
Transparent and Reliable Computing Power
Service Provision on P2P systems

Ghislain Fouodji Tasse1 and Karen Bradshaw2

Department of Computer Science
Rhodes University, P. O. Box 94, Grahamstown 6140

Tel: +27 46 6038291, Fax: +27 46 6361915
email: g09f5474@campus.ru.ac.za1; k.bradshaw@ru.ac.za2

Abstract—The advancements in virtualization technologies
have provided a large spectrum of computational approaches.
Dedicated computations can be run on private environments
(Virtual Machines), created within the same computer. Through
capable APIs, this functionality is leveraged for the service we
wish to implement; a computer power service (CPS). We target
peer-to-peer systems for this service, to exploit the potential
of aggregating computing resources. The concept of a P2P
network is mostly known for its expanded usage in distributed
networks for sharing resources like content files or real-time
data. This study adds computing power to the list of shared
resources by describing a suitable service composition. Taking
into account the dynamic nature of the platform, this CPS
provision is achieved through an on-the-fly clustering algorithm.
Moreover, this service would be highly beneficial in a corporate
environment.

Index Terms—Computing power service, virtualization, com-
puter resources, P2P.

I. INTRODUCTION

WEB technologies nowadays offer greater flexibility of
service creation, from mere file transfers to clouds.

In effect, we are witnessing more and more diversity of web
services, and how they are increasingly shaping our comput-
ing experience. Cloud designs are becoming user-centred,
thereby offering a ubiquitous web interaction. Though not
entirely novel, clouds are emerging IT delivery models that
bring a new insight on how to reason about computing ser-
vices. To cite the definition in Stratus’s white paper, "Cloud
computing is the use of networked infrastructure software
and capacity to provide resources to users in an on-demand
environment" [1]. The term "resource" has also gained a
wider meaning; it may stand for information, storage or even
pure computing power. In this work, we focus on the latter,
as an increase in computing speed is an undeniable advantage
for user computations.

Resource-intensive applications are being developed both
in research institutions and commercial industry, making
computing power (notably processing cycles and memory)
an important entity in the success of their operations [2].
Fortunately, the consolidation of virtualization techniques
comes with benefits such as resource reservation and/or
sharing for local (host) or remote (guest) use. The latter is
of importance because it adds another dimension to how a
resource can be utilized. Rather than having a resource idle
because it is not being used locally, it can be made available
to a remote user. The core of our intended service is to be

The authors would like to acknowledge the financial support of Telkom
SA, Stortech, Tellabs, Eastel, Bright Ideas 39 and THRIP through the
Telkom Centre of Excellence in the Department of Computer Science at
Rhodes University.

able to serve, conveniently, the computer resource of a node
to a different (remote) node. The fact that computing power
is a low level entity and the operating environment consists of
distinct nodes, requires transparency and reliability, respec-
tively. In doing so, we comply with Verizon’s definition that
a computing service is an on-demand computing platform
suitably set up to satisfy user needs and to exhibit ease of
use [3].

The backbone of our computing power service (CPS)
structure is built using P2P systems, where a node may
have resources to share with its peers. This sharing of
computer resources by leveraging processing cycles, cache
storage, and memory is referred to as P2P computing [2].
We assume that peer nodes are not permanently busy, or
that there exists nodes fully dedicated to sharing. Therefore,
we stipulate that such nodes should work during their "idle"
times. Effectively, one can maximize resource utilization
within a P2P system by minimizing starvation. This suggests
a P2P cluster implementation, where a node may alternate
between being a worker and a client.

This paper is organized as follows. Section II presents a
background study on the computing trends introduced here.
From this, we identify in Section III the issues related to
those trends, together with ones that arise from our service.
In Sections IV and V, respectively, the approach to solving
the identified issues and a successful design of the intended
approach are presented. In, the last two sections (VI, VII),
we propose potential applications of the work presented and
our conclusions.

II. BACKGROUND AND RELATED WORK

The CPS presented in this paper makes use of Virtual
Machines (VMs) and related facilities to provide suitable
computing-intensive workstations, while maintaining trans-
parency and reliability in the system. Based on this statement,
it is clear that one concept is key to the success of this
research: virtualization. For a good grasp of the problem at
hand, a background study is performed on the latter, together
with related implementations.

A. Virtualization

1) Overview: In a virtualized environment, computing
environments can be dynamically created, expanded, shrunk
or moved. Virtualization refers to the abstraction of logical
resources away from their underlying physical resources
[4]. It is a key element for cloud computing because it
provides important advantages in managing resources and
thus enhancing business value [1]. A virtualized environment

not only makes the underlying platform transparent to the
user, but it is also an efficient solution for computer resource
sharing and scheduling. Virtualization is the best way to
provide fundamental resource abstraction. Live migration
is possible, avoiding an interruption of ongoing activities,
critical for real-time computing. It also permits multiples
and distinct Operating Systems to safely coexist on the same
platform, thereby enhancing productivity [5].

2) Libvirt: Practically, an external resource consumer is
a VM, commonly referred to as a guest machine. Libvirt
facilitates VM instantiation by providing resource manage-
ment and monitoring library calls [6]. It is a rich library for
interacting with virtualization hypervisors. Its API allows a
variety of application designs by supporting different types
of hypervisors (see Fig. 1). The most popular is QEMU, a
generic and open source machine emulator for full virtual-
ization. It supports Xen and KVM hypervisors.

Figure 1: Libvirt architecture.

Several researches have been carried out by taking advan-
tage of virtualization to provide a user-aware computational
environment.

3) Infrastructure as a Service: There are systems that
provide computer infrastructures by allowing users to run
and control VM instances deployed on them. OpenNebula
[7] and Eucalyptus [8] are both mature open source projects
implementing IaaS. Both, in their distinctive way, provide an
ecosystem of tools that can transform an existing computer
infrastructure into a cloud. Physical resources of such an
infrastructure are managed through a virtualization platform.
Fig. 1 depicts the position of OpenNebula in this platform.
These projects enable an enthusiastic user to set up his own
computing environment such as grid interfaces for batch jobs,
or dedicated servers for web servers. Such an environment
will probably need a scheduler with advanced reservation
and resource pre-emption features. Haizea is a resource lease
manager, through which leases can be requested either as-
soon-as-possible (best-effort) or in reservation [9].

With these solutions, the clustering of resources is auto-
mated and the obtained cluster self-managed. However, the
process of consuming these resources is left to the users; i.e.,
VM set-up is not autonomous. To resolve this, a study on
providing computing services is needed.

B. Computing Services

1) Computing Trends: The concept of computing services
has evolved over time with respect to the following trends:

• Mainframe computing: many people share a single
computer (a supercomputer). Because mainframes are

cumbersome and only available to a handful of individ-
uals, this form of computing is omitted in our study.

• Desktop computing: one person, one computer. This is
the most popular form of computing at the moment,
because of the incredible number of personal computers
(workstations).

• Ubiquitous computing: many computers serve one per-
son. This is the future we aspire to, where a single user
can ubiquitously access multiple services or resources.

These trends are described and compared thoroughly in
[10], where the author claims that ubiquitous computing
will become more dominant as we observe an exponential
increase in number of computers over time (See Fig. 2).

Figure 2: The major trends in computing [10].

2) Service Composition: The ubiquitous computing trend
suggests a dynamic interoperation of distributed services, via
automated service provision or runtime creation of new appli-
cations. Given a service request, the runtime environment in
response has to create a self-compliant solution deployment
plan [11]. Of course, this dynamic service composition will
depend on the selection of service providers with respect
to parameters like availability, performance, load, monetary
costs or quality of service (QoS). The existing service com-
position of P2P systems implements this, but struggles to re-
compute a deployment plan during actual runtime execution.
In [12], Prinz et al. proposed a service composition frame-
work (SCF), enforcing each sub-service to implement four
methods that will ensure their execution within the frame-
work: one to execute the service on passing parameters, a
second to stop it, a third for checkpointing the service current
state and a fourth to return the state. Peers that participate in
the SCF network provide services satisfying these properties.
The SCF network enforces robustness during runtime ex-
ecution using Logical Service Groups (LSGs). An LSG
contains a set of available peers that locally provide a
dedicated service. During the service execution, one peer of
the LSG executes the service and n other group members
monitor its heartbeat (see Fig. 3). Failures within the network
are compensated by migrating the composite service; i.e.,
creating and applying a new deployment plan.

Figure 3: Service Composition based on LSGs.

In brief, [11] and [12] introduce an optimized service cre-
ation and execution of composite systems: i.e., context aware
computing.

3) Example of CPS: Due to cost considerations, small and
medium-sized enterprises (SME) generally favour using P2P
computing. The Narada Brokering CPS (NB-CPS) combines
computational grids, distributed objects and P2P networks
under a hybrid environment [2]. NB-CPS argues to solve
issues such as system resilience, fault tolerance, efficiency
of job scheduling, and instability in congested network en-
vironments. Rather than using VMs, it provides a JMS (Java
Messaging Service) API for developers to create distributed
applications. Additionally, it establishes a framework for
communication through a message-oriented middleware. For
scaling purposes, its messaging infrastructure is based on
a distributed broker network, where a broker is part of
a cluster that is part of a super-cluster. It is basically a
Distributed Hash Table (DHT) for decentralized information
management.

However, this attempt only partially solves the problem,
since it is only suitable for developers.

III. PROBLEM DEFINITION

Before a solution attempt is made, we provide an explana-
tory presentation of the problem at hand in this section.

A service in this paper’s context is a computational re-
sponse to a task description, based on a running VM. A
peer node can either be a client (requester) or a worker node
(provider). The set of worker nodes forms the computing
unit. A client benefits from the computational capabilities
of a worker node through the dynamic service creation,
provided that the worker can host related VM(s). This
primarily depends on the node’s self-specified restrictions on
its resources (e.g., amount of shareable memory), established
beforehand (i.e., prior to joining the system).

From the previous section, it is clear that our basic tool
for creating a CPS is virtualization. Evidently, the first step
to guarantee hosting of any CPS, is to perform resource
reservation and isolation on worker nodes. Virtualization
appears to be the native solution for this. However, there is
still a long road between it and a ready-to-use cloud service,
considering especially the attributes of a P2P environment.
We start the journey by explaining the key requirements.

Transparency: We have already mentioned the impor-
tance of seamless service creation and convenient service
interaction. The service should be easily accessible ("point
and click" service access). Through the term transparency,
we emphasize the fact that when a user runs a task remotely
through our service provision system, s/he should be com-
fortable doing so. We identify two steps here.

1) Find a suitable host for the intended service (cloud/grid
computing).

2) Provide a workspace abstraction for the user (ubiqui-
tous computing).

Reliability: Although issues like bottlenecks or single
points of failure are not of great concern in P2P systems, the
permanent node churn induces a notable risk for hosting any
external computation. The way this risk is dealt with defines
the reliability of a service, and the system as a whole. We
identify two related factors.

• Fault tolerance: accidental failures may occur on a host.
• Volunteering based networking: nodes can join or leave

the system freely.
With respect to the targeted environment and the criteria
(transparency, reliability) just presented, we complement the
definition of CPS provision.

IV. PROPOSED SOLUTION: ON-THE-FLY PROVISIONING
OF CPS

A new cloud model can be applied to P2P networks,
to provide on-the-fly cloud solutions. In response to this
statement, we propose in this section an on-demand service
provision system.

At this point, we understand there are issues with hosting
a service on a peer node (the worker) and issues with making
it available to another peer node (the client). Therefore, we
identified two complementary views: the client view and the
worker view. To solve the problem, we take into account
both views.

A. User-side: Request Processing

We aim to solve identified user-side issues (notably trans-
parency) particularly by processing requests. First, all user
interaction is done via a web browser, for compatibility and
portability reasons. User requests are captured through this
interface and processed accordingly. As depicted in Fig. 4,
we need to transform a submitted user task description into
a VM description, then start the VM on a node (thereby
executing the task), and give access (control) of this VM
back to the user.

Figure 4: Request work-flow.

To guarantee a familiar user interaction, a remote desktop
technology is employed. Instead of creating a new user
interface for VMs, we use already available and well de-
signed GUIs, thereby providing a perfect desktop integration.
Effectively, part of the service is to provide a web server, with
a remote desktop protocol capability.

B. Host-side: Response Handling

On the host-side, we have identified issues with setting up
a host-ready environment for a CPS. Native P2P network-
ing solutions are used to solve these issues; a best-effort
algorithm for instance. We start by hypothesising that each
peer node has equal qualitative potential. That is, the only
difference between the nodes with respect to this system is
their computing power.

Response handling is done in two phases: allocate the VM
job to a node to start its execution, and monitor this node
for failure handling. These phases are achieved, respectively,
by using the following methods:

• On-the-fly node detection: We recognize that a
subscription-based method, using DHTs (Distributed
Hash Tables), as described in Section II, has great
success. However, we assume a small to medium scale

P2P network, where a DHT is unnecessary, and its over-
head cannot be tolerated. But a fully distributed node
discovery model is still needed. So, we use a reactive
protocol that locates suitable nodes when there is a
pending task. This is based on multicasting, whereby
capable nodes respond to the multicast task request.

• Failure handling: When a peer node has an overload or
is not able to keep on hosting running services (VMs),
the extra load should be migrated to different nodes; a
load sharing mechanism is implemented to achieve this.
In the case of complete failure, the task is resubmitted.

We have discussed the main issues that need to be resolved
before progressing in our work. The next section comple-
ments the solution presented here by presenting a prototype
design and implementation.

V. DESIGN AND IMPLEMENTATION

Cloud services can be automated in a hostile environ-
ment; i.e., integrate cloud solutions transparently onto a
running computing network. The CPS, the cloud service
being offered, is a ready to use service that responds to
a user’s computing needs. This section combines the ideas
proposed in the previous section with specific design and
implementation insights and approaches.

The provisioning model has several components, explained
in detail in Section V-B. Further, we show how to create a
service on a particular node, how it is instantiated and made
accessible for use.

A. Resource Reservation and Allocation
As hypothesised, CPU cycles, memory and network band-

width (hardware resources) are the targeted resources; the
computing power needed for external usage. It should be
noted that storage is also a resource, even though it will not
be persistent, as it would be ordinarily. The external user
(client) who benefits from the shares of a resource provider
is the resource consumer; though practically, it will be the
client VM. There is need for a management module to bridge
these two entities; i.e., reserve resources from the provider
and allocate them, as requested, to the consumer.

Figure 5: Libvirt XML description of a VM for the QEMU
emulator.

Fortunately, the implementation of this module is simplified
by the Libvirt API [6]. One of the facilities of the API is to

parse a VM description, constructed with a well documented
XML schema. This allows us to specify how shared resources
are allocated among hosted VMs. Fig. 5 is a sample snippet
of the XML description that can be used to create a VM.
Once this description is passed to the API, through the
virDomainCreate call, it takes care of the rest; i.e., actual
allocation of resources.

B. Service Provision Model

As explained in Section III, to transform a desktop
platform to a cloud platform, several modules need to be
developed. Contributing nodes may have different potential
and will have different load cycles. Each node is only liable
for its own execution and may not be aware of the existence
of others, unless absolutely necessary (see Section V-C2).
The outcome is to have each node operate independently,
automating its service provision to satisfy both host and
guest(s) computations. No latency should appear on the host,
as it accepts a guest’s job only if it is capable of completing
it.

Here we describe the necessary components needed on a
node for the service provisioning back-end. Each prospective
resource provider implements a stack of modules, which will
elevate it from a resource provider state to that of service
provider (see Fig. 6).

Figure 6: Service provision components.

1) User view layer: This is where the desktop abstraction
is done. We stipulated that a familiar user interaction is
needed, and that remote desktop is the technique adopted.
Effectively, this layer implements a remote desktop proto-
col. Each VM is attached with a VNC (Virtual Network
Computing) server, exporting its desktop. Therefore, users
can remotely control or monitor their jobs, running through
VM(s) as if they were running locally. As mentioned earlier,
any user-to-service interaction will be done through HTTP.
So, we use an HTTP proxy for VNC based on JavaScript,
called noVNC [13].

Though we chose, for user comfort, a remote desktop
interface, a text based (serial) interface is also possible. The
latter is obviously less bandwidth expensive, but may only
suit technical users.

2) Virtual machine and computing power layers: These
layers operate as described in the previous section (re-
source reservation). The creation and monitoring of a VM
is achieved with Libvirt, using the description submitted.

3) Storage layer: A temporary storage is created for con-
venience. Evidently, a storage unit is needed to accompany
the computing service. This will usually be an empty disk,
but can be a bootstrap, depending on the user’s request. It
has a virtual file system, created through disk imaging. To

perform this, we used the guestfs library in [14], though other
methods also exist. Once a VM is terminated, its disk image
is discarded; the user has of course a choice to retrieve a
copy (compressed) thereof.

4) Monitor layer (Watchdog): Because nodes can join and
leave the network freely, availability of a started service is
the system’s responsibility. The role of this layer is to oversee
a service instance execution and trigger events accordingly.
It basically makes sure that the different components start,
run and terminate successfully. In case of complete failure,
which means failure of the monitor itself, the user should
resubmit the task.

Caching protocols, are also implemented using the check-
pointing or suspend facility available in the Libvirt API.

C. Architecture
Here, we complete the model in Section V-B by describing

the full architecture of the P2P CPS. Fig. 7 depicts the logic
of the overall system.

Figure 7: System architecture.

The web server is the system’s entry for external users;
they construct and submit their task here. It is part of
the coordinator, a middleware unit that responds to user
requests and sets up the interaction between the user and
the corresponding service. It hides the complexity of the
computing unit to offer an explicit view for the client.
Practically, the coordinator is addressed through a DNS name
that holds a variable value. This DNS name maps to the
address of the current head node of the computing unit.
The latter is chosen mostly based on its uptime value. DNS
update packets are used by a peer node to claim the head
node position.

For a user to access its service, a flow of events are
spawned from its request. The following describes the mile-
stones of a service instance.

1) Service Discovery and Service Instantiation: The ser-
vice discovery is mostly based on a host discovery algo-
rithm. The latter suggests a host capable of handling a
giving request. During this phase, a node with the minimum
computing power requirements is detected among the pool
of connected nodes. This node will become a host by
implementing an adequate service, with respect to the model
explained in Section V-B.

As suggested in Section IV, a multicasting based protocol
is used to find a node that can attend to the client. Peer nodes

within the system belong to a particular multicast group,
defined by a multicast address. So, a node communicates
with its peers by sending event messages to the predefined
multicast address; this process is called event publishing.
With respect to this, we define a protocol called Publishing
Event Protocol (PEP).
When the coordinator receives a client request, it generates
a corresponding PEP packet, which is multicasted across the
system. Fig. 8 is a self explanatory representation of a PEP
packet.

Figure 8: A sample PEP packet.

Only capable hosts respond to this packet. They simply
acknowledge it using an ACK packet; this process is called
event subscription. The coordinator captures the addresses
of all these nodes, and chooses the prospective service host
to be the node that subscribed first. Then, it acknowledges
back to this node, adding the addresses of other subscribers.
These addresses could be useful to the host, when a service
migration is needed.

After the publish-subscribe events, the service instantiation
phase follows. It uses the task’s description acquired from the
PEP packet. As shown in Fig. 8, this packet elaborates only
the computing power requirements. To these requirements
are added the user-view functionalities (see Section V-B1).
Additionally, the user may submit complementary files to
automate the VM initialization and have it ready for use
when it is started.

2) Service Deployment and Maintenance: This sum-
marises three steps: starting, scheduling, and re-allocation of
a service instance. During the deployment phase, we ensure
that the service has started correctly and the user has access
to her/his VM. In case this fails, the coordinator re-deploys
the service on another node. It finds the latter using a best-
effort scheduling algorithm. This algorithm merely looks for
an available node satisfying the minimum computing power
requirements.

The service maintenance module implements the fault
tolerance. When a fault occurs on a host, its tasks are re-
allocated, based on the scheduling algorithm just introduced.
A fault will either be a host decision to stop external jobs, or
its limitation to pursue their execution. To detect faults, the
module interacts with the monitor layer described in Section
V-B4. Its core implementation uses virtualization capabilities
such as suspend/resume and migrate, available in Libvirt.

VI. APPLICATIONS

Our research aims to build a uniform and self-managed
cloud infrastructure by clustering natively independent and
heterogeneous computer resources, to provide a uniform and

robust resource. The advantages of having more resources
include the potential for parallelism, multiple points of fail-
ure, and scalability. With respect to this, we have identified
a number of environments where the research deliverable is
applicable.

Target environments

Because of the nature of the CPS proposed in this pa-
per, we believe it would be most suitable for a corporate
environment where computer resources are not necessarily
centralised and are underutilized. Computing tasks should
be assigned fairly among these resources. The potential to
aggregate distributed resources in various enterprise collab-
orating functions is immense. In such an area, the system
maximizes the use of resources through an intelligent, self-
automated algorithm. Hardware resources can be donated
without any physical displacement thereof. We describe two
potential test environments.

• Research environment: a clustering of several labs (net-
work of workstations) can outperform a supercomputer.
Moreover, resources can be reserved beforehand for a
dedicated batch computation (advance reservation).

• Real-time environment: consider a hospital environ-
ment. One can use other under-utilized resources to
execute a real-time computation such as rendering a
3D image from a X-Ray scanner. Starvation should
be minimized as much as possible; for example, if an
image is currently being processed, run the next one on
a different computer.

VII. CONCLUSIONS AND FUTURE WORK

The paper proposed a novel method for the creation of
cloud services. To facilitate and enhance users’ computer
experiences, a cloud is built within a P2P network. Peers
form a cluster of potentially powerful computers (workers)
on which external computations are virtually executed. The
cloud merely provides a CPS system, adequate for the
environment. It has built-in intelligence, which enables it to
have the dual property of unity (from a user point of view)
and component independence (from a peer point of view).
Peer nodes contain a set of modules that enable them to be
considered as a unit, a computing unit; this is an emergent
behaviour.
Our solution works for a corporate environment, where
scalability is not a huge factor, and networking configuration
can be controlled. With respect to this, we doubt that
the method for discovering nodes, which depends on
multicasting, will work as desired in a different completely
hostile environment. It is possible that multicasting may not
be allowed in some networks, or may lead to huge latency
due to the scale in which it operates. In this case, a different
discovery model is required.
Additionally, rigorous experimental testing is needed to
complement this research. We are currently working on this.

REFERENCES

[1] “Server virtualization and cloud computing: Four hidden impacts on
uptime and availability,” White paper, Stratus Technologies, June 2009.

[2] M.-J. Tsai and Y.-K. Hung, “Distributed computing power service
coordination based on peer-to-peer grids architecture,” Expert Syst.
Appl., vol. 36, no. 2, pp. 3101–3118, 2009.

[3] Computing as a service (caas). Verizon. [Online]. Available:
http://www.verizonbusiness.com/Products/it/cloud-it/caas/

[4] Solution Edition for Cloud Computing. IBMCorporation, 2009.
[Online]. Available: ibm.com/systems/z/solutions/editions/cloud/index.
html/

[5] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, V. Gupta, R. Nathuji,
R. Niranjan, A. Ranadive, and P. Saraiya, “Abstract high-performance
hypervisor architectures: Virtualization in hpc systems,” March 2007.

[6] Libvirt: The virtualization api. [Online]. Available: http://www.libvirt.
org

[7] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE
Internet Computing, vol. 13, pp. 14–22, September 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1638588.1638692

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, ser.
CCGRID ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 124–131. [Online]. Available: http://dx.doi.org/10.1109/
CCGRID.2009.93

[9] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution
and leasing using virtual machines,” in Proceedings of the 17th
international symposium on High performance distributed computing,
ser. HPDC ’08. New York, NY, USA: ACM, 2008, pp. 87–96.
[Online]. Available: http://doi.acm.org/10.1145/1383422.1383434

[10] M. Weiser. (1996) Ubiquitous computing. [Online]. Available:
http://www.ubiq.com/hypertext/weiser/UbiHome.html

[11] A. V. Konstantinou, T. Eilam, M. Kalantar, A. A. Totok, W. Arnold,
and E. Snible, “An architecture for virtual solution composition
and deployment in infrastructure clouds,” in Proceedings of the 3rd
international workshop on Virtualization technologies in distributed
computing, ser. VTDC ’09. New York, NY, USA: ACM, 2009, pp. 9–
18. [Online]. Available: http://doi.acm.org/10.1145/1555336.1555339

[12] V. Prinz, F. Fuchs, P. Ruppel, C. Gerdes, and A. Southall, “Adaptive
and fault-tolerant service composition in peer-to-peer systems,”
in Proceedings of the 8th IFIP WG 6.1 international conference on
Distributed applications and interoperable systems, ser. DAIS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 30–43. [Online].
Available: http://portal.acm.org/citation.cfm?id=1789074.1789078

[13] J. Martin. Vnc client using html5 (web sockets, canvas) with
encryption (wss://) support. Sentry Data Systems. [Online]. Available:
https://github.com/kanaka/noVNC

[14] (2009) Library for accessing and modifying virtual machine images.
Libguestfs. [Online]. Available: http://http://www.libguestfs.org/

Mr. Ghislain Fouodji Tasse completed his Honours in Computer Science
in 2009 at Rhodes University. Ghislain is now in his second year of MSc
in Computer Science, funded by the Centre of Excellence (CoE) at Rhodes
University.

Dr. Karen Bradshaw is a Senior Lecturer in the Computer Science
Department at Rhodes University. Her research interests are distributed
computing and robotics frameworks.

