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Abstract
One of the major issues in Robotics or more precisely in Intelligent Systems in today’s re-

search and innovation is self awareness. The world of innovation in Robotics has been developing
autonomous robots with the abilities of reasoning, learning and accomplishing basic tasks. Self
mapping is one of these abilities and it is very crucial to any physical agent which claims to be
aware of its environment. To make this claim true, many approaches are being used whereby the
most successful ones are cognitive approaches. This survey discusses these approaches together
with their applications in robot mapping.

1 Introduction
Several issues should be considered while building a map in an indoor environment. One of these
issues is the concurrent mapping and localization problem, which is a pivotal problem in mobile
robotics. If the position of the robot is known, building a map becomes straight forward as shown by
Elfes in [5]. To handle these issues, different algorithms use different approaches which are based
on different hypotheses. This paper will describe these differences by presenting and describing
various cognitive approaches for robot spatial mapping. To introduce these concepts nicely, the
first section of the survey is dedicated to robot spatial perception. The way the robot perceives
its environment determines which mapping approach should be used and how it should be applied.
In the second section, we describe some of these mapping approaches. Before implementing these
approaches, we think that it was important to explain the Simultaneous Localization and Mapping
problem which is an important factor in mapping algorithms. More details on this problem are
given in the third section of this paper. Now, with the knowledge gathered in the previous sections,
we appropriately describe the subsequent mapping algorithms and their characteristics. Further in
this survey, we present a sample robot on which these mapping algorithms can be tested and show
how their efficiency also depends on the physical capabilities of the robot.1



2 Robot Spatial Perception

2.1 Overview
As artificial sensors and organic sensors are different, the robot’s perception and human’s percep-
tion of the same environment are also different. Regardless to this difference, a robot by definition
is expected to interact with the world in the same way that a human does. This is only true if a
robot spatial representation carries the same information as a human spatial representation. To
satisfy this criterion, two notions of space representation are defined and considered: the notion of
a representation for the local space i.e. the small area of the environment the individual is currently
in, versus a global representation in which the individual total experience of its spatial environ-
ment can be represented using a single coordinate system. Related to this contrast, is the contrast
of a metric representation, where properties such as distance, size and location are explicitly or
implicitly represented, versus a topological representation where relationships such as connectivity
between individual elements are represented [11, p.2]. More details on these representations are
given in the following subsections.

2.2 Metric Representation
A metric map is the capture of the geometry properties of the environment [17, 18]. By geometric
properties, we refer to the geometric relations between the objects and a fixed frame of reference
defined in the map. This is perhaps the most explicit map in robotics since it explicitly represents
the occupancy of space by storing the exact position of objects in a global frame. For example, a
tourist’s scale of a map is a metric map [4, p.213]. So, a metric map only reproduces the spatial
state of an environment, which carries no functional information (see Fig. 1).

Figure 1: An office of the institute and the lines representing it in the local metric map [18].

It is commonly used to represent the environment as a two dimensional space in which it places
the objects. With such a map, the object’s information available to a robot is the object’s precise
coordinates [x,y,theta], where the pair (x,y) gives the object’s position and theta its orientation [8,
p43]. Hence, the precision of the information given by a metric map depends widely on the quality
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of sensors. As sensors are often subject to noise, this dependance is a weakness for the metric map.
Additionnally, this weakness becomes more relevant as the map increases in size.

2.3 Topological Representation
A topological map naturally captures qualitative and relational information from the environment.
For example, a subway map is a topological map [4, p.213]. It represents the environment as a list
of significant places connected via arcs. The latter usually carry information on how a robot can
travel from one place to another. Unlike the metric map which is an absolute representation, a
topological map represents objects relative to each other. Hence, it is can be simulated by a graph
whereby the places correspond to nodes and arcs correspond to paths which connect two nodes if
they are adjacent in the real environment [13, p.597]. Figure 2 shows an example of a topological
framework that only considers places and the relations between them.

Figure 2: The topological map is represented by a graph. It contains nodes connected to each
other with the list of corner features lying between them [18].

However, using topological representations, one cannot easily determine a previously visited part
of the environment if it is approached from a different side [11, p.1]. Effectively, each place is only
identified by the arc that leads to it. So if the arc or path used by the robot is not shown on the
map, the place will be marked as unknown.

2.4 Hybrid Representation
From the explanation giving above, metric and topological maps are different representations of
the same environment. Since each focuses on different aspects of the environment, they can be
combined to give a robust map which contains both qualitative and quantitative information of
that environment [19]. The idea is to enrich the topological map with metric information. This is
achieved by representing each node (place) in a topological framework with a local metric map as
shown in Fig. 3.

3



Figure 3: The environment is represented by places given by their metric maps and nodes
representing topological locations.

So to move from one place to another, a robot moves metrically in that place and then outside
the place, it moves topologically till it reaches the goal place where it switches back to the metric
map[18]. Since metric maps only represent local spaces, this method contributes to the reduction
of the impact of noise on the map. This is the description of a hybrid representation.

2.5 Mapping Problems
While aiming at representing the environment in the best way, mapping approaches have some
additional issues that should seriously be considered. These issues are difficult to handle since they
depend on the nature of an environment which appears to be unknown.

2.5.1 Odometry Errors

Robot sensors are naturally limited in what they can perceive. These limitations are either induced
by the sensor itself or by the nature of the environment. The range and resolution of a sensor is
subject to physical limitations. For example, the resolution of a camera image is limited. Sensors
are also subject to noise, which perturbs sensor measurements in unpredictable ways and hence
limits the information that can be extracted. Noise is a global term which is used to describe wheel
slippage or surface imperfections.
Additionally, odometry errors can be caused by robotic software. Models are just abstractions of the
real world [2]. Uncertainty in the map data can be created through algorithmic approximations.
Furthermore, robots are real-time systems and can only carry out limited computational opera-
tions. Because of this, many popular algorithms are approximate, and achieve timely response by
sacrificing accuracy.

2.5.2 Dynamic Environments

Most mapping algorithms assume that the environment is static. This assumption reduces the
computational complexity of the algorithm by eliminating some variables that should have been
considered. But these algorithms are most likely to fail in the real word which has a continuously
changing environment. To overcome this problem, most mapping algorithms consider and handle
places with high dynamics as noise [6].
However, the resulting map is still static and the dynamics of the environment is ignored. As a

4



better solution to the problem, Nikos and Costas in [12] propose a filtering algorithm: the Temporal
Occupancy Grid Algorithm. This algorithm classified objects into three categories: static objects
(e.g. walls, bed), objects with low dynamics (e.g. chairs, doors) and objects with high dynamics
(e.g. humans). In so doing, the algorithm can model the dynamics of the environment.

3 Simultaneous Localization and Mapping (SLAM)
When a robot is placed in an unknown environment, it discovers its environment whilst navigat-
ing there in. So the map is continuously updated whilst the robot gradually moves through the
environment. Figure 4 is a flow chart demonstration of the SLAM process.

Figure 4: Flowchart of the SLAM process [8].

But, SLAM posed a serious difficulty in mobile robots. The SLAM problem asks if it is possible
for an autonomous robot to be placed at an unknown location in an unknown environment and
for the robot to incrementally build a consistent map of this environment while simultaneously
using this map to compute its location [3]. Effectively, it is practically impossible to localize an
object without a map or raw knowledge of the environment. It is like looking for a point in a graph
without the graph itself. Conversely, it is difficult for a robot to build a map if it has no knowledge
of its position in the environment, which is similar to building a graph without an origin.
Therefore, both localization and mapping should be implemented simultaneously. For mapping, it
is sufficient to localize the initial position of the robot which will be the ”origin or starting point”
of the map. Since we are in an unknown environment, various cognitive mapping approaches define
their starting point in different ways. But generally, to solve the SLAM problem, landmark based
approaches are used in building the map.
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4 Cognitive Mapping

4.1 Overview
Human and animals brains have very intelligent methods for building their own knowledge or rep-
resentation of their environment. Using these methods, they end up with a relatively robust map
which they can confidently use during navigation. We define a “robust map” as an “intelligent”
map in which the capabilities of reasoning, self awareness and adaptation to dynamic environments
have been implemented. A common expression for referring to a “robust map” is: cognitive map.
What is of importance here is not the resulting maps but the processes used in their construction.
This section focuses on explaining diverse and successful mapping methodologies as proposed by
researchers.

4.2 Vision based Mapping
Many researchers are currently working on the robot spatial mapping problem using this approach.
A vision based map provides the robot with a wide range of knowledge of its environment. In this
case, the resulting map is not a representation or interpretation of the environment; it is a snapshot
of the environment. This approach maps the space as it is, using stereo cameras as range sensors.
Vision-based approaches combined with stable natural landmarks in unmodified environments are
highly desirable for a wide range of applications [14]. In this approach, three factors are taken into
consideration: the 3D position of the robot, its camera position, and the view of the environment
relative to these positions (see Fig. 5). So, the picture of an object represents the actual object
and the positions of the robot and camera are used as the coordinates of the object.

Figure 5: Coordinate system for a Vision Based Mapping.

During navigation, the robot uses these data to reconstruct the 3D environment [15]. So the robot
is not only aware of obstacles,but it also knows the nature of the obstacles. The efficiency of a vi-
sion based approach relies on the filter it uses for identifying objects. A good vision-based filtering
method is the Bayesian filtering method which uses a sampling-based density representation [14].
From a visual map, it localizes objects using a scalar brightness measurement. The visual map can
be defined as a set of robot poses which are images captured by the robot in specific positions. A
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practical description of this definition is given in [7].
Nevertheless, this approach faces a wide range of difficulties. Images require more space; take more
time due to rendering which increases the computational complexity of the approach. Also, camera
sensors are more subject to noise (lighting problems) than common range sensors.

4.3 Shape based Mapping
4.3.1 Overview

This approach studies the geometrical configuration of the environment to be mapped. We believe
that if one can get enough information about the size and relative positions of each object in
the environment, one can build a robust map. Accordingly, the shape based approach aims at
representing objects in space by defining mathematical relations between them. At the end, we
have a graph (the map) with a set of points (objects) and mathematical functions. The pioneer
of this approach is a researcher called D. Wolter who was the first to propose a novel geometric
model for robot mapping [21]. He affirmes that this approach is an improvement to bridge the gap
between metric information and topological information. Figure 6 illustrates his architecture for
the shape based approach.

Figure 6: Shape based Architecture.

4.3.2 Methodology

In his book [20], Wolter proposes a shaped based approach which combines a boundary based ap-
proach together with a structure based approach. The structural approach represents shapes as a
colour graph representing metric data alongside configurational information [21]. But this approach
appears to face difficulties in identifying shapes lacking structural information. This could be due
to the error in range sensors data. So he decided to consider a boundary based approach which
focuses more on the boundaries of obstacles than their overall structure. Shape is represented as a
structure of boundaries in which the boundaries are defined using polygonal lines (polylines). So
a polygonal map is a set of polylines (which describe obstacles) and vectors of polylines (which
establish the relations between two obstacles). Using this method, let us describe how information
(obstacle’ s shape) can be extracted from an unknown environment.
In the process of retrieving this information, D. Wloter proposes a simple heuristic: Traversing
the reflection points in a (cyclic) order as measured by the LRF (Large Range Finder), an object
transition is said to be present wherever two consecutive points are further apart than a given dis-
tance threshold. But this heuristic does not remove noise in the sensor readings. So we introduce a7



technique called Discrete Curve Evolution (DCE) proposed by Latecki & Lakamper to first make
the data more compact without losing valuable shape information and next, to cancel out noise.
DCE is a process which proceeds iteratively: Irrelevant vertices get removed until no irrelevant ones
remain (see Fig. 7). Though the process is context-sensitive, it depends on a vertex v and its two
neighbour vertices u and w according to the following formula:

K(u, v, w) = |d(u, v) + d(v, w) − d(u, w)| [21]

If K(u,v,w) is less than the given threshold, then vertex v is removed.

Figure 7: Illustration of the DCE technique.

With the computational processing power of actual robots, this approach seems to be very success-
full.

5 Cognitive Robot Mapping

5.1 Probabilistic Algorithms
Every algorithm use in robot mapping should be able to handle uncertainty. As discussed in
Section 2.5.1, sensor readings are not exact and can badly influence the robot’ s perception of the
environment. This problem is solved or partially solved at two levels: the physical level, which
means improving the sensor accuracy, or the software level, which leads to probabilistic algorithms.
Most mapping algorithms use the calculus of probability theory to improve the reliability of their
resulting map [2]. Instead of relying on a single ”best guess” value from sensor data, the probabilistic
algorithm computes a probability distrubution over a set of sensor values [16]. So the sensor values
used in the algorithm computation is one that is likely to match the reality. In the algorithm flow
chart, this computation is refered to as data integrity or data validation. Before contructing the
map (the final output), the algorithm sanitizes the inputs giving by the robot range sensors. As a
result, a probabilistic robot can gracefully recover from errors, handle ambiguities, and integrate
sensor data in a consistent way.

5.2 Grid Algorithms
5.2.1 Overview

Grid algorithms are a very simple but efficient method for spatial mapping. The grid-occupancy
representation treats the world an unstructured array, with composed cells that are independently8



either occupied or unoccupied [8, p.137]. Depending on the algorithm, the cell can be any polygonal
(see Fig. 8). This approach eases the construction of maps and spatial reasoning based on those
maps. Eventually, It handles sensor data noise by estimating the size of the cells using probabilistic
sensor models [5]. Occupancy grid representation gives the robot sufficient information for its
navigation and path planning. A number of robotic tasks can be accomplished through operations
performed on such representation. So the basic idea of an occupancy grid algorithm is to partition
the space into cells where each cell is qualified with probabilistic estimates of its state (occupied or
empty).

Figure 8: Different projections maintain different kinds of spatial knowledge, which leads to
different forms of grid cells [9].

5.2.2 Methodology

An occupancy field is a function O(x) where x belongs to a set of continuous spatial coordinates,
x=(x1, x2, ..., x3) [5]. Let us define a cell C as C=(i,j) and its occupancy state as occ(i,j) where i,j
are the coordinates of the cell in the unstructured array. So, the function O takes x and maps it into
the corresponding cell (i,j coordinates). We also define a probability function P which given a cell,
returns the probability of its occupancy state P(occ(i,j)). occ(i,j) is a discrete random variable with
two states, occupied and empty, denoted by OCC and EMP respectively. Since the cell states are
exhaustive and exclusive, P[occ(i,j)=OCC] + P[occ(i,j)=EMP] = 1. A good probability function
is given by the Bayes’s theorem which takes as variables two sensor readings of the same cell.
As a summary, grid occupancy mapping requires two steps: the first step is to represent the space
as an array of cells; the second step is to determine their occupancy state. Using a probabilistic
approach to estimate the cell’s state addresses the problem of generating maps from noisy and
uncertain sensor measurement data is overcome. But the weakness of grid algorithms is that they
are useful only when robot poses are well known.

5.3 Local Space Representation
5.3.1 Overview

The environment in which a robot is currently navigating is referred to as a local environment. In the
case of an indoor environment, a room will be an example of local environment. Representing a local
environment is the first step in cognitive mapping. The robot should map its current environment
as it experiences it. In the contrary to the grid mapping where the position of the robot is assumed
to be known, a local space representation should define its own starting point. Yeap in [42] argued
that an important basis for computing a cognitive map is the ability to compute and recognise local
environments [22]. So a mapping algorithm must first recognize the local environment and define
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a coordinate system (the starting point) for it. But the difficulty is to determine where one local
environment ends and another begins [22]. Of course, the algorithm should know which space to
map before starting to map it. The general problem is to find suitable connections between surfaces
to form a boundary surrounding the viewer. Finding boundaries of a local environment is exclusive
to finding exits in that environment.

5.3.2 Methodology

Ref. [22] proposes a cognitive approach for identifying exits which is defined as follows: ”Whenever
one surface is viewed as occluded by another surface, a gap exists which we label as an occluded
edge. The occluded edge and the exit are thus virtual surfaces. An exit is the shortest edge covering
the occluded edge.” Firstly the surfaces in the current view are divided about the occluded edge
FG so that F is in group I (FD, DC, BA) and G in group II (KJ, IG) (see Fig. 9). Then the exit is
found by taking the occluding vertex F and connecting it to the nearest point (to F) on a surface
in the group opposite to it, i.e. group II. Candidate points are H and J, but J is the closest point
to F so the exit is JF. Coincidentally, both points J and F are occluding.

figure9: A view of the environment (in 2D) [22].

5.4 Global Space Representation
Global Space representation is the case where we not only want to represent a room, but the whole
house. One can think of defining a global or single coordinate system whereby the map of each
room will be computed with respect to it. But this method increases noise in the inputs. As a
matter of fact, the robot has to navigate for a longer time and in a bigger space before generating a
usable map. If one data is false, the whole map may be false too. This is the reason why instead of
using this approach, researchers propose that a global map can be generated by building a network
of local environments. In others words, each room is mapped independently and then grouped
after all, to give the map of the house. In this case, our local space representation defined above
is referred to as an Absolute Space Representation (ASR). ASRs are used to identify and describe
local environments which have been visited by the viewer [23].
Moreover, the different local spaces which are computed can be connected together in the way they
are experienced to form a topological network (see Fig. 10). So the robot perception of the environ-
ment can be defined in a topological representation, as a collection of local space representations,
each with its own coordinate system, and connections between them which will allow the robot to
travel from one to the other. Since this method maps the environment as the agent is navigating
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through it, the connections between ASRs result in how one passes from one ASR to another. In
other words, the algorithm should figure out which rooms’ exits match, since practically, the exit
of one room is the entry of another room. This whole idea was developed by Yeap and Jefferies in
[11] and is referred to as a topological network of metric local space representations.

Figure 10: The topological network of ASRs computed as a simulated viewer follows the path in
(a). The ASRs are numbered in the order in which they are experienced. The numbered areas in
the environment in (a) correspond to the same numbered ASRs in the topological network [11].

However, this approach is incomplete when it comes to navigating using the computed map. Effec-
tively, connections between the ASRs are defined as the robot leaves one ASR to enter another. So
not all the possible connections are defined, but only those experienced by the robot. Kuipers and
Byun [10] propose a solution to this by using topological matching [11]. They use the information
of a current ASR to find all possible connections to it. Then the robot follows each found path to
validate the connection and come back to its initial position. In so doing, the network represented
in Figure 10 can be extended to the one in Figure 11.
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Figure 11: An extended topological network of ASRs.

6 Application: Lego Mindstroms NXT
Lego Mindstroms NXT is a mobile robot designed by Mindstroms which has the basic and sufficient
properties to perform autonomous spatial mapping. It is equipped with a NXT brick which acts
as a CPU in the architecture robot. These are the technical specifications of the NXT brick which
were taken from the Mindstroms website [1]:

• 32-bit ARM7 microcontroller

• 256 Kbytes FLASH, 64 Kbytes RAM

• 8-bit AVR microcontroller

• 4 Kbytes FLASH, 512 Byte RAM

• Bluetooth wireless communication (Bluetooth Class II V2.0 compliant)

• USB full speed port (12 Mbit/s)

• 4 input ports (4 sensors) and 3 output ports (3 motors)

• 100 x 64 pixel LCD graphical display

• 6 AA rechargeable lithium batteries.

Two motors are used to drive the robot’s wheels and the third one is an extra motor. Four types of
sensors can be connected to the NXT brick: ultrasonic, touch, sound, light sensor. Our focus here
is on the ultrasonic sensor, which the key sensor used by the Lego NXT for mapping.
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Ultrasonic Sensor

The Ultrasonic Sensor helps the robot to judge distances and ”see” where objects are. Using the
NXT Brick, the Ultrasonic Sensor is able to detect an object and measure its proximity in inches
or centimetres.

7 Conclusion
In this literature review, we have provided sufficient evidence to show that if a robot is placed
in an unknown environment, it will be able experience navigation without collisions by learning
the spatial properties of its surroundings. Cognitive algorithms give this learning capability to
the robot which makes it really autonomous. In our discussion, we sequentially improve the robot
perception of its environment, a cognitive mapping approach that suits this perception and how the
approach can be implemented through an algorithm. These three steps of cognitive mapping are
correlated and moving one step to the other required the understanding and consideration of several
issues. These issues have also been more or less presented and corresponding solutions have been
appropriately discussed. In this way, we have fully covered the knowledge needed to implement a
mobile robot which can learn its environment and navigate through it autonomously.
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