. Connection Science 14 (2002), 2002.

[11] Jacob, R. J. K. The use of eye movements in human-computer interaction tech-

niques: What you look at is what you get. ACM Transactions on Information

Systems 9 (1991), 152–169.

[12] Jacob, R. J. K. Eye tracking in advanced interface design, 1995.

[13] Kawato, S., and Tetsutani, N. Detection and tracking of eyes for gaze-camera

control. Image and Vision Computing 22, 12 (2004), 1031 – 1038. Proceedings from

the 15th International Conference on Vision Interface.

[14] Klingenhoefer, S., and Bremmer, F. Saccadic suppression of displacement in

face of saccade adaptation. Vision Research 51, 8 (2011), 881 – 889. Perception and

Action: Part II.

[15] Li, D., Babcock, J., and Parkhurst, D. J. openeyes: a low-cost head-mounted

eye-tracking solution. In Proceedings of the 2006 symposium on Eye tracking research

& applications (New York, NY, USA, 2006), ETRA ’06, ACM, pp. 95–100.

[16] Li, D., Winfield, D., and Parkhurst, D. J. Starburst: A hybrid algorithm

for video-based eye tracking combining feature-based and model-based approaches.

In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05) - Workshops - Volume 03 (Washington, DC,

USA, 2005), CVPR ’05, IEEE Computer Society, pp. 79–.

[17] Mauri, C., and Lors, J. Computer vision interaction for people with severe

movement restrictions.

BIBLIOGRAPHY 39

[18] Morimoto, C. H., and Mimica, M. R. Eye gaze tracking techniques for interac-

tive applications. Computer Vision and Image Understanding 98, 1 (2005), 4 – 24.

Special Issue on Eye Detection and Tracking.

[19] Ohno, T., and Mukawa, N. A free-head, simple calibration, gaze tracking system

that enables gaze-based interaction. In Proceedings of the 2004 symposium on Eye

tracking research & applications (New York, NY, USA, 2004), ETRA ’04, ACM,

pp. 115–122.

[20] Rayner, K. Eye movements in reading and information processing: 20 years of

research. Psychological Bulletin (1998), 372–422.

[21] Reichle, E. D., Pollatsek, A., Fisher, D. L., and Rayner, K. Toward a

model of eye movement control in reading. PSYCHOLOGICAL REVIEW 105, 1

(1998), 125–157.

[22] San Agustin, J., Skovsgaard, H., Mollenbach, E., Barret, M., Tall,

M., Hansen, D. W., and Hansen, J. P. Evaluation of a low-cost open-source

gaze tracker. In Proceedings of the 2010 Symposium on Eye-Tracking Research &

Applications (New York, NY, USA, 2010), ETRA ’10, ACM, pp. 77–80.

[23] Sewell, W., and Komogortsev, O. Real-time eye gaze tracking with an un-

modified commodity webcam employing a neural network. In Proceedings of the 28th

of the international conference extended abstracts on Human factors in computing

systems (New York, NY, USA, 2010), CHI EA ’10, ACM, pp. 3739–3744.

[24] Sibert, L. E., and Jacob, R. J. K. Evaluation of eye gaze interaction. In

Proceedings of the SIGCHI conference on Human factors in computing systems (New

York, NY, USA, April 2000), CHI ’00, ACM, pp. 281–288.

[25] Tock, D., and Craw, I. Tracking and measuring drivers’ eyes. Image and Vision

Computing 14, 8 (1996), 541 – 547. 6th British Machine Vision Conference.

BIBLIOGRAPHY 40

[26] Torricelli, D., Conforto, S., Schmid, M., and DAlessio, T. A neural-

based remote eye gaze tracker under natural head motion. Computer Methods and

Programs in Biomedicine 92, 1 (2008), 66 – 78.

[27] Wilson, P. I., and Fernandez, J. Facial feature detection using haar classifiers.

J. Comput. Sci. Coll. 21, 4 (Apr. 2006), 127–133.

[28] Zhu, Z., Ji, Q., and Member, S. Novel eye gaze tracking techniques under natural

head movement.

Appendix A

Full Table of results

Table A.1: First Table of results for points

Dot X Dot Y Error in X Error in Y Error

Point 1
475 250 142 166 218
475 250 147 115 187
475 250 27 115 118
475 250 79 132 154
475 250 283 38 286
475 250 159 55 168
475 250 57 200 208
475 250 47 106 120
475 250 108 13 109
475 250 283 191 341
475 250 249 183 309
475 250 159 98 187
475 250 210 89 228
475 250 244 183 305
475 250 210 191 284
475 250 300 123 324
475 250 181 149 234
475 250 147 55 157
475 250 91 38 99
475 250 164 98 191

41

APPENDIX A. FULL TABLE OF RESULTS 42

Table A.2: Second Table of results for points

Dot X Dot Y Error in X Error in Y Error

Point 2
1325 250 210 72 222
1325 250 227 72 238
1325 250 227 72 238
1325 250 244 149 286
1325 250 181 64 192
1325 250 266 30 268
1325 250 198 157 253
1325 250 193 17 194
1325 250 23 191 192
1325 250 147 19 148
1325 250 130 16 131
1325 250 74 149 166
1325 250 74 38 83
1325 250 193 47 199
1325 250 11 174 174
1325 250 125 30 129
1325 250 79 200 215
1325 250 249 45 253
1325 250 215 64 224
1325 250 300 89 313

Point 3
1325 750 79 140 161
1325 750 40 140 146
1325 750 113 47 122
1325 750 74 132 151
1325 750 62 81 102
1325 750 96 55 111
1325 750 295 65 302
1325 750 159 21 160
1325 750 96 23 99
1325 750 79 157 176
1325 750 249 106 271
1325 750 91 174 196
1325 750 147 123 192
1325 750 227 30 229
1325 750 57 30 64
1325 750 45 132 139
1325 750 159 157 223
1325 750 164 30 167
1325 750 27 64 69
1325 750 23 64 68

APPENDIX A. FULL TABLE OF RESULTS 43

Table A.3: Third Table of results for points

Dot X Dot Y Error in X Error in Y Error

Point 4
475 750 17 183 184
475 750 159 183 242
475 750 142 149 206
475 750 142 98 173
475 750 261 98 279
475 750 215 191 288
475 750 96 174 199
475 750 108 106 151
475 750 28 81 86
475 750 215 81 230
475 750 130 21 132
475 750 74 174 189
475 750 57 55 79
475 750 283 21 284
475 750 232 174 290
475 750 210 55 217
475 750 244 64 252
475 750 295 149 330
475 750 261 200 329
475 750 176 30 179

Appendix B

Installing OpenCV

OpenCV is an open source computer vision library dedicated to easing the implementation

of computer vision related programs. It is an extensive library, the whole library for version

2.4.2 exceeding 6GB of space after installation . As such the install will be included in

the hand in and instructions on how to use the library will be given below.

B.1 Installing in Windows

Installing OpenCV in windows is a fairly simple process. However, to make linking the

library in your projects easier, it is useful to add some additional steps. 1

The first step is to download the OpenCV installation for windows.2 Then the installation

must be run by and the library extracted to a path. In order to simplify the linking later

on it is necessary to add certain OpenCV folders to your system path. The folders under

the variable “path” are:

\build\x86\vc10\bin

\build\common\tbb\ia32\vc10

1Please note that these instructions are a combination of the instructions found at http:

//jepsonsblog.blogspot.com/2012/07/installation-guide-opencv-24-with.html and http://

stackoverflow.com/questions/10901905/installing-opencv-2-4-in-visual-c-2010-express
2The file can be downloaded from http://sourceforge.net/projects/opencvlibrary/

44

http://jepsonsblog.blogspot.com/2012/07/installation-guide-opencv-24-with.html
http://jepsonsblog.blogspot.com/2012/07/installation-guide-opencv-24-with.html
http://stackoverflow.com/questions/10901905/installing-opencv-2-4-in-visual-c-2010-express
http://stackoverflow.com/questions/10901905/installing-opencv-2-4-in-visual-c-2010-express
http://sourceforge.net/projects/opencvlibrary/

B.2. LINKING YOUR VISUAL STUDIO PROJECT 45

This completes the setup of OpenCV in windows. Next is to link a project in Visual

C++. It is important to note that the paths here are excluding the actual reference to

where you have extracted OpenCv to. An example that includes the extraction path is

C:\opencv\build\x86\vc10\bin

B.2 Linking your Visual Studio Project

Once you have created a project in Visual C++, it is necessary to edit the properties of

the project. Under the tab, VC++ Directories, it is necessary to include the directories

shown below under the Include directories.

build\include\opencv

build\include

Under the Library directories it is necessary to include the build directory that corresponds

to your system. In the case of this system the directory was:

build\x86\vc10\lib

Under the heading Linker-Input-Additional Dependencies the following files were required

to be added.

opencv_calib3d242d.lib

opencv_contrib242d.lib

opencv_core242d.lib

opencv_features2d242d.lib

opencv_flann242d.lib

opencv_gpu242d.lib

B.2. LINKING YOUR VISUAL STUDIO PROJECT 46

opencv_highgui242d.lib

opencv_imgproc242d.lib

opencv_legacy242d.lib

opencv_ml242d.lib

opencv_nonfree242d.lib

opencv_objdetect242d.lib

opencv_photo242d.lib

opencv_stitching242d.lib

opencv_ts242d.lib

opencv_video242d.lib

opencv_videostab242d.lib

It is important to note that firstly the 242 is for version 2.4.2 of OpenCV and the ap-

propriate number should be inserted as required. Secondly, these files are for the debug

solution. For the release solution the “d” at the end of the filename should be removed.

It is recommended to test the settings by creating a short test project.

Appendix C

Code Listings

C.1 Face Detection

IplImage* detectFace(IplImage *img,CvHaarClassifierCascade *cascade_f,

CvMemStorage *storage){

/* detect faces */

CvSeq *faces = cvHaarDetectObjects(

img, /* the source image */

cascade_f, /* the face classifier */

storage, /* memory buffer, created with cvMemStorage */

1.2, 3, 0, /* special parameters, tune for your app*/

cvSize(40, 40) /* minimum detection scale */

);

/* return if not found */

if (faces->total == 0){ flag = false;return img;}

//this flag serves to tell the program that the facial detection has crashed

/* get the first detected face */

47

C.1. FACE DETECTION 48

CvRect *face = (CvRect*)cvGetSeqElem(faces, 0);

/* draw a red rectangle */

cvRectangle(

img,

cvPoint(face->x, face->y),

cvPoint(

face->x + face->width,

face->y + face->height

),

CV_RGB(255, 0, 0),

1, 8, 0

);

// cvShowImage("Checking", img);

/* reset buffer for the next object detection */

cvClearMemStorage(storage);

/* Set the Region of Interest: estimate the eyes’ position */

cvSetImageROI(

img, /* the source image */

cvRect(

face->x, /* x = start from leftmost */

face->y + (face->height*0.1), /* y = a few pixels from the top */

face->width, /* width = same width with the face */

face->height*0.5 /* height = 1/3 of face height */

)

);

/* create destination image

Note that cvGetSize will return the width and the height of ROI */

IplImage *Region = cvCreateImage(cvGetSize(img), img->depth, img->nChannels);

C.2. EYES DETECTION 49

/* copy subimage */

cvCopy(img, Region);

/* reset region of interest */

cvResetImageROI(img);

cvClearMemStorage(storage);

return Region;

}

C.2 Eyes Detection

This method detects a single eye and is called seperately for each eye.

IplImage* detectEye(IplImage *img,CvHaarClassifierCascade *cascade_e,CvMemStorage *storage)

{

cvClearMemStorage(storage);

/* detect faces */

CvSeq *eyes = cvHaarDetectObjects(

img, /* the source image */

cascade_e, /* the face classifier */

storage, /* memory buffer, created with cvMemStorage */

1.1, 3, 0, /* special parameters, tune for your app*/

cvSize(40, 40) /* minimum detection scale */

);

/* return if not found */

if (eyes->total == 0){flag = false; return img;}

/* get the first detected face */

C.2. EYES DETECTION 50

CvRect *eye = (CvRect*)cvGetSeqElem(eyes, 0);

/* draw a red rectangle */

cvRectangle(

img,

cvPoint(eye->x, eye->y),

cvPoint(eye->x + eye->width, eye->y + eye->height),

CV_RGB(255, 0, 0),

1, 8, 0

);

//cvShowImage("Checking",img);

/* reset buffer for the next object detection */

cvClearMemStorage(storage);

/* Set the Region of Interest: estimate the eyes’ position */

cvSetImageROI(

img, /* the source image */

cvRect(

eye->x /* x = start from leftmost */

,eye->y+ eye->height*0.33 /* y = a few pixels from the top */

,eye->width /* width = same width with the eye */

,eye->height*0.67 /* height = 1/3 of eye height */

)

);

IplImage *Region = cvCreateImage(cvGetSize(img),

img->depth,

img->nChannels);

/* copy subimage */

C.3. FINDING CENTER OF THE PUPIL 51

cvCopy(img, Region);

/* reset region of interest */

cvResetImageROI(img);

cvClearMemStorage(storage);

return Region;

}

C.3 Finding Center of the pupil

float * detectPupil(IplImage * img, CvMemStorage *storage){

//function to detect the center of the pupils

float coords[2];

IplImage* edgeImage = cvCreateImage(cvGetSize(img),img->depth,

img->nChannels);

IplImage *smoothImage = cvCreateImage(cvGetSize(img),

img->depth,

img->nChannels);

cvClearMemStorage(storage);

cvEqualizeHist(img, smoothImage);

cvAddS(smoothImage, cvScalar(70,70,70), smoothImage);

cvThreshold(smoothImage,smoothImage, 120,255,CV_THRESH_BINARY);

cvSmooth(smoothImage , smoothImage, CV_GAUSSIAN, 3,0);

CvSeq* circles = cvHoughCircles(smoothImage, storage,

CV_HOUGH_GRADIENT, 2, edgeImage->height,35,25);

if(circles->total == 0){flag = false; return coords;}

C.4. FINDING THE CORNER 52

int i;

//cout<<circles->total <<" is the total number of circles" <<endl;

for (i = 0; i < circles->total; i++)

{

float* p = (float*)cvGetSeqElem(circles, i);

coords[0] = p[0];

coords[1] = p[1];

}

return coords;

}//end of detect pupils

C.4 Finding the Corner

float * detectCorner(IplImage * img,bool left){

float coords[2];

int cornerC = 1;

CvPoint2D32f corners[1] = {0};

int width,x,y,height;

//this flag is to deterimine whethere this is the left eye or not

//The if statment reduces the ROI so that we remove most false positives

if (left){

width = (int)img->width*0.2;

x = 0;

y = img->height*0.4;

height = img->height*0.2;

}else{

width = (int)img->width*0.2;

x =(int) img->width*0.75;

y = img->height*0.4;

height = img->height*0.3;

C.4. FINDING THE CORNER 53

}

cvSetImageROI(

img,

cvRect(

x,

y ,

width,

height

)

);

//reduced the noise

cvEqualizeHist(img, img);

IplImage * eig_image = cvCreateImage(cvGetSize(img),

IPL_DEPTH_32F, 1);

IplImage * temp = cvCreateImage(cvGetSize(img),

IPL_DEPTH_32F, 1);

//This method does most of the work

cvGoodFeaturesToTrack(img,eig_image,temp,corners, &cornerC, 0.5,img->width);

/*

The addition of the x and y is to offset the reduced area of the ROI

so that the coordinates returned are in the same reference frame

as the pupil coordinates

*/

coords[0] = corners[0].x + x;

coords[1] = corners[0].y + y;

cvResetImageROI(img);

return coords;

	Introduction
	Is Gaze Tracking Useful?
	Problem Statement and Research Goals
	Structure of Thesis

	Background Literature
	Introduction
	Human Eye
	Eye Structure
	Eye Movements

	Methods of finding the Eye
	Haar Classifiers
	Infrared Reflection

	Algorithms
	Real-time gaze Tracking Algorithm with head movement Compensation (RTAC)
	Neural Networks (NN)

	Summary

	Design
	Design Decisions
	Web Camera
	Programming Language
	General Algorithm
	Loop steps
	Main Program

	Summary

	Implementation
	Introduction
	Facial Detection
	Eye Detection
	Pupil Detection
	Corner Detection
	Calibration
	Main Program design
	Transforming to Window Coordinates
	Summary

	Results
	Testing
	Results
	Discussion

	Known Limitations
	Design Choices
	Implementation Choices

	Summary

	Conclusion
	Effectiveness of the System
	Future Work

	Bibliography
	Full Table of results
	Installing OpenCV
	Installing in Windows
	Linking your Visual Studio Project

	Code Listings
	Face Detection
	Eyes Detection
	Finding Center of the pupil
	Finding the Corner

