
Controlling distributed audio from a

3D Graphical User Interface (GUI)

Submitted in partial fulfilment of the requirements of the
degree

Bachelor of Science (Honours)

Computer Science

Rhodes University - Grahamstown

M. L. Hedges

2012

Abstract

There has been rapid progression from analog conventional audio networks to dig-

ital audio networks. This has been a great success with a single problem that is

increasingly growing - how do we control these networks? There are various pro-

grams available that allow a user to control distributed digital audio, however these

are not user friendly and represent the venue in a similar fashion to an architectural

blueprint.

This research investigates the feasibility of using an open source 3 Dimensional mod-

eling program called Google Sketchup in order to control a distributed digital audio

network. This was done by integrating Sketchup and a Visual C++ program which

was able to instantiate a newly developed Network Layer protocol for controlling

sound. The implementation of this research revealed that creating a user friendly

system that is capable of controlling distributed digital is attainable and can be done

so using tools that are available to most users. There is still a substantial amount of

future work that may be done in this field, which is mentioned in the last chapter.

ACM Computing Classification

System Classification

Thesis classification under the ACM Computing Classification System (1998 version,

valid through 2012)

H.5.1 [Multimedia Information Systems]: Audio Input/Output

I.2.10 [Vision and Scene understanding]: 3D/stereo scene analysis

C.2.5 [Local and Wide-Area Networks]: Ethernet

General Terms: Design, Distributed Audio

Acknowledgments

I would like to acknowledge the funding towards the Rhodes University Computer

Science Department from Telkom, THRIP, Genband, Tellabs, Easttel, and Bright

Idea Projects 39 through the Telkom Centre of Excellence in Distributed Multimedia.

I would like to acknowledge Professor Richard Foss for the guidance throughout my

honours year and the ideas and help he provided me with on a regular basis.

I would like to acknowledge my parents, Charles and Shelley Hedges, for funding

this year and allowing me the opportunity to attend a prestigious academic institu-

tion such as Rhodes University.

I would like to acknowledge Osedum Igumbor, James Dibley, and Shane Haw for

the work in the field of digital audio and providing me with sufficient resources which

made the ideas of this project a reality.

Table of Contents

1 Introduction 1

1.1 Transition from Conventional audio to Digital audio 1

1.2 Problem Statement and Research Goals 2

1.2.1 Primary goals . 2

1.2.2 Secondary goals . 3

1.3 Thesis Layout . 3

2 Graphical Sound System Control 5

2.1 UNOS Creator . 5

2.2 Harman System Architect . 6

2.2.1 Defining the venue . 6

2.2.2 Adding devices by their location 7

2.2.3 Associating the devices by their location 7

2.2.4 Routing the audio . 8

2.3 BSS London Architect . 8

2.4 Biamp Systems’ Tesira . 9

2.5 The Need for 3D Sound Control . 10

3 Sound System Control Protocols 12

3.1 Harman Pro HiQNet . 12

3.1.1 Devices, Virtual Devices, and their attributes 12

3.1.2 Objects . 14

3.1.3 Addressing . 15

3.1.4 Messages and Message flags 16

3.2 XFN . 19

3.2.1 XFN Devices . 19

3.2.2 XFN Networks . 20

3.2.3 XFN Messages . 21

3.2.4 XFN Parameters . 22

3.3 AVDECC . 23

3.3.1 The AVDECC Discovery Protocol 24

3.3.2 The AVDECC Connection Management Protocol 25

3.3.3 The AVDECC Enumeration and Control Protocol 27

3.3.4 Types of ADVECC Devices 28

3.3.5 The Choice of AVDECC . 29

4 Google Sketchup - A Tool for 3D Design 30

4.1 Ruby . 31

4.1.1 Ruby in Sketchup . 31

4.2 Predefined Ruby classes . 32

4.2.1 User Interface . 32

4.2.2 Cameras . 32

4.2.3 Entities . 35

4.2.4 SKSocket . 36

4.2.5 Geom . 37

5 Design of the 3D Graphical Control System 39

5.1 The Object Oriented Design . 40

5.1.1 Requirement Specification . 40

5.1.2 Use Case Diagrams . 41

5.1.3 Textual Scenarios . 45

5.1.4 Class Diagram / Object Model 46

5.1.5 Sequence Diagrams . 49

5.1.6 Overview . 50

5.2 The SkAv Protocol . 50

6 Implementation and Operational Highlights of the 3D

Graphical Control System 52

6.1 Visual C++ . 52

6.1.1 Socket Connections . 52

6.1.2 Sending and Receiving SkAv Messages 53

6.1.3 Initiating Discovery . 55

6.1.4 AVDECC Discovery . 56

6.1.5 Creating a Stream . 58

6.1.6 Converting from String to MAC 59

6.1.7 Streaming Audio . 60

6.2 Ruby . 61

6.2.1 Parsing the Messages from Visual C++ 61

6.2.2 Creating Atterotech Boards 62

6.2.3 Converting from Atterotech Boards to Talkers and Listeners . 63

6.2.4 Sending the Device MAC Addresses for Stream Request . . . 64

7 Conclusion 66

7.1 Analysis of Goals . 66

7.2 Future work . 67

7.2.1 Scaling the System . 68

7.2.2 Maximizing Automation . 68

7.2.3 Implementing the AVDECC Enumeration and Control Protocol 68

Bibliography 74

List of Figures

2.1 UNOS Vision device discovery [25] 6

2.2 Placing devices in System Architect [27] 7

2.3 The London Architect user interface 9

2.4 The Tesira user interface . 10

2.5 A sample venue drawn in sketchup - two speakers and an amplifier

are shown . 11

3.1 Attributes in the HiQNet Device manager 13

3.2 HiQNet Device Architecture . 14

3.3 HiQNet Addressing [28] . 15

3.4 HiQNet address levels shown with their ID 16

3.5 The message header for HiQNet messages [28] 17

3.6 Sample layout of an XFN network (Apdapted from [22]) 21

3.7 Message header for an XFN message [22] 22

3.8 AVDECC protocol layout showing sub protocol interaction with the

controller [32] . 23

3.9 The packet structure of a single AVDECC Discovery Protocol Data

Unit (ADPDU) [19] . 24

3.10 The packet structure of a single AVDECC Connection Management

Protocol Data Unit (ACMPDU) [19] 26

3.11 The packet structure of a single AVDECC Enumeration and Control

Protocol Data Unit (AECPDU) [19] 27

4.1 The User Interface message box, showing camera attributes 34

5.1 The Use Case Diagram for Google Sketchup 42

5.2 The Use Case Diagram for Visual C++ 44

5.3 The 3D sound system’s class diagram 47

5.4 Sequence diagram for displaying venue on startup 49

7.1 Sketchup Sequence 1 - Moving a device 69

7.2 Sketchup Sequence 2 - Moving a camera using plugins 70

7.3 Sketchup Sequence 3 - Moving a camera using the tools 70

7.4 Sketchup Sequence 4 - Making a stream connection 71

7.5 Sketchup Sequence 5 - Controlling a device 71

7.6 Visual C++ Sequence 1 - Discovering devices 72

7.7 Visual C++ Sequence 2 - Creating a stream connection 72

7.8 Visual C++ Sequence 3 - Controlling a device 73

1

Chapter 1

Introduction

The human race has gone through various ”Ages” and is now in the 21st century

which is referred to as the ’Digital age’ or ’Information age’. This age recognizes

that the generation of wealth and exercise of power is dependent on the capacity of

information technologies [31].

Many of the technologies from the past few decades have been adapted so they can

now be controlled by computers or computer based systems. The implementation of

distributed audio has now followed this trend as we are increasingly seeing the use of

computers and computer networking for the distribution of audio.

1.1 Transition from Conventional audio to Digital audio

There are significant advantages to using digital audio as opposed to the conven-

tional analog audio systems. There are three disadvantages to conventional audio

distribution that have contributed to the transition to digital∗ [22].

• Cost: For the bigger venues requiring larger distribution, the cabling required

costs a large amount of money. In the case of digital audio networking, multiple

channels of audio would be transmitted along a single Category 5 Ethernet

cable. .

• Weight: As mentioned in the point above, the amount of cabling for conven-

tional audio is a lot more than that of a digital audio networked. Each wire in a

conventional audio network carries a single channel, so a cable ’snake’ has to be

∗For statistical purposes, the SATSS-32x1530 - 32 Channel Send XLR Splitter Snake Cable was

used [20]

2

used that exceeds the maximum amount of channels used in the network. The

weight of a 32 channel ’snake’ cable of 150 feet (46 meters) is approximately 70

pounds (32 kilograms) as opposed to a Category 5 Ethernet cable that weighs

approximately 22 pounds (10 kilograms) per 1000 feet (305 meters). The weight

factor of conventional cables can hinder the portability of the system and this

is the reason that digital networks are preferred.

• Availability: Cable ’snakes’ are manufactured by highly specialized audio com-

panies. In contrast, category 5 Ethernet cable is readily available in almost any

town or city in any country. It is a non specialized item and is used widely in

businesses, educational institutions, households, and many more. At live con-

certs there is a high chance of cables being damaged as the venues are normally

in open areas where the cables are vulnerable to various threats, so a broken

cable could cause many problems.

1.2 Problem Statement and Research Goals

The main research involved in this project involved an in-depth look at the current

programs that control digital audio in large institutions, and whether they could

control distributed digital audio from a 3 Dimensional (3D) graphical user interface.

The research showed that the only sound control systems were from a 2D ”blueprint”

layout and that there were none that offered the capabilities of controlling the audio

from a 3D interface where the user could move around the venue in ”real time” and

control the devices.

Given the limitation of conventional sound systems, a decision was taken to harness

the power of Google Sketchup [3] to provide the 3D representation of a venue. With

this in mind, the following goals were determined:

1.2.1 Primary goals

• Discover the audio devices on the network and display them in the 3D environ-

ment provided by Google Sketchup

3

• Create audio streams between devices that have been made ”talkers” and ”lis-

teners” on the network. The interaction to create the stream was to be done

purely within the 3D environment.

• Implement a sound control protocol and have it communicate directly to Sketchup

through the use of Transmission Control Protocol (TCP) sockets.

1.2.2 Secondary goals

• Enable the user to control remote values such as volume of the devices from the

main control interface.

• Test whether the system is scalable in terms of numbers and distribution of

devices.

1.3 Thesis Layout

The layout of the remaining contents of the thesis is described below.

Chapter 2 - The current sound system control programs are discussed in this chap-

ter. A brief overview of each one is given, followed by the need for a 3D graphical

sound system program.

Chapter 3 - This chapter describes the current protocols that are being used to

control digital audio and why the AVDECC protocol was chosen for this specific

project.

Chapter 4 - The capabilities and plugins for Google Sketchup are discussed in this

chapter along with the possibility of its interaction with the Visual C++ component

of the project.

Chapter 5 - This chapter describes the design of the system, the process involved

in finalizing the design, and the importance of the design in a project such as this one.

4

Chapter 6 - The implementation of the project is discussed in this chapter. In-

cluded in this chapter are methods used on both the Sketchup and C++ side of the

system, descriptions of what they do, and how they help the system reach the final

goals.

Chapter 7 - This chapter summarizes the project and discusses any future work

that could be done to improve the system.

5

Chapter 2

Graphical Sound System Control

Graphical sound system control is a rapidly developing field of research due to the

increase in popularity of digital audio streaming rather than analog. Graphical sound

control also allows the user to control the various networked devices from a central-

ized point. This is a lot less consuming in terms of resources when comparing it to

the conventional way of controlling analog audio, which would be to have sound tech-

nicians stationed at various points of the venue - each performing a specific activity.

There are currently several programs that offer graphical sound control over net-

worked audio and they are discussed below. These are all easily available and a full

or trial version may be downloaded off the internet from their respective websites.

2.1 UNOS Creator

UNOS Creator is sound installation software developed by Universal Media Access

Networks (UMAN). It’s core functionality is the ability to create custom interfaces

by drag and drop instead of writing lines of code for an interface [21]. UNOS Creator

provides the user with a desk item editing capability, which allows the user to specify

various images for the different desk item controls. Desk item controls are controls

that are found on a desk top such as sliders and meters [25]. Each desk item has a

parameter associated with it which is known as a ”control parameter”. This effectively

controls the value associated with the desk item [25].

The UNOS Creator GUI editor can be accessed from the ”tools” menu within UNOS

Vision. UNOS Vision displays different devices for the various subnet configurations.

The devices can then be selected to display the ’matrix view’ which enables control

and patching of the devices [25].

6

Figure 2.1 : UNOS Vision device discovery [25]

2.2 Harman System Architect

System Architect is a software application developed by the Harman group to control

HiQNet systems. It is the user interface for the HiQNet protocol, discussed in section

3.1. Sound control can take place once the software has been configured to match the

network layout. This can be done in the four steps shown below [27].

2.2.1 Defining the venue

The user is required to graphically design the venue for the sound installation. This

can be done by using the pre-set shapes provided by System Architect which can be

shaped into a realistic representation of the venue. A crucial feature that enables this

is the capability of having a background image whilst creating the layout, effectively

allowing the user to ”trace” the layout of the venue.

7

2.2.2 Adding devices by their location

After the venue design is completed, the user will then add the distributed audio

devices to the venue. These can be specifically placed as they will correspond to

their physical location within the venue. The list of devices provided by System

Architect is pre-set and includes various devices by AKG, BSS, Crown, dbx, JBL,

and Lexicon [29]. The physical layout of the devices is important as the interface will

indicate which rooms have problems (if they occur).

Figure 2.2 : Placing devices in System Architect [27]

2.2.3 Associating the devices by their location

Although sound sourced (eg. Microphone Preamp) have only one physical location,

they can be connected to multiple sound sources [27]. This stage of the setup involves

the user specifying which amplifiers are connected to speakers in different sections of

the venue. System Architect provides a drag and drop technique to allow the user to

specify which amplifier channels to connect on installation.

8

2.2.4 Routing the audio

Audio routing is a highly complex step within general sound installation. System

Architect has aimed to simplify it by allowing the user to route to specific zones

within the venue, instead of specific devices. This is a high level abstraction as the

”behind the scenes” device routing is all taken care of.

2.3 BSS London Architect

London Architect, developed by BSS audio, is software that uses the HiQNet protocol

and allows for graphical sound installation [16]. London Architect is a powerful tool

which makes use of a user orientated drag and drop GUI. It provides standard sets of

audio devices for the user to add to the interface and simply connect to other devices.

The software provides a wide range of functions which allow scheduling as well as

automatic system adjustments according to the state of the devices [16].

Despite the difference between the interface appearances, this software is in many

ways similar to System Architect. There is one major difference in that System

Architect allows connection between zones, while London Architect allows explicit

connection between devices. The London Architect device interface shows all the

input and output jacks for the list of preset devices, which allows the user to specify

exactly which inputs and outputs are connected between devices. System Architect

does all this for the user ”behind the scenes”, which is ideal from a ’user friendliness’

point of view, but gives less direct control over the devices. Figure 2.3 shows the

device layout in an audio network being controlled by London Architect.

9

Figure 2.3 : The London Architect user interface

2.4 Biamp Systems’ Tesira

Biamp Systems is a company that provides digital audio solutions to large scale venues

such as conference centres, airports, and theatres. They create their own products

from initial Digital Signal Processing (DSP) to the software implementation [1]. Their

latest product, ’Tesira’, was launched in 2011 and is the successor to ’daVinci’ which

was launched in 2006 [1].

Tesira’s main focus is scalability of audio solutions. It aims to provide high quality

audio solutions starting with single room networked audio solutions (such as a confer-

ence room) up to audio systems that span over several buildings [14]. These could all

be controlled by using a single terminal with the Tesira software installed, although

for the larger solutions it would be beneficial to have more than one control station.

The Tesira user interface is similar to BSS London Architect except with a more

10

modern, user friendly appearance. Devices may be placed around the venue and sev-

eral layers can be constructed with different devices. This layered approach simplifies

control and allows specific devices to be isolated according the the users requirement.

Connections can then be established between the inputs and outputs of the various

devices and the connections can be muted and controlled by the user interacting with

the matrix controls provided. The Tesira product range includes network expanders

which in turn allow the network to be scaled easily without any major difficulties [14].

Figure 2.4 : The Tesira user interface

2.5 The Need for 3D Sound Control

All the above-mentioned solutions provide similar services to the end user, they all

allow the user to control distributed digital audio from a centralized point. The user

interface allows the user to create a 2-dimensional layout of the networked devices

from a top-down point of view. In the case of System Architect, you are able to design

the layout of the venue with the separate rooms that contain the audio devices and

11

route the audio between rooms, but even this is done from an architectural blueprint

(2-dimensional) point of view.

The purpose of this research was to investigate the feasibility of using a 3D User

interface to control digital audio. There is no current software that allows the user

to design the venue themselves in a 3D interface and use it to control audio. Such a

view would allow the user to see the venue from a more realistic point of view and

allow them to move around the venue and control the devices from the various rooms.

Given below is a sample venue drawn using Google Sketchup - the tool that will be

used for the implementation of this project.

Figure 2.5 : A sample venue drawn in sketchup - two speakers and an amplifier are
shown

12

Chapter 3

Sound System Control Protocols

This section will look at three different sound control protocols for monitoring and

controlling distributed audio devices. These three protocols are the Harman HiQNet,

XFN, and IEEE 1722.1 AVDECC. The reason these protocols have been chosen is

that the HiQNet and XFN user interfaces have been discussed in the previous chap-

ter. AVDECC has been included in this chapter as it is the protocol being used for

implementation in this project.

3.1 Harman Pro HiQNet

The HiQNet protocol, developed by the Harman group, is aimed at a single solution

for all Harman networked devices [12]. It is controlled by a single application, System

Architect, which has been developed to comply with the specification of this protocol

in order to optimize both tour sound and sound installation environments [17]. This

protocol has a tiered approach with the top level representing the actual device (node)

where each node must have at least one virtual device; this acts as a node manager.

3.1.1 Devices, Virtual Devices, and their attributes

A single device describes the physical product (A networked digital audio device) itself

where each device is made up of one or more Virtual Devices [28]. Each virtual device

(as well as the objects in the virtual devices) can contain objects and parameters.

These make up a useful unit which allows designers a convenient method of segmenting

the product. Each device must have at least one virtual device which is the Device

Manager, which contains attributes describing the actual device.

13

Figure 3.1 : Attributes in the HiQNet Device manager

At each level in the hierarchy there are also attributes, which are member vari-

ables containing data about the virtual device, parameters or objects. Attributes can

be classed into three different types, which are static, instance, or instance & dy-

namic. Static variables contain the same values across all the different devices of the

same model. Instance variables are initialized on start up and have their values set,

while the instance & dynamic are set on start up and can have their values changed

throughout their lifetime.

Each item (Virtual device, object, or parameter) has its own unique Class ID and

Class Name. This allows each one to be uniquely identified in order for the designer

to work with them individually [28]. Given below is the architecture found in all

HiQNet devices.

14

Figure 3.2 : HiQNet Device Architecture

3.1.2 Objects

Objects in HiQNet are collections of parameters or other objects conveniently grouped

together. The smallest modifiable attribute is held within a HiQNet parameter,

HiQNet parameters contain various attributes of the audio objects such as frequencies

or fader values. The number of parameters contained within the product will differ

depending on the complexity of the product, products such as mixing consoles will

have many parameters while the simpler products will only have a few. Changing

values of parameters can be done via ’set’ methods provided while retrieving the pa-

rameter values can be done using the ’get’ methods provided [28]. The ’get’ and ’set’

methods would be available depending on the device and the parameter and they

ensure that the caller has appropriate access permission. These parameters support

several primitive data types and when sending a HiQNet message, it is important to

use the appropriate data format [28].

15

3.1.3 Addressing

HiQNet’s addressing is split into three levels, which are shown in order below along

with each of their sizes (in bits).

Figure 3.3 : HiQNet Addressing [28]

HiQNet Device address

This is the highest level address which is a 16 bit long integer value. This begins at

1 and increments with each device added. These addresses can be seen next to the

respective device’s name in the System Explorer on the System Architect’s interface.

It can also be seen in the venue view when all the devices are listed [28].

Virtual Device address and Object address

The 8 bit Virtual Device address along with the 24 bit long Object address form

the second level address which is 32 bits long. The virtual device address is also an

integer value which starts at 0 and increments for each virtual device in the actual

device. The first device (with the Virtual Device address of 1) is the Device Manager.

The Object address is broken into three eight-bit integer values separated by the full

stop character. Each of these are unique to their respective virtual device.

Parameter Index

The Parameter index is represented as an integer starting at 0 and incrementing with

each parameter within the specific object of the virtual device.

16

Figure 3.4 shows an example of the layout of a device from the Device Address level

to the Parameter Address level. The Device is the DriveRack 4800 shown at the top

level with an Address of 1 next to it (the driverack 4800 shown below that is the

Device Manager). The Virtual Device shown here is labeled ”Wide Open”, also with

an address of 1. This contains various Objects as well as the Parameters shown along

with their respective IDs [28].

Figure 3.4 : HiQNet address levels shown with their ID

3.1.4 Messages and Message flags

As with any other protocol, the HiQNet protocol has a specific way of constructing

message according to their desired purpose. Every message has a common HiQNet

header which describes the message. The header identifies various key elements of the

message such as the source, destination, and the version of the protocol being used.

17

Figure 3.5 : The message header for HiQNet messages [28]

Although a lot of the fields above remain constant for this version of the pro-

tocol, there are a few important ones that need to be set in order for the message

to successfully be delivered. The ’Source address’ and ’Destination address’ are the

most important as they show the sender and recipient of the message. The ’Header

length’ field is the size of the entire header, including any additional headers [28].

The ’Message length’ field, similar to ’Header length’, contains the length of the en-

tire mesage from the last byte of the header to the last byte of the payload [28].

There are optional parts of the message header which include error headers, multi-

part headers, and session number headers [28]. These have their own unique fields

and can be shown what type of message they are by the ”Flags” field in the main

message header. The ”Flags” field is a 16 bit long field, each bit being either a flag,

or reserved for future use. The flags are then set depending on what type of message

it is, for example if the message was an acknowledgment, the first bit would be set,

informing the recipient that this message is an acknowledgment [28].

There are various types of messages that are sent between devices, each requesting

an action from the recipient. Listed below are the messages that are able to be sent

and received between HiQNet networked devices [28].

18

Request Acknowledgement Message

This message is sent to a device checking whether it has performed an action which

was requested in a previous message. This is done by using a ”ReqAck” flag in the

message which lets the recipient know that an ”Ack” is being requested. If this is

successful, the recipient will send the message back to the sender with the ReqAck

flag cleared and the Ack flag set. This message provides a mechanism that allows the

protocol to function efficiently and consistently [28].

Information Message Flag

The information flag is used to show that the message is the response to a particular

request. This allows the response to match the request, however it has the information

flag set. An example of this would be a get request, the response would also be a ’get’

message with the information flag set, letting the sender know that it is an information

message. This will then have the value requested appended in the payload of the

information message [28].

Error Message Flag

The error flag is set when an error has occurred between two devices. The recipient

will simply set the error flag of the original message and send that back to the sender.

Guaranteed Message Flag

This flag may be set if the receipt of a message is critical. This will transfer the

priority of the message from fast delivery to guaranteed delivery by not using the

datagram service to transmit it.

Multi-part Message Flag

This flag shows that a message will be sent through in various packets, which is ex-

tended by the use of the multi-part header. Various steps have to be taken when

sending a multi-part message such as the ’Bytes Remaining’ field being continuously

19

updated, and the ”Sequence Number” field being incremented. The ”Bytes Remain-

ing” refers solely to the size of the payload and does not include the headers.

3.2 XFN

The XFN (Cross Fire Network) Protocol is an IP based peer-to-peer network layer [34]

command and control protocol [22] [26]. This protocol has two broad functionalities,

which are connection management, monitoring, and controlling devices [30].

3.2.1 XFN Devices

A device must satisfy two prerequisites in order to use the XFN protocol, which are

as follows:

• It must have at least one fully functional networking interface

• It must incorporate an IP stack

Devices are discovered on an XFN network by the use of broadcast messages. These

are messages addressed with wildcard destination addresses and request parameters

such as the node ID and IP address [36]. Each XFN device within a network is rep-

resented as a hierarchical, seven level tree of device parameters. Due to the structure

of the tree, each parameter in an XFN network must be addressed via the fixed seven

level address. Each level has a unique value assigned to it, with an associated alias

in order to describe its functionality [26].

The seven levels of the hierarchy are described below, in descending order.

1. Section Block: Any single device may be a composition of various sections such

as output or patching [26]. This part of the hierarchy is used for identifying the

section in which parameters are contained.

2. Section Type: This identifies the distinct type of the section. The output of a

mixing console may have digital or analogue output so it is important to distinguish

the type [26]

20

3. Section Number: The section number is used to identify specific instances of

the section [26]. A mixing console may have an output section with various channels

that need to be individually addressed [30].

4. Parameter Block: The parameter block is used to designate a block of param-

eters with similar functionality. This section may be less critical for simpler devices

which contain a single block of various parameters [30]

5. Parameter Block Index: The parameter block index is used to refer to different

subsections of the parameter block [26]. This may follow the Parameter Block closely

and is also negligible for simpler devices [30].

6. Parameter Type: The parameter type describes the type of parameter being

addressed [26]. There can be many different types of parameters within a single

device such as frequency or gain, which needs to be addressed individually [30].

7. Parameter Index: The parameter index is the lowest level in the hierarchy, and

distinguishes between parameters of the same types.

3.2.2 XFN Networks

An XFN network is simply an IP network of XFN devices with at least one XFN

controller. This controller can be described as an XFN device that provides a Graph-

ical User Interface (GUI) that the user may interact with such as an iPad, desktop

computer, or smart phone [22]. The controller will appear to other networked devices

as another XFN device, while the user is able to interact with it and use it to control

the parameters of the other FN devices on the network [22].

21

Figure 3.6 : Sample layout of an XFN network (Apdapted from [22])

3.2.3 XFN Messages

XFN devices are allowed to send and receive XFN messages between their networked

peers. The XFN stack provides facilities for the transmission and receipt of XFN mes-

sages according to the predefined XFN Application Programming Interface (API) [24].

Every XFN message can be classed as either a request or a response. A request is a

message sent from one XFN device to another requesting an action, while the response

is a ”reply” to a request message [30]. An XFN message may be targeted at a single

device or can be broadcast to many different devices on the network at once [22]. Not

every request message has a response; this is purely determined by the nature of the

message. In some of the XFN messages such as the setRemoteParamValue nonb fdb

∗, there is boolean parameter named responseRequired which may be set to true or

false depending on whether the sender requires a response or not [24].

∗A non blocking method which sends a request to set a remote parameter value [24]

22

Contained within these messages is the Command Executive and Command Quali-

fier [30] [26]. The Executive describes the fundamental nature of the message, while

the Qualifier allows it to direct at a certain attribute of a parameter [26].

Figure 3.7 : Message header for an XFN message [22]

These XFN messages may target a device as a whole, or may target single param-

eters. The source’s IP and device ID are given in each message for the case the the

original message sent requests a response [22].

3.2.4 XFN Parameters

XFN parameters are the smallest possible data structure in an XFN device and have

the fundamental purpose of holding data values. Parameters can either be classed as

control parameters and display parameters. Although there is no formal distinction

between the two, the XFN specification does provide mechanisms to support and

protect them [22].

Every XFN device contains parameters and these are created by an XFN application

through the XFN application programming interface [22]. These parameters can then

be retrieved or updated by the XFN application or by sending XFN control messages

to the device that contains the parameter the user wishes to change. The parameters

are stored using the global units type which is the type used to encapsulate various

numeric data types [22].

23

3.3 AVDECC

The Institute of Electrical and Electronics Engineers (IEEE) 1722.1 specifies proto-

cols for device management on an Ethernet AVB network which use Audio Video

Transport Protocol (IEEE 1722 [22]) for streaming [36]. This protocol is named Au-

dio/Video Discovery Enumeration, Connection management and Control (AVDECC).

Devices that make use of the ADVECC protocol are known as ADVECC devices or

end stations [19], and are thus capable of sending AVDECC compliant layer 2 AVTP

control messages [36]. Each AVDECC end station has a unique GUID (MAC address)

which is its primary identifier and is unchangable by the user [19].

The AVDECC protocol is separated into three sub protocols, each performing differ-

ent tasks in order to achieve full functionality and complete control of the system [19].

These sub protcols interact with a single transport controller that is to be initialized

on program startup which will enable the AVDECC entities to interact with the net-

work [32]. The transport controller needs the AVDECC controller’s MAC address

from the network interface in use, failure to do so will result in no network connec-

tivity.

Figure 3.8 : AVDECC protocol layout showing sub protocol interaction with the
controller [32]

24

3.3.1 The AVDECC Discovery Protocol

The AVDECC Discovery Protocol (ADP) is a layer 2 protocol that is used to discover

AVDECC devices that are advertising on the network [19]. This protocol is able to

discover devices as they are added or removed from the network via the use of device

callbacks [32].

Discovery is based on the use of IEEE 1722 Data Units (AVTPDU) Which allows

entities to be disvocered by each other. These are known as ADPDUs and there

are three different types which indicate if an entity is ’available’, ’unavailable’, or

’searching for available’ [19]. The structure of a single ADPDU is shown below,

followed by an explanation of the most important fields in each unit.

Figure 3.9 : The packet structure of a single AVDECC Discovery Protocol Data Unit
(ADPDU) [19]

25

The figure above shows the structure of an ADPDU with the fields contained in

each unit. Notable fields in this packet are as follows:

• message type: This field is also known as the ’control field’ which defines

if the entity is available, going away, or requesting an available message from

entities on the network [19].

• valid time: This field contains an even number between two and sixty-two,

which is resolved to a number between one and thirty-one. This indicates how

long the entity that transmitted the packet is valid for which results in a tradeoff

between the actual validity of the entity, and the amount of traffic generated

on the network[19].

• entity guid: This is the most important field of the packet as this contains

the unique identifier of the entity.

The rest of the fields either remained constant at this stage of the protocol develop-

ment, or were not important for the implementation of this project - therefore their

explanation was rendered irrelevant to include.

3.3.2 The AVDECC Connection Management Protocol

The AVDECC Connection Management Protocol (ACMP) is responsible for connect-

ing and disconnecting audio streams in the network. The layout for a single ACMP

Data Unit (ACMPDU) is shown in the figure below.

26

Figure 3.10 : The packet structure of a single AVDECC Connection Management
Protocol Data Unit (ACMPDU) [19]

There are three notable fields in this packet which had to be dynamically altered

in order to provide the functionality required, these were:

• message type: The message type had to be changed to either

AVDECC ACMPDU MSG TYPE CONNECT RX COMMAND or

AVDECC ACMPDU MSG TYPE DISCONNECT RX COMMAND depending

on whether the stream was being connecting or disconnected. This was inserted

into the message type field before the message was sent [19].

• controller guid: The controller GUID is the MAC address of the device that

will be flagged as the talker in the stream. In the case of sending the AVDECC

message, this is the MAC adrress of the device to send the message to, and

will transmit the audio stream to the device that has been addressed in the

listener guid field [19].

• listener guid: The listener GUID is the MAC address of the device targeted

to be the listener of the stream. In the case of sending the AVDECC message,

this is the device to be targeted for the message to be sent to [19].

27

3.3.3 The AVDECC Enumeration and Control Protocol

The AVDECC Enumeration and Control Protocol (AECP) is responsible for discov-

ering the capabilities of the devices on the network (enumeration), and manipulating

these capabilities [19].

Figure 3.11 : The packet structure of a single AVDECC Enumeration and Control
Protocol Data Unit (AECPDU) [19]

The packet structure for this protocol is similar to that of the ACMP. Althought

this protocol wasn’t used in the implementation, there are two notable fields:

• message type: This field denotes the type of message sent, in this case they

could be commands in the payload, or commands for access and manipulation

of remote parameters [19]

• target guid: This field contains the MAC address of the device that the mes-

sage is targeted at. This is identical to the field in the ACMP packet struc-

ture [19]

28

3.3.4 Types of ADVECC Devices

Entity

An end station which facilitates transmission and receipt of AVDECC messages within

an Ethernet AVB network. This end station will typically have one network port and

provide the minimum functionality of an AVDECC entity [19].

Controller

An AVDECC entity which initiates message exchange between other entities. The

requirement for a controller is that it must be able to receive and transmit ACMP and

AECP commands. There may be more than one controller on a network, however,

the LOCK ENTITY command must be called for atomic operations.

AVDECC controllers are able to control devices as well as advertise themselves on a

network, this is to allow them to become clients to other controllers that access them

through the network layer (layer 3). Although the protocol is based on the network

layer (layer 2), it is able to interact with other entities through the network layer via

an AVDECC proxy [19]

Listener

A listener is an ADVECC entity that is the sink of an AVTP audio stream. The sink

must be able to respond to connection commands received from the ACMP as well

as respond to connection management commands from the talker [19].

Talker

An AVDECC entity which allows transmission and receipt of AVDECC messages and

is also a talker on the AVB network. A talker must be able to be the source of one

or more AVTP streams. These streams are created and disconnected by commands

contained in ACMP messages received by the talker which would be transmitted by

29

a controller. [19]

3.3.5 The Choice of AVDECC

The AVDECC protocol was chosen for this project due to the fact that was much

more convenient to set up than any of the others. The final choice boiled down to

the use of either the XFN Layer 3 protocol, or AVDECC (layer 2) protocol. The

main factor that decided this was that the the XFN protocol would require an XFN

implementation on the devices that were to be used. The XMOS Atterrotech boards

used in this project were not required to have any further implementation done than

the simple hardware connections. This simplified the process of implementation as

it greatly reduced the overhead work involved with setting up the devices before any

other implementation occurred.

30

Chapter 4

Google Sketchup - A Tool for 3D Design

Google Sketchup is an open source software tool developed by Google. It is a tool

that allows construction of 3D objects using a standard set of tools provided. These

core tools are categorized into the following:

• Principle - The principle tools are the most basic tools provided by Sketchup

and contain the Select tool, Make Component, Paint Bucket tool, and Eraser

tool

• Drawing - The drawing tools are used to create basic shapes. These tools include

the Rectangle tool, Line tool, Circle tool, Arc tool, Polygon tool, and Freehand

tool

• Modification - The modification tools provide tools for basic geometric oper-

ations on shapes. These include the Move tool, Push/Pull tool, Rotate tool,

Follow Me tool, Scale tool, and Offset tool.

• Camera - The camera tool bar contains tools that allow modification to the

current camera the user is viewing the 3D environment from. This includes the

Orbit tool, Pan tool, Zoom tool, Zoom Window tool, Previous, Next, and Zoom

Extents tool camera tools.

• Construction - The construction tools provide tools that aid the user in creating

the 3D objects. These include Tape Measure tool, Dimensions tool, Protractor

tool, Text tool, Axes tool, and 3D Text tool.

• Walkthrough - The walkthrough tools provide tools which allow real life inter-

action with the model such as walking around the venue. The tools included

on this toolbar are Position Camera tool, Walk tool, and Look Around tool.

31

By using these tools, one is able to create any possible 3D structure within the 3D

interface of Sketchup [18].

4.1 Ruby

Ruby is a functional programming language created by Yukihiro Matsumoto as a

blend of different languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) in order to create

a programming language that balanced functional and imperative programming [2].

His main aim was to develop a language more powerful than Perl, yet more object

orientated than Python. Everything in Ruby is treated as an object, with its own

properties and actions. Treating everything as an object type is one of Ruby’s main

ease of use objectives, as everything is treated in a similar fashion with a standard

set of rules being followed.

4.1.1 Ruby in Sketchup

Sketchup has not only the capabilities of 3D imaging, it also has an embedded pro-

gramming capability, the Ruby API (Application Programming Interface). Ruby is

associated with Sketchup in the form of ”plugins”, which are loaded on start up

from the ”Sketchup\Plugins” folder. Plugins extend the functionality of Sketchup

tremendously as they can:

• Perform actions such as adding tools

• Simplify multi-step operations

• Allow the user to perform external operations

Ruby scripts can be written in any basic text editing program, and saved in the

”plugins” folder with a ”.rb” extension, indicating they are Ruby files. The Ruby

plugins are compiled and run (by default) on Sketchup startup in order to perform

any actions involving customization of the user interface. The functions within the

script can then be called from various different places within the plugin or from the

Ruby console window provided by Sketchup. [3]

32

4.2 Predefined Ruby classes

4.2.1 User Interface

The ”User Interface” or UI classes contain various methods which can add to the user

interface. They are able to create and manage various elements such as drop down

menus, timers, message boxes, input boxes, panels, and URLs [11]. Custom sub-

menus and items can be added to existing menus by assigning a name to a menu, and

then adding it via the built in methods. These must be added to the Sketchup menus,

which are not all visible on start up (such as the plugins menu). The menus avail-

able in Sketchup are ”File”, ”Edit”, ”View”, ”Camera”, ”Create”, ”Tools”, ”Page”,

”Window”, ”Plugins”, and ”Help”. [11]

Consider the example below (Adapted from [11], [8])

1 #Camera Menu I n i t i a l i z a t i o n

2 plugins menu = UI .menu(”Plug ins ”)

3 submenuCamera = plugins menu . add submenu (”Cameras”)

4 submenuCamera . add item (”View Camera Prope r t i e s ”) { cameraStats }
5 submenuCamera . add item (”Overview”) { f lyOverview }

This section of code initializes a variable (plugins menu) to the ”Plugins” menu on

the user interface which will then allow the plugin above to use the various methods

involved with the plugin menu in the User Interface. It then adds a submenu called

”submenuCamera” to the original menu which will appear as an item called ”Cam-

eras” within the menu. This submenu has two items that have been added by the

code named ”View Camera Properties” and ”Overview” which will call the methods

”cameraStats” and ”flyOverview” respectively when they are selected by the user

within the User Interface.

4.2.2 Cameras

The camera class in Sketchup contains the methods that manipulate the camera. The

camera is the current ”point of view” that the user is observing the 3D model from.

Cameras can be moved around the 3D environment in two ways:

33

• Interacting directly with the 3D environment and moving the camera using the

mouse along with the camera tools provided by Sketchup

• Creating a new camera and changing the point of view via Sketchup methods.

To effectively ’move’ the camera from Ruby functions there are three main steps

which need to be followed, these are:

1. Create a new camera object

2. Set the camera attributes

3. Change the Sketchup’s current camera to the newly created camera.

A camera object has 3 core attributes which have to be defined in order for a fully

functional camera to be created, the ”Eye”, ”Target”, and ”Up Vector”. The ”Eye”

is the physical position of the camera within the 3D environment given as a 3D co-

ordinate. Each coordinate is given as a distance along their corresponding axis from

the origin, the center of the 3D environment. The ”Target” is a specific coordinate

within the 3D environment which resides on the closest entity to the camera and is

in the centre of the camera’s ’view’. The ”Up Vector” is a vector that describes the

direction that the top of the camera is facing. This is comprised of 3 values (x, y, z)

in which each vector can be described as an element given by u in {u | u ∈ R, -1 ≤
u ≤ 1} [4]

Consider the example below (Adapted from [4])

1

2 def f lyOverview

3 eye = [4000 , −800 , 2500]

4 t a r g e t = [−11000 , 147000 , −14200]

5 up = [−0 . 3750 , 0 . 4833 , 0 . 7910]

6 my camera = Sketchup : : Camera . new eye , target , up

7 view = Sketchup . act ive mode l . a c t i v e v i ew

8 view . camera = my camera

9 end

10

11 def cameraStats

12 view = Sketchup . act ive mode l . a c t i v e v i ew

13 camera = view . camera

14 eye = camera . eye

15 ta rg e t = camera . t a r g e t

34

16 up = camera . up

17 UI . messagebox ”Eye : ” + (eye [0]∗ 1) . t o s + ” , ” + (eye [1]∗ 1) . t o s + ” , ” + (eye [2]∗ 1) . t o s +

18 ”\nTarget : ” + (ta rg e t [0]∗ 1) . t o s + ” , ” + (ta rg e t [1]∗ 1) . t o s + ” , ” + (ta rg e t [2]∗ 1) . t o s +

19 ”\nUp : ” + (up [0]∗ 1) . t o s + ” , ” + (up [1]∗ 1) . t o s + ” , ” + (up [2]∗ 1) . t o s

20 end

The section of code above shows two methods used for camera management which

are ’moving’ the camera and displaying the attributes for the current camera.

The first method (flyOverview) shows the core steps in ’moving’ a camera from it’s

current point to a new one defined by the user. It starts by creating three arrays each

containing three elements for the ”Eye”, ”Target”, and ”Up” respectively. These three

elements need to be initialized in order to create a new camera object, as mentioned

above. Once these have been initialized, the current Sketchup camera is then changed

to the newly created camera, effectively ”moving” the camera to the new point of view

created by the user [4]. The old camera will be taken care of automatically and the

space deallocated by the Ruby garbage collector. The second method (cameraStats) is

used to display the ”Eye”, ”Target”, and ”Up” vector of the current Sketchup camera.

This is achieved by retrieving the three lists from the current Sketchup camera, and

extracting each element out seperately. The User Interface class then calls a message

box to display the attributes in a neat way which can be easily interpreted by the

user, as shown below.

Figure 4.1 : The User Interface message box, showing camera attributes

35

4.2.3 Entities

The ’entities’ class serves as a container class for all the entities in a Sketchup 3D

model [5]. This container is continuously updated as more entities are added or re-

moved from the model. A single entity is a member of the base class ”entity” which is

anything that is contained in the model such as edges, planes, component instances,

and groups [6]. Entities can be referenced from the container class and actions can

then be performed on them which will be methods from the ”entity” class (It is impor-

tant to distinguish between the ”entities” and ”entity” classes as they are separate).

Consider the two methods below (Adapted from [5], [6])

1 def addATT(ipAddr)

2 model = Sketchup . act ive mode l

3 ATT def = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\Google\\Google

SketchUp 8\\Components\\Sound Control \\ATTBoard . skp”)

4

5 ATT location = Geom : : Point 3d . new $ATTpos , 100 , 0

6 transform = Geom : : Transformation . new ATT location

7 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

8 in s tance = e n t i t i e s . add ins tance ATT def , transform

9

10 $Dvcs [$numDvcs] = ”ATT: ” + ipAddr

11 $numDvcs += 1

12 $ATTpos += 30

13 end

14

15 def l i s t (amount)

16 e n t i t i e s = Sketchup . act ive mode l . e n t i t i e s

17 index loop = 0

18 i f amount == ” a l l ”

19 amount = Sketchup . act ive mode l . e n t i t i e s . count

20 end

21 while (index loop < amount) do

22 en t i t y cu r = e n t i t i e s [index loop]

23 i f (en t i t y cu r)

24 puts (en t i t y cu r)

25 puts en t i t y cu r . typename

26 else

27 puts ”NO ENTITY”

28 end

29 indexloop += 1

30 end

31 puts ”DONE”

32 end

These two methods both make use of the entity and entities classes within Sketchup.

The first method is given a parameter (an IPv4 address in this case) and adds an

36

entity (Atterotech Board) to the 3D model. This is done by by loading a predefined

3D model as a variable that takes the file path as a parameter. A point in the 3D

model must be defined which is the place where the new object will appear once it

is added (The ’Geom’ class is explained in section 4.2.5). The object is then added

to the model by calling the ”entities.add instance” method and the entities container

gets updated. The last three lines of this method are for adding the current device

into a custom container, keeping track of the total devices, and keeping track of the

position where the next device is to be located respectively.

The second method is used to list entities in the current model. It takes a parameter

which is the number of entities the user wishes to view. If the parameter is a string

equal to ”all”, then all the entities will be listed. This is done by simply looping

through the container containing the entities in the model and displaying their full

name, and their type respectively. If there is no entity, such as in cases if the parameter

is greater than the total amount of entities in the model, then ”NO ENTITY” will

be displayed. This case is checked at the beginning of the loop.

4.2.4 SKSocket

The SKSocket (Sketchup Socket) class is a class representing a socket used in the

Ruby API. This class provides basic socket functionality but is unsupported and unof-

ficially documented [23]. This class has been used to provide communication between

Sketchup and a Visual C++ program in order to exchange information. Messages

that get sent between these two programming platforms must comply with the SkAv

Protocol (discussed in section 5.2) which allows the messages to be successfuly parsed

and the appropriate actions taken.

Consider the example below, adapted from [30]

1 def Connect ()

2 SKSocket . d i s connec t

3 puts ”Connecting to 1 2 7 . 0 . 0 . 1 (LOCALHOST) on port 30456”

4 SKSocket . connect ” 1 2 7 . 0 . 0 . 1 ” , 30456

5 puts ”Connection e s t ab l i s h ed ”

6 SKSocket . a d d s o c k e t l i s t e n e r {| e | s o c k e t l i s t e n e r (e)}
7 end

8

9 def sendData (data)

10 SKSocket . wr i t e data

37

11 end

12

13 def s o c k e t l i s t e n e r (v)

14 #Code to take appropr ia te a c t i on s on the socket r e c e i v i n g data

15 end

The three methods above show connecting to a socket, writing to a socket, and

receiving from a socket respectively.

The first method (Connect) shows how to connect to a socket, given an IPv4 address

and a port. It uses the ’SKSocket.connect’ method to establish this connection,

’SKSocket.connect’ takes the IPv4 address (localhost 127.0.0.1 in this case) and a

port number as parameters. This method binds the socket listener function (e) onto

the socket. This function will be invoked when any information is sent through the

socket.

Writing to these sockets is performed via a method contained within the SKSocket

class, ’SKSocket.write’. This method takes a single string parameter and writes it to

the socket. This method has been contained in another method called ’sendData’,

which can be called from the Ruby API, and will simply call the write method to write

to the socket. Reading from the socket is slightly more complicated than writing to

it. The socket listener has been defined within the connection method, which in this

case will call the method called ’socket listener’. The method has a single parameter,

which is the data that is read from the socket. This will be the argument when

the ’socket listener’ method is called. The data read from the socket can then be

processed within the method defined as the default socket listener∗.

4.2.5 Geom

The Geom module takes lines and planes as arguments and allows one to perform

various geometric operations [7].

Consider the example below, adapted from [35]

1 model = Sketchup . act ive mode l

2 ven de f = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\Google\\Google SketchUp

8\\Components\\Sound Control \\WhiteBlock . skp”)

∗In the code listing shown above, the actions have been removed. This is because they are all

the appropriate actions taken for the SkAv protocol and there is a lengthy amount of code.

38

3 ven l o ca t i on = Geom : : Point 3d . new 0 , 0,−170

4 transform = Geom : : Transformation . new ven l o ca t i on

5 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

6 in s tance = e n t i t i e s . add ins tance ven def , transform

The following steps have to be taken in order to insert a preloaded component into

the environment:

• The first step is to create an instance of the ’point3d’ class which is a single

point in the 3D model. This is defined as a 3D coordinate upon creation as a

distance from the origin of the model. If no arguments are given when the point

is being created, it is simply created at position (0, 0, 0) [9].

• An instance of the transformation class has to then be created in order to insert

the component correctly into the 3D model. A transformation is a standard

construct used to perform actions on a component that relate to transformations

around the 3D environment such as rotation, inversion, and translations [10].

The transformation in this case is nothing more than a single point as the

component to be added requires nothing more than that, and a transformation

is required in order to add the component into the model.

• The instance of the component can then be created by using the defined com-

ponent model along with the transformed point of the Geom class and will

successfully appear in the 3D model.

39

Chapter 5

Design of the 3D Graphical Control System

The 3D Graphical sound system was designed using standard Unified Modelling Lan-

guage (UML) diagrams. A UML model allows the system to be viewed at a high

level of abstraction, all the way down to the behaviour of each individual function in

the system. The diagram modelling was done by using Rational Rose, a tool by IBM

that provides a platform for UML modelling [13].The following steps were performed

as part of the UML modeling process.

1. Project requirement specification

The requirement specification provided a detailed textual description of the

system as required by the user.

2. Use case diagrams

The use cases indicate the main functions of the system and the external actors

that interact with the system.

3. Textual scenarios

A set of textual scenarios can then be generated which describe the events

generated by actors and the response of the system.

4. Class diagram

The Class diagram (or object model) can be derived from the textual scenarios.

This is done by identifying the nouns described in the textual scenarios and se-

lecting which ones could be added as legitimate objects into the model. Classes

are determined from these objects and are placed in a class diagram. The class

diagram shows attributes, operations, and relationships between classes.

40

5. Sequence diagrams

The sequence diagrams describe the interactions between objects to fulfill the

goals of the system.

A protocol was developed for interaction between Ruby and Visual C++ to provide

an easy means of describing the desired actions and responses. This has the required

actions incorporated into the messages along with various other data such as the

Media Access Control (MAC) addresses and error/success codes. The codes used

in the messages are several codes extracted from the Hypertext Transfer Protocol

(HTTP), as these provide capability for this protocol. The process for designing the

system involved incremental steps which are outlined below.

5.1 The Object Oriented Design

5.1.1 Requirement Specification

Venue Construction

The user will start up Google Sketchup with a blank environment. The venue that

requires sound control must then be drawn by the user with the given tools provided

by Sketchup along with the aid of predefined objects from the Google 3D Warehouse.

The 3D Warehouse is an online source of Sketchup entities which users share and

using this saves the user a lot of time.

Navigating the Venue

The user is then able to move the camera around the venue in one of two ways. The

first method is to move the camera using the mouse and camera tools or hotkeys

provided by Sketchup. The alternative method is to have plugins written which allow

the user to move the camera to a specific predefined place in the 3D environment.

These plugins will provide a preset list of areas around the venue that the user may

select. Selecting one of these will result in the camera to be moved to the position

defined in the code.

41

Device Enumeration and Placement

Once the venue has been built, the user may then request the system to ’scan’ the

network for audio devices. This may be done more than once to ensure that the

entire network has been scanned correctly and all the devices have been enumerated

properly. The devices will then be placed on a ”palette” within the environment which

would then allow the user to move the devices from where they are after enumeration,

to their corresponding place in the venue. This can be done by selecting the ”move”

tool and clicking on the device, then moving it to it’s location.

Device Association

Connections can be made between devices which will create the audio streams. this

will be done by selecting the devices within the 3D environment and selecting the

”Create connection” option of the ”Plugins” submenu. If the device selection is

valid, then a connection will be made between the two devices which will allow audio

streaming. An example of an invalid connection would be the user attempting to

connect two speakers together, where both are expecting an input.

Device Control

The user will now be able to control devices from the 3D environment. This function

will include basic control such as changing the gain on an amplifier, or volume on a

speaker. Appropriate control options will be shown depending on the nature of the

device being controlled.

5.1.2 Use Case Diagrams

This project had to have two separate use case diagrams as it was split up into two

main sections, each having unique functionality. The two use cases required were the

Sketchup use case, and the Visual C++ use case.

42

Google Sketchup Use Cases

Figure 5.1 : The Use Case Diagram for Google Sketchup

The majority of the user interaction is on the Sketchup side of the project as the

project is based on 3D sound control.

The requirement states that the user starts with a blank environment and is able to

build it up as well as move the camera around it. These actions are shown in the

use cases ”Display Venue” and ”Update Display” respectively. These are triggered

when the user either starts the system, or moves the camera. The display is updated

constantly by Sketchup as an internal process. Sketchup will then interact with

the Visual C++ section of the project to enumerate all the devices that have been

43

discovered.

Connection management is shown by the next three use cases which are ”Make Stream

Connection”, ”Make Internal Source Connection”, and ”Make Internal Destination

Connection”. When the user wishes to make a connection between two devices,

they will select the ’make stream connection’ option from the plugins submenu. The

system will then require the user to select which devices are the source and destination

respectively which is done by the next two use cases. Once the user has done this,

Sketchup will send the required details of the devices to the Visual C++ program in

order to create the connections.

The ”Control Device” use case is less complex than the rest, as this is handled mostly

on the Visual C++ side. In this case, the user will simply click on the device that they

wish to control and select the ”Control Device” option from the plugins submenu.

This will invoke a Sketchup method to send a control message across to the Visual

C++ program along with the device’s details. The rest of this use case will be taken

care of by the Visual C++ program.

44

Visual C++ Use Cases

Figure 5.2 : The Use Case Diagram for Visual C++

The Visual C++ use case diagram models the functionality of the Visual C++ side

of the project. The Visual C++ program interacts with Sketchup which is shown as

an actor in this Use Case, as well as the IEEE1722.1 AVDECC libraries which are

not shown in this Use Case but are used frequently.

The top two use cases describe the response to the system startup. These will discover

the devices, enumerate the devices, and send the device listing across to Sketchup so it

can then display devices in the 3D environment. It is important to distinguish between

discovery and enumeration. Discovery is the process of finding out how many devices

are on the network, enumeration is the process of identifying each device, what type

of device it is, and its corresponding functionality.

The process of creating streams has three use cases but is essentially one action.

The use cases need to be separated for the different stages involved in creating the

45

connection. The process is invoked by the user requesting to create a stream by

clicking on the ’Create Stream’ button on the Visual C++ interface, then selecting

the source and destination devices. The Visual C++ program will then use the

AVDECC library and call the corresponding functions to transmit the audio stream

between the source and destination devices.

Controlling the device will involve the user selecting which device to be controlled

from the 3D environment, and then doing the actual control from a Cisual C++

interface. The reason this is done in the Visual C++ interface is that it provides a

suitable visual control interface that the user may interact with, similar to that of a

conventional audio device. Examples of this would be sliders to represent volume or

gain, muting switches, and equalizers.

5.1.3 Textual Scenarios

The textual scenarios provide an accurate description of the events and responses that

take place in the system. These are initiated by an actor in the system and describe

the events that take place after that. The nouns from all the scenarios can then be

identified and used for the Class Diagram which is the next step of the process.

Below is an example of a single textual scenario that has been extracted from the

project.

46

Create Stream Connection (Visual C++ Scenario)

Request received from Sketchup requesting a source and sink device for streaming

audio.

Visual C++ displays window with channels from the two devices.

User selects channels (1 from each device) to stream audio.

User clicks ”Begin Stream” button.

Nouns

• Audio Source

• Audio Sink

• Audio Channels

• ”Begin Stream” button

Each scenario is given a name that describes what the overall scenario is intending to

achieve, in this case it is ”Create Stream Connection”. The scenario above describes

the events and responses for the case where the user wishes to stream audio between an

audio source and an audio sink on the network. The scenario is initiated by a request

from Sketchup (which the user would initially have requested on the Sketchup side)

to which the Visual C++ program will respond accordingly. The textual scenarios

provide a lower level of operations than the use case, however they are still sufficiently

abstracted for the reader to easily understand and interpret the implementation and

programming constructs. It is a critical step in the process to derive the scenarios

from the use cases correctly. This step allows the user to correctly identify the classes,

their attributes, and their operations for the object model.

5.1.4 Class Diagram / Object Model

Given below is a class diagram derived from the textual scenarios.

47

Figure 5.3 : The 3D sound system’s class diagram

48

The class diagram is composed of the various ”classes” which are shown as a rect-

angular box divided into three sections. These sections correspond to the following:

• Class Name - This provides a meaningful identifier for the class. It is important

that this name remains unique in each object model.

• Class Attributes - These are a list of attributes contained within each class.

They will essentially have a data type associated with them, however that is

not always shown in the class diagram.

• Class Operations - These are the operations that each class is able to perform

when the system is running. These are described as methods or functions within

the programming component.

Classes in the model can be linked using relationships. The multiplicity is shown at

each end of a relationship and describes the number of instances in the relationship.

There are three different types of relationships used in the above class diagram, these

are:

• Association - This relationship is shown by a line connecting two classes, and

means that the classes are aware of each other. An example would be the

”Socket” and ”SKSocket” classes in the diagram shown above. They need to be

aware of each other and use each other to relay data between the two subsystems.

• Aggregation - An aggregation relationship is a unidirectional association which

describes objects that contain other objects. This relationship is also known

as a ”has a” relationship. Aggregation relationships are shown by a line with

an empty diamond head at one end. The side with the diamond head denotes

the class that contains the class at the other end of the relationship [33]. Con-

sider the Sketchup class in the class diagram. This has an aggregation to the

’UserInterface’ class, which has another two aggregations. This shows us that

Sketchup has a User Interface, which in turn has a Toolbar as well as a menu.

• Generalization - Generalization relationships describe an entity that is a spe-

cialized version of another entity. This is described as inheritance in Object

49

Oriented Programming. There is one example of this in the class diagram,

which is the Entity class. This class has two specializations which are the ’Au-

dioEntity’ and ’OtherEntity’. These two classes are specialized versions of the

Entity class as they have some minor differences but are fundamentally the

same.

5.1.5 Sequence Diagrams

The final stage of this process is the sequencing of interactions between the objects

derived in the class diagram. These diagrams illustrate how the higher level tasks are

performed by accomplishing specific low level operations. The following diagram is a

sequence diagram taken from the project.

Figure 5.4 : Sequence diagram for displaying venue on startup

This sequence diagram shows the order of events when the user starts up the

50

system. When this event occurs, Sketchup must perform the appropriate actions to

successfully prepare the 3D environment so it is ready to be used. This is done by

firstly rendering the 3D model, then sending a request to the socket for a device

listing. The device enumeration is done within the Visual C++ part of the project so

there is no need for it to be shown in this diagram. There is a request to the Visual

C++ program, and then a response back to the SKSocket, which is a list of devices.

These devices are then created by Sketchup and displayed in the 3D environment.

Further sequence diagrams can be found in the appendix.

5.1.6 Overview

The development of the object orientated model was an iterative process and refined

each time according to the specification. There were various implementation flaws

that had to be taken care of at various stages in the implementation.

An important part of this process was the decision to separate the Visual C++ and

Sketchup parts of the system. This was done because they each perform independent

actions that the other cannot do, and relay the results to each other across a defined

interface.

5.2 The SkAv Protocol

The SkAv (Sketchup/AVDECC) Protocol was a simple protocol that was developed

throughout the later stages of this research. It provides a simple way of constructing

and parsing strings that are sent between the two applications. These strings will be

generated by the Ruby/C++ applications depending on the actions to be performed.

Each message is composed of various three character long commands, separated by

underscore characters. The first three characters of each message indicate the source

of the message (CPP or SKP). The separation character was chosen to be the under-

score so that it could be tokenized successfully. Originally it used the colon character

as the separator for tokenizing, however this made the process difficult as the sepa-

rator for the characters in the MAC address was also a colon character.

The protocol makes use of a selected number of HTTP response codes, which may

51

invoke actions such as message re-sending.

An example of a SkAv message is given below, broken down into its various commands

CPP ENA ATT <MAC address>

• CPP - Source field indicating the message is coming from the C++ program

• ENA - Action request to enumerate an audio device

• ATT - Indicates that the device to be enumerated is an Atterotech board

• <MAC address> - The 23 character long MAC address of the device to be

enumerated

52

Chapter 6

Implementation and Operational Highlights of the

3D Graphical Control System

This chapter describes the implementation procedures involved in creating the sys-

tem. The AVDECC and sound control side used Visual C++ with the Microsoft

Foundation Class (MFC) as a platform. As mentioned before, the Sketchup plugins

are written in Ruby and saved as ’.rb’ files. These were written in Notepad++ as it

provides Ruby syntax analysis. The code extracts shown below are ones that have

been extracted from the system based on their significance for system functionality.

6.1 Visual C++

6.1.1 Socket Connections

The first step on program startup was to initiate a socket connection between Visual

C++ and Sketchup. This allowed data to be relayed between the two programs.

The data sent through the sockets was SkAv protocol compliant which allowed it

to be parsed correctly at each end. The Visual C++ sockets were Transmission

Control Protocol (TCP) sockets as these are reliable, easy to configure, and guarantee

delivery, which is important in this case. Packet delivery was critically important in

this section for the reason that messages get sent once and will issue a command on

delivery. There was no form of re-transmission, so if these messages were not delivered

then it may possibly have caused problems. The code below is extracted from the

”SocketConnections” class of the program.

1 SocketConnect ions : : SocketConnect ions (void)

2 {
3 stopHandle = CreateEvent (NULL, TRUE, FALSE, NULL) ;

4

5 gsServer = INVALID SOCKET;

6 g sC l i en t = INVALID SOCKET;

53

7

8 In i t i a t eConnec t i on () ;

9 }
10

11 void SocketConnect ions : : I n i t i a t eConnec t i on (void)

12 {
13 //Create Mutex

14 ClientMutex = new CMutex(FALSE, ”ClientSocketMutex ”) ;

15

16 // Cl i en t Thread

17 ListenerThread = AfxBeginThread (ListenerFunct ion , NULL, 0 , CREATE SUSPENDED, 0) ;

18 ListenerThread−>m bAutoDelete = FALSE;

19 ListenerThread−>ResumeThread () ;

20

21 // Star t Sketchup

22 STARTUPINFO sta r tup In f o = {0 } ;
23 s t a r tup In f o . cb = s izeof (s t a r tup In f o) ;

24 CreateProcess (”C:\\Program F i l e s (x86)\\Google\\Google SketchUp 8\\SketchUp . exe” , NULL, NULL,

NULL, FALSE, 0 , NULL, NULL, &star tupIn fo , &SketchupProcess) ;

25 }
26

27 UINT Lis tenerFunct ion (LPVOID lparam)

28 {
29 // I n i t i a l i z i n g winsock and Google Sketchup Server socket

30 gsServer = socket (r e su l t−>a i f am i l y , r e su l t−>a i socktype , r e su l t−>a i p r o t o c o l) ;

31 // Error Checking

32 iRe su l t = bind (gsServer , r e su l t−>ai addr , (int) r e su l t−>a i add r l en) ;

33 // Error checking

34 l i s t e n (gsServer , SOMAXCONN)

35 //Error checking

36 //Check f o r stops , t imeouts , and d i sp l ay suc c e s s messages

37 }

The constructor for this class initializes the handler for stopping the thread listener,

creates the sockets as invalid (default), and calls the method to initiate the socket

connection.

The listener was done on a separate thread so it can listen for incoming connections

if, for some reason, the connection dropped. A lot of the code has been omitted from

the listener function above as there are a lot of minor initializations that do not need

to be shown.

6.1.2 Sending and Receiving SkAv Messages

Given below is the code to send and receive SkAv protocol messages.

1 char∗ SocketConnect ions : : RecvDataTest (void)

2 {
3 char∗ recvBuf f = new char [64] ;

4 ZeroMemory (recvBuff , 64) ;

5 int r e s u l t = 0 ;

6 r e s u l t = recv (gsCl i ent , recvBuff , 64 , NULL) ;

7 i f (r e s u l t == 0)

54

8 {
9 AfxMessageBox (”No Data Received ”) ;

10 return ”no data” ;

11 }
12 else

13 {
14 return recvBuf f ;

15 }
16 }
17

18 char∗ SocketConnect ions : : SendDataTest (char∗ message)

19 {
20 ClientMutex−>Lock () ; //Nothing e l s e can i n t e r f e r e during t h i s s tage

21 char∗ sendBuff ;

22 s t r c a t (message , ”\n”) ; // St r ing must be nu l l terminated f o r Sketchup to c o r r e c t l y r e c e i v e i t

23 send (gsCl i ent , message , s t r l e n (message) , NULL) ;

24 return this−>RecvDataTest () ;

25 ClientMutex−>Unlock () ;

26 }

The two methods above are responsible for receiving and sending data to and from

Sketchup. The receiving method creates a buffer that will be filled with the message

from Sketchup at a later stage and proceeds to zero the memory of the buffer - the

message would cause errors if this was not done. The buffer was made to be only

64 characters long as the longest possible string that would come through is an error

message that doesn’t exceed 64 characters (at this stage of development). The method

then checks that there is actually data in the buffer. If there is it returns it and if

not, returns ”no data”.

The sending method takes in an array of characters (string) as an argument and also

returns a string. The reason this method returns a string is because it expects a

message back from Sketchup, such as an acknowledgment (command successful) or

an error message (command unsuccessful). This method locks the client mutex to

make sure that nothing else may interfere with the socket while this current method

is transmitting its message or waiting for the reply from Sketchup. It uses the ”strcat”

method to attach a new line character to the end of the received command as the

Sketchup socket data has to be null terminated. The string is then sent to the socket

which is to be dealt with by Sketchup and returns the reply that is received from

Sketchup.

55

6.1.3 Initiating Discovery

Given below is the code for sending the device list to Sketchup for display.

1 void CMy3DSoundDlg : : OnBnClickedButton3 ()

2 {
3 // Pointer to l i s t box on the d i a l og f o r output

4 CListBox ∗ListLog = (CListBox ∗)GetDlgItem (IDC\ LIST2) ;

5 AfxMessageBox (” I n i t i a t i n g AVDECC Discovery . . . P lease Stand by” , MB\ ICONINFORMATION) ;

6 // Sleep f o r 8 seconds to a l low any dev i c e s that havn ’ t sent c a l l b a ck s to send them

7 Sleep (8000) ;

8 //Output s t r i n g f o r the number o f dev i c e s found

9 CString numberDevices ;

10 numberDevices . Format (”Discovery complete − %d AtteroTech boards d i s cove red ” , MList−>s i z e ()) ;

11 char∗ commandString = new char [40] ;

12 char∗ logMsg = new char [100] ;

13 s t rcpy (logMsg , numberDevices . GetBuffer (0)) ;

14 //Display the number o f dev i c e s in the l i s t box

15 ListLog−>AddString (logMsg) ;

16 for (int i = 0 ; i < MList−>s i z e () ; ++i)

17 {
18 //Creat ing the SkAv command to enumerate a dev i ce in the Sketchup environment

19 s t rcpy (commandString , ”CPP\ ENA\ ATT\ ”) ;

20 s t r c a t (commandString , MList−>at (i) . GetBuffer (0)) ;

21 //Display the r ep ly in the l i s t box

22 logMsg = SC−>SendDataTest (commandString) ;

23 ListLog−>AddString (logMsg) ;

24 //Clear the command s t r i n g

25 commandString = new char [40] ;

26 }
27 }

The system discovers all the devices soon after startup (on the devices’ callbacks

to be precise) but does not take any further action. This task has to be manually

performed by the user by clicking on the ”Discover Devices” button on the dialog box.

The code extract above shows the actions performed once the user has done this. The

program is put to sleep for 8 seconds, allowing any devices that have not yet sent their

callbacks to do so (it is highly unlikely as the callback timer is usually approximately

2 seconds). The system then cycles through the list of MAC addresses and forms the

SkAv commands to enumerate a single device in the Sketchup environment and sends

them to Sketchup. This method constantly displays output which allows the user to

be aware of what is currently happening. The output shown is displayed in the list

box and contains information such as the total number of devices found as well as

the replies (acknowledgment or error) messages from Sketchup.

56

6.1.4 AVDECC Discovery

On system startup the ADVECC discovery module has to be set up and ready for

when the device callbacks occur. This allows the system to discover devices on the

network and store information about them (most importantly their MAC address).

1 //Discovery Class cons t ruc to r

2 Discovery : : Discovery (void)

3 {
4 s i g n a l (SIGINT , s igna lHand le r) ;

5 Waitab leEvent in i t (&mainWE) ;

6 a v d e c c t r a n s p o r t c o n t r o l l e r i n i t (& transpor t) ; // I n i t i a l i z e AVDECC Transport c o n t r o l l e r

7 avdec c adp in i t (&adp ,& transpor t) ; // Star t the ADP Module

8 a v d e c c e n t i t y i n i t (& en t i t y) ; //Create and i n i t i a l i z e en t i t y i n f o

9 void∗ e n t i t yL i s t = NULL;

10 i f (avd e c c adp d i s c ov e r y i n i t (&disc ,&adp ,& ent i ty , e n t i t yL i s t)){
11 // s e t n o t i f i c a t i o n ca l l ba ck

12 avd e c c adp d i s c ov e r y s e t n o t i f y (&disc , discoverySMCallback) ;

13 // begin d i s cove ry s t a t e machine

14 avdecc adp d i s cove ry beg in (&d i s c) ;

15 // d i s cove ry avdecc e n t i t i e s on network

16 avdecc adp d i s covery doDiscover (&disc ,NULL) ;

17 Sleep (3000) ;

18 }
19 }
20

21 void discoverySMCallback (void∗ d i s c ov e r ed en t i t y , int announce depart update)

22 {
23 // Dec lar ing and copying r e c e i v ed data in to the e n t i t y i n f o s t r u c tu r e

24 avdec c adpdu ent i t y in f o e n t i t y i n f o ;

25 memcpy(& en t i t y i n f o ,&(((avde c c adp d i s c ove ry en t i t y ∗) d i s c o v e r e d en t i t y)−>e n t i t y i n f o) , s izeof (

avdecc adpdu ent i t y in f o)) ;

26 CString MACaddr ; //Treat mac address as a s t r i n g

27 //Format the MAC address , the f i r s t 6 bytes o f the

28 // unsigned i n t e g e r remain constant f o r a l l ATT boards

29 MACaddr . Format (” 0 0 : 2 2 : 9 7 : f f : f e :00:%x:%x” , e n t i t y i n f o . e n t i t y gu i d [6] , e n t i t y i n f o . e n t i t y gu i d [7

]) ;

30 //Checking i f the dev i ce has a l ready been s to red in the mechanism

31 bool conta ins = fa l se ;

32 for (int i = 0 ; i < MacList−>s i z e () ; ++i)

33 {
34 i f (MACaddr . Compare (MacList−>at (i)) == 0) conta ins = true ;

35 }
36 // Store i t i f i t hasn ’ t a l r eady been

37 i f (! conta ins) MacList−>push back (MACaddr) ;

38 // I f ACMP hasn ’ t been i n i t i a l i z e d , do i t

39 i f (! ACMPInit)

40 {
41 avdecc acmp in i t (&acmp,& transport , e n t i t y i n f o . e n t i t y gu i d) ;

42 avde c c a cmp con t r o l l e r sm in i t (&acmp cntrl sm ,&acmp , acmpControllerSMCallback) ;

43 avdecc acmp cont ro l l e r sm beg in (&acmp cntrl sm) ;

44 AfxMessageBox (”AVDECC Connection Management i n i t i a l i z e d ” , MB ICONINFORMATION) ;

45 ACMPInit = true ;

46 }
47 }

The code listed above is responsible for initializing the discovery and communication

parts of the AVDECC libraries. This was done in a separate class to the main C++

57

class which initialized the ADP (Discovery) on the class constructor. The discovery

class was instantiated upon the creation of the main window dialog. The initialization

for the ACMP (Communication) is initialized on the first device callback. The reason

for doing this is that there will be no communications unless there is at least one device

on the network. The MAC addresses are stored in a vector which is continuously

updated on each callback and each MAC address is treated as a ’CString’. The

mechanism used to store the MAC addresses is a simple one that goes through three

steps on every callback:

1. Extract MAC address from entity info (line 29)

2. Use a ’for’ loop to check if it is already contained in the vector (lines 32 - 35)

3. Add the address to the vector if it is not (line 37)

1 char∗ commandString = new char [40] ;

2 char∗ logMsg = new char [100] ; // St r ing to s t o r e r ep ly from Sketchup

3 for (int i = 0 ; i < MList−>s i z e () ; ++i) //” f o r ” loop to i t e r a t e through MAC l i s t

4 {
5 s t rcpy (commandString , ”CPP ENA ATT ”) ; //SkAv message to enumerate an Attero Tech board

6 s t r c a t (commandString , MList−>at (i) . GetBuffer (0)) ; //Append the MAC address to the end o f the

message

7 logMsg = SC−>SendDataTest (commandString) ; //Send the message to Sketchup and wait f o r r ep ly

8 commandString = new char [40] ; // Clear the commandString f o r the next SkAv message

9 }

The code above had been extracted from the button that sends the device list to

Sketchup in order for it to display the discovered Atterotech boards in the 3D envi-

ronment. This is done using a ’for’ loop to loop through the list of MAC addresses

and send each one across to Sketchup. This is done by using the standard layout

of the SkAv message to enumerate an Atterotech board, with the current device’s

MAC address appended onto the end of it. Sketchup will reply with a message ac-

knowledging the device enumeration if it is successful(line 7). This can be dealt with

appropriately at a later stage with actions such as re-sending the message if there

was an error or no acknowledgment.

58

6.1.5 Creating a Stream

To create a stream between two devices, the user must intiate it by selecting the

”Create Stream” button on the dialog box. This will send a message to Sketchup

which informs it that the user wishes to select two devices to create a stream between.

1 void CMy3DSoundDlg : : OnBnClickedButton1 ()

2 {
3 CListBox ∗ListLog = (CListBox ∗)GetDlgItem (IDC LIST2) ;

4 //Memory a l l o c a t e d to the message to be sent to Sketchup

5 char∗ message = new char [20] ;

6 //Memory a l l o c a t e d f o r the r ep ly from Sketchup

7 char∗ r ep ly = new char [70] ;

8 //Copy the SkAv command to the message memory

9 message = st rcpy (message , ”CPP STR CON”) ;

10 //Prompt user

11 AfxMessageBox (”Please s e l e c t the TALKER and LISTENER dev i c e s from the Sketchup i n t e r f a c e ” ,

MB ICONINFORMATION) ;

12 // I n i t i a l i z i n g the UINT8 arrays to s t o r e MAC addre s s e s o f the t a l k e r and l i s t e n e r Atterotech

boards

13 u int 8 t a l k e r [] = {0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 } ;
14 u int 8 l i s t e n e r [] = {0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 } ;
15 // I n i t i a t e the connect ion by sending command to Sketchup

16 rep ly = SC−>SendDataTest (message) ;

17 // Cal l the St r ing to MAC conver s ion method

18 D−>macConversion (reply , t a l k e r) ;

19 ListLog−>AddString (r ep ly) ;

20 //Repeat s t ep s above . . .

21 r ep ly = SC−>RecvDataTest () ;

22 D−>macConversion (reply , l i s t e n e r) ;

23 ListLog−>AddString (r ep ly) ;

24 //Create the stream

25 D−>Stream (ta lke r , l i s t e n e r) ;

26 SC−>RecvDataTest () ;

27 }

The appropriate SkAv message is created which informs Sketchup about the user

wishing to create a connection. The method then creates two unsigned integer arrays

that are 8 elements long, which will represent the talker and listener for the audio

stream. These arrays are initialized with all their elements being ”0x00” which will

be changed when Sketchup replies with the corresponding MAC addresses. Sketchup

responds by sending the MAC address of the talker first, and then the listener, these

messages contain the MAC addresses of the respective devices. They are received

as string values and are then converted to the unsigned integer arrays by calling the

”macConversion” method (explained below). Once this had been done, the ”Stream”

method was then called which gets passed the talker and listener MAC addresses,

and creates the audio stream. There is output to a list box in this method which will

59

display the two devices that have been connected, the talker will always be the first

displayed, followed by the listener.

6.1.6 Converting from String to MAC

The device MAC addresses were sent Sketchup and stored as strings, this caused

a slight problem when the MAC addresses were sent back to the C++ side. The

problem was that the AVDECC libraries dealt with the MAC addresses as an array

of unsigned long integers (uint8), so a conversion had to take place between the two.

This was done on a method that was passed the MAC address in string format, and

a blank array (as layed out in the code above) as arguments to this method.

1 u int 8∗ Discovery : : macConversion (char∗mac , u int 8∗ dev i ce)

2 {
3 // t r e a t the input charac t e r array as a s t r i n g

4 s t r i n g realMac = mac ;

5 //Erase the message header from sketchup −> ”SKP STR ”

6 realMac . e ra s e (0 , 8) ;

7 //Generate the CString f o r handl ing purposes

8 mac = (char∗) realMac . c s t r () ;

9 //Def ine the s epe ra to r f o r the token i z i ng proce s s

10 char∗ s epe ra to r = ” :\\ ” ;

11 //Get the f i r s t token

12 char∗ Token = s t r t ok (mac , s epe ra to r) ;

13 //Keeping an index f o r array purposes

14 int i = 0 ;

15 // Pointer to array argument

16 u int 8 ∗ s t a r t = dev i ce ;

17 while (Token != NULL)

18 {
19 //Convert the token to a hex idec imal value

20 unsigned int myval = s t r t o u l (Token , NULL, 16) ;

21 //Convert hex idec imal value to UINT8

22 uint 8 byteva l = (u int 8) myval ;

23 // I n s e r t the value in to the l i s t o f UINT8

24 ∗ dev i ce++ = byteva l ;

25 //Get the next token

26 Token = s t r t ok (0 , s epe ra to r) ;

27 } ;
28 // return the array

29 return s t a r t ;

30 }

The method works in an extremely simple way once the string handling, tokenizing,

and converting is taken care of. It starts by removing the header of the message

that was created by Sketchup, this was the first eight characters of the string. It

then converts the rest of it to a CString structure for handling purposes, defines the

seperator for the tokenizing process, and gets the first token. The first token is the

60

first two characters of the MAC address which are to be converted to hexadecimal

values. The conversion is then done within the loop and the list is updated with the

corresponding values. This is then continuously done until there are no remaining

tokens, which is when the address has been successfully converted.

6.1.7 Streaming Audio

1 void Discovery : : Stream (uint 8 t a l k e r gu i d [] , u int 8 l i s t e n e r g u i d [])

2 {
3 AfxMessageBox (”Beginning stream”) ;

4 /∗∗
5 ∗ I n i t i a l i z e the ACMPCommandParams

6 ∗ IEEE 1722.1/ Draft 21 standard document , Page 271

7 ∗/
8 avdecc acmp du acmp command params cmdParams ;

9 memcpy(cmdParams . t a l k e r gu id , t a l k e r gu id , s izeof (cmdParams . t a l k e r gu i d)) ;

10 memcpy(cmdParams . l i s t e n e r g u i d , l i s t e n e r g u i d , s izeof (cmdParams . l i s t e n e r g u i d)) ;

11 cmdParams . t a l k e r un i qu e i d = 0 ;

12 cmdParams . l i s t e n e r u n i q u e i d = 0 ;

13 cmdParams . connect ion count = 0 ;

14 cmdParams . f l a g s = 0 ;

15 // Set the command to connect

16 cmdParams . message type = AVDECCACMPDUMSGTYPECONNECTRXCOMMAND;

17 avdecc acmp controller sm doCommand(&acmp cntrl sm ,&cmdParams) ;

18 }

This is the method that creates the connection between two AVDECC entities. The

majority of this code was provided by Osedum Igumbor [32] however there was one

crucial change that had to be made for this method to fit into this project. The orig-

inal method statically defined the MAC addresses of the talker and listener entities

within its body. This had to be changed so the method would take the two arrays

of unsigned integers corresponding to the talker and listener, which were provided by

Sketchup, and make the connection between those two.

Disconnecting streams between devices followed the identical process with one change,

this was the command parameter shown in line 17 changing from the connect com-

mand to the disconnect command. The change is shown in the code listing below.

1 void Discovery : : DisconnectStreams (u int 8 t a l k e r gu i d [] , u int 8 l i s t e n e r g u i d [])

2 {
3 // Def in ing command parameters (omitted)

4 // . . .

5 //Changed command to d i s connect

6 cmdParams . message type = AVDECC ACMPDU MSG TYPE DISCONNECT RX COMMAND;

7 //Send the command

8 avdecc acmp controller sm doCommand(&acmp cntrl sm ,&cmdParams) ;

9 }

61

6.2 Ruby

A lot of the user interface code has been describe in Chapter 4 so this will not be

repeated in this section. This section describes the methods used in the interaction

between Visual C++ and Sketchup, as well as describes methods used in the device

management plugin that handles the devices.

6.2.1 Parsing the Messages from Visual C++

There are two different action messages that could possibly be received from the C++

side, creating a device, and requesting a stream. This was less than expected due to

the fact that all the implementation goals were not reached.

1 def s o c k e t l i s t e n e r (v)

2 codeArr = v . s p l i t (” ”) #Sp l i t message on Underscore charac t e r

3 i f codeArr [0] == ”CPP” #Check C++ source

4 puts ”CPP SOURCE FOUND”

5 i f codeArr [1] == ”ENA” #Check dev i ce enumeration command

6 i f codeArr [2] == ”ATT” #Check that dev i ce i s Atterotech Board

7 puts ”ATTEROTECH BOARD FOUND, ID = ” + $numDvcs . t o s () + ” , MAC = ” + codeArr [3]

8 addATT(codeArr [3]) #Cal l add Atterotech Method

9 sendData (”SKP ACK ENA ATT ”+codeArr [3]) #Send ACK message to C++

10 puts ”\n”

11 end

12 end

13

14 i f codeArr [1] == ”STR” #Check f o r streaming command

15 i f codeArr [2] == ”CON” #Check that connect ion i s being made

16 puts ”Creat ing Stream”

17 $streamReady = true #Allow a stream to be created

18 s t r eamSe l e c t i on

19

20 e l s i f codeArr [2] == ”DCN” #Check f o r d i s connec t ing command

21 puts ”Streams Disconnected ”

22 $streamReady = true #Allow a stream to be d i sconnected

23 s t r eamSe l e c t i on

24

25 end

26 end

27 else

28 puts ”Source unrecognized ”

29 end

30 end

The first line of this method splits the message on the underscore character into an

array. This is to simplify the identification of the commands as they can be extracted

from the array and compared directly to other strings. The comparison is then done

to ensure that the message received is actually from the C++ source, and the action

it requests. The first method is the device enumeration, this is the method for adding

62

an Atterotech board to the 3D environment. The actual adding of the board is done

in a method called ”addATT” which is called in this section of code - this method

takes the board’s MAC address as an argument.

The second half of this method deals with the streaming between devices. This plugin

contains a boolean variable called ”streamReady” which gets set to true on the recog-

nition of a streaming command∗. The streamSelection method is then called which

is responsible for the selection of the devices to be associated with the connecting or

disconnecting of audio streams.

6.2.2 Creating Atterotech Boards

1 def addATT(ipAddr)

2 #Check that the Atterotech board doesn ’ t ex i s t , so no dup l i c a t e s are c reated

3 loop = 0

4 while loop < $Dvcs . s i z e

5 i f ($Dvcs [loop]) [4 ..−1] == ipAddr

6 return

7 end

8 loop += 1

9 end

10 #Def in ing the model

11 model = Sketchup . act ive mode l

12 pant s de f = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\Google\\Google

SketchUp 8\\Components\\Sound Control \\ATTBoard . skp”)

13 pan t s l o c a t i on = Geom : : Point 3d . new $ATTpos , 100 , 0

14 transform = Geom : : Transformation . new pan t s l o c a t i on

15 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

16 in s tance = e n t i t i e s . add ins tance pants de f , transform

17 #Add the board to the l i s t o f dev i c e s

18 $Dvcs [$numDvcs] = ”ATT: ” + ipAddr

19 $numDvcs += 1

20 $ATTpos += 30

21 #Remove any ” n i l ” va lues from the l i s t

22 $Dvcs = $Dvcs . compact

23 end

This method takes in the MAC address of the board requested to enumerate. The

first section of this method is a ’for’ loop which goes through the devices list and

checks that the MAC address passed to this method is not already contained in the

model, therefore not allowing more than one device with the same address. This

method performs the same process described in Section 4.2.5 for adding the model

of the board to the 3D interface, the device is then added to the devices list as an

∗The significance of this variable will be discussed in Shapter 6.2.4

63

Atterotech board. The devices list has to then call the ’compact’ method, this method

removes and null values from the list.

The devices are stored in the device list in a specific format, this is a string of 27

characters long. The first 4 characters denote the type of device followed by a colon

(such as ”ATT:”, or ”SPK:”), the next 23 characters are the device’s MAC address.

The MAC address is 8 sets of two characters, each seperated by a colon character

(such as ”82:c5:e3:56:c8:ff:a2:b9”).

6.2.3 Converting from Atterotech Boards to Talkers and Listeners

Streams in the audio network may only be created between a talker and a listener,

not between two randomly defined Atterotech boards. This method is responsible for

transforming the Atterotech boards within the 3D interface to Talkers (amplifiers)

and Listeners (speakers).

1 def deviceConvers ion (dev i ce)

2 #Check that something i s a c tua l l y s e l e c t e d

3 i f Sketchup . act ive mode l . s e l e c t i o n . count > 0

4 loop = 0

5 while loop <= Sketchup . act ive mode l . e n t i t i e s . count

6 #I f dev i ce in the sketchup e n t i t i e s array matches that o f the s e l e c t e d dev i ce

7 i f Sketchup . act ive mode l . e n t i t i e s [loop] == Sketchup . act ive mode l . s e l e c t i o n [0]

8 #Delete the a t t e r o t e ch board from the dev i ce l i s t , but keep i t s MAC address

9 deviceIP = ($Dvcs [loop−2]) [4 ..−1]

10 $Dvcs . d e l e t e a t (loop−2)

11 #Remove the s e l e c t e d dev i ce and c l e a r s e l e c t i o n

12 Sketchup . act ive mode l . a c t i v e e n t i t i e s . e r a s e e n t i t i e s Sketchup . act ive mode l . s e l e c t i o n [0

]

13 Sketchup . act ive mode l . s e l e c t i o n . c l e a r

14 break

15 end

16 loop += 1

17 #I f add Speaker or Ampl i f i e r Depending on the argument

18 end

19 i f dev i ce == ”SPK”

20 addSpeaker deviceIP

21 e l s i f dev i ce == ”AMP”

22 addAmpl i f ier dev iceIP

23 end

24 $Dvcs = $Dvcs . compact

25

26 else

27 puts ”Nothing Se l e c t ed ”

28 end

29 end

30

31 def addSpeaker (ipAddr)

32 model = Sketchup . act ive mode l

33 pant s de f = Sketchup . act ive mode l . d e f i n i t i o n s . load (”C:\\Program F i l e s (x86)\\Google\\Google

SketchUp 8\\Components\\Sound Control \\Speaker . skp”)

64

34

35 pan t s l o c a t i on = Geom : : Point 3d . new $spkrPos , 200 , 0

36 transform = Geom : : Transformation . new pan t s l o c a t i on

37 e n t i t i e s = Sketchup . act ive mode l . a c t i v e e n t i t i e s

38 in s tance = e n t i t i e s . add ins tance pants de f , transform

39

40 $Dvcs [$numDvcs] = ”SPK: ” + ipAddr

41 $numDvcs += 1

42 $spkrPos += 30

43 end

The ’deviceConversion’ method takes care of finding the selected device, extracting

the MAC address, and removing it from the model. This method then calls the

function to add a talker or a listener, depending on the argument. The argument

will either be ”SPK” or ”AMP” which is generated automatically on the button click

for initiating the conversion. Once the selected device has been removed from the

devices list, the ’addSpeaker’ or ’addAmplifier’ function is called, depending on what

the user has chosen to convert to. The ’addSpeaker’ method is shown above which

is almost identical to the method used to add Atterotech boards and Amplifiers, the

slight difference being the altering of the speaker position (line 42), the type of device

being added, and the component in the sound control directory (line 33).

6.2.4 Sending the Device MAC Addresses for Stream Request

When Sketchup receives the message from the socket requesting a stream talker and

listener, the user is then responsible for selecting the devices in the 3D environment.

The plugin then needs to extract the MAC addresses of the selected devices and write

them back to the socket in order for the stream to be created.

1 def s t r eamSe l e c t i on

2 #Check that exac t l y two dev i c e s have been s e l e c t e d and the program has been f l agged to stream

3 i f (Sketchup . act ive mode l . s e l e c t i o n . count == 2) and ($streamReady == true)

4 #Loop to f i nd the s e l e c t e d dev i c e s by comparing dev i ce ID ’ s

5 loop = 0

6 while loop <= Sketchup . act ive mode l . e n t i t i e s . count

7 i f Sketchup . act ive mode l . e n t i t i e s [loop] == Sketchup . act ive mode l . s e l e c t i o n [0]

8 dev i ce 1 = $Dvcs [loop−2]

9 e l s i f Sketchup . act ive mode l . e n t i t i e s [loop] == Sketchup . act ive mode l . s e l e c t i o n [1]

10 dev i ce 2 = $Dvcs [loop−2]

11 end

12 loop += 1

13 end

14 #Find which dev i ce i s the t a l k e r (AMP) and l i s t e n e r (SPK) and send them to C++

15 i f (dev i ce 1 [0 . . 2] == ”AMP”) and (dev i ce 2 [0 . . 2] == ”SPK”)

16 sendData ”SKP STR ”+dev ice 1 [4 ..−1]

17 puts ”\n”

65

18 sendData ”SKP STR ”+dev ice 2 [4 ..−1]

19 puts ”\n”

20 e l s i f (dev i ce 2 [0 . . 2] == ”AMP”) and (dev i ce 1 [0 . . 2] == ”SPK”)

21 sendData ”SKP STR ”+dev ice 2 [4 ..−1]

22 puts ”\n”

23 sendData ”SKP STR ”+dev ice 1 [4 ..−1]

24 puts ”\n”

25 Sketchup . act ive mode l . s e l e c t i o n . c l e a r

26 else

27 puts ” Inva l i d S e l e c t i o n ”

28 end

29 $streamReady = fa l se

30 else

31 puts ” Inva l i d S e l e c t i o n ”

32 end

33 end

This method is perhaps the most important part of the system as it allows the user

to select the devices from the 3D interface to create the audio stream. The first step

it takes is checking whether exactly two devices have been selected (one talker, and

one lister) and assigns these devices to variables named ’device1’ and ’device2’. At

this point it does not matter which one is the talker and which one is the listener.

The next step taken is checking which one is the talker and listener by extracting the

device type (first three characters) from each device in the devices list. Once this is

done, the method writes the SkAv message to the socket giving the correct format

for a streaming device, and the device’s respective MAC address. The C++ program

expects the talker’s MAC address to be sent first so working out which device is the

talker and which is the listener is crucial. The commands are then sent with the

talker being written to the socket first, and then the listener.

Throughout this method there are error checks to see whether the user has selected

more than one device, a device that has not been converted to an Atterotech board,

or two of the same devices. The result of this would be the Ruby console displaying

”Invalid Selection” and waiting for the user to make a proper selection. The client

mutex on the C++ side is locked so the user is forced to make a valid selection before

continuing to perform any further actions.

66

Chapter 7

Conclusion

7.1 Analysis of Goals

As indicated in chapter one, there were a total of five project goals:

• Discovering devices on a network and displaying them in the 3D environment

• Creating audio streams between devices

• Implement a sound control protocol to communicate directly with Sketchup

• Enable the user to control remote parameters

• Test the scalability of the system

The system was able to discover any audio devices on the network. Devices advertised

themselves on the network through the use of callbacks. The system stores any audio

device if it receives a callback from a device with a MAC address that is not already

contained in the devices list. The user is able to select the ”Discover Devices” button

from the Visual C++ user interface. This causes the device list to be sent to Sketchup,

which in turn displays the devices XMOS Atterotech boards in the 3D environment.

s A user can connect two audio devices and have them transmit and receive audio

streams. This is done by the user requesting to create a stream on the Visual C++

interface, which then sends the appropriate messages to Sketchup to let it know that

a stream connection is about to be made. The user then performs the connection

in the Sketchup environment. This was done successfully most of the time, however

on some occasions the AVDECC library would throw a ”stack corruption” error, but

would still not affect the functionality of the program if the error was ignored.

The communication between Sketchup and Visual C++ was done using a socket that

67

listened on the localhost (127.0.0.1) and used port 30456. Although the interaction

worked perfectly, the way that it had to be initiated caused some problems. When

the Visual C++ program wrote to the socket, Sketchup would read it automatically

and take the appropriate actions. This did not work as easily when Sketchup wrote

to the socket as Visual C++ needs a method that has to be called manually to read

the data from the socket. This method was then automatically called when any user

interaction could result in a response from Sketchup. The purpose of this method is

to lock a mutex, read the data from the socket, and then unlock the mutex. This

method would sometimes read the data and not process it, creating a problem that

the client mutex would still be locked. This was solved by having an option on the

Sketchup plugins menu that sent a further message, resulting in the mutex to be

locked and the socket cleared.

The secondary goal that could not be tested was the scalability of the system. This

goal has two different interpretations, ideally both were to be tested, however this

was not plausible at the time due to a limited number of devices. The first is testing

the scalability of the system in terms of the number of devices, the second is testing

the scalability in terms of the distance distribution of the devices. The testing for

this would be the quality of the audio over the large scale distribution, as well as the

quality of service in delivering the audio to its destinations. The scalability of devices

would most likely work as the devices would be in the same AVB subnet [15].

The secondary goal that was not able to be implemented was the remote control

of device parameters. To successfully achieve this, the AVDECC Enumeration and

Control protocol would have to be implemented. This protocol had not been ported

for Windows implementation within the time frame, so could not be included in the

project.

7.2 Future work

This section suggests future work and possible extensions for anybody that wishes to

continue with the development of the system.

68

7.2.1 Scaling the System

As mentioned in the above goal analysis, the scalability of this system was unable

to be tested. It would be of interest to test that this specific system is capable of

scalability, as well as any memory leaks that may occur due to bugs in the AVDECC

protocol when there are lots of devices on the network.

7.2.2 Maximizing Automation

Throughout the video of the system being demonstrated, there is a high amount of

interaction with the Visual C++ interface. The ideal solution to this research is a

Visual C++ program that solely runs the AVDECC protocol with no user interaction.

It would be an interesting exercise to see if this could be achieved so that the sound

control is purely from the Sketchup environment and plugin menu.

7.2.3 Implementing the AVDECC Enumeration and Control Protocol

This was mentioned in the goal analysis above and also ties in with the scalability of

the system. As the system grows and more devices are added, the importance of this

protocol increases. Ideally the user should be able to control the entire system from

a single station.

69

Appendix

Sequence Diagrams

Figure 7.1 : Sketchup Sequence 1 - Moving a device

70

Figure 7.2 : Sketchup Sequence 2 - Moving a camera using plugins

Figure 7.3 : Sketchup Sequence 3 - Moving a camera using the tools

71

Figure 7.4 : Sketchup Sequence 4 - Making a stream connection

Figure 7.5 : Sketchup Sequence 5 - Controlling a device

72

Figure 7.6 : Visual C++ Sequence 1 - Discovering devices

Figure 7.7 : Visual C++ Sequence 2 - Creating a stream connection

73

Figure 7.8 : Visual C++ Sequence 3 - Controlling a device

74

Bibliography

[1] About Biamp. Online. Available from: http://www.biamp.com/about.

[2] About Ruby. Online. Available from: http://www.ruby-lang.org/en/about/.

[3] Google Sketchup Ruby API. Online. Available from: https://developers.

google.com/sketchup/.

[4] Google Sketchup Ruby API - Cameras. Online. Available from: https://

developers.google.com/sketchup/docs/ourdoc/camera.

[5] Google Sketchup Ruby API - Entities. Online. Available from: https:

//developers.google.com/sketchup/docs/ourdoc/entities.

[6] Google Sketchup Ruby API - Entity. Online. Available from: https://

developers.google.com/sketchup/docs/ourdoc/entity#entityID.

[7] Google Sketchup Ruby API - Geom. Online. Available from: https://

developers.google.com/sketchup/docs/ourdoc/geom.

[8] Google Sketchup Ruby API - Menu. Online. Available from: https://

developers.google.com/sketchup/docs/ourdoc/menu#add_submenu.

[9] Google Sketchup Ruby API - Point3D. Online. Available from: https:

//developers.google.com/sketchup/docs/ourdoc/point3d.

[10] Google Sketchup Ruby API - Transformation. Online. Available from:

https://developers.google.com/sketchup/docs/ourdoc/transformation#

translation.

[11] Google Sketchup Ruby API - UI. Online. Available from: https://developers.

google.com/sketchup/docs/ourdoc/ui.

75

[12] HiQnet Protocol and Harman System Architect. Online. Available

from: http://www.akg.com/site/products/powerslave,id,948,pid,948,

nodded,2,_language,EN.html.

[13] Rational Rose Modeler. Online. Available from: http://www-01.ibm.com/

software/awdtools/developer/rose/modeler/.

[14] Tesira. Online. Available from: http://www.biamp.com/products/tesira/

index.aspx.

[15] Avb 802.1 priority encapsulation. Online, June 2007.

[16] About London Architect. Online, 2010. Available from: http://www.bssaudio.

com/LA_Features.php.

[17] What is System Architect? Online, 2010. Available from: http://hiqnet.

harmanpro.com/about/.

[18] Sketchup Tools. Online, February 2011. Available from: http://support.

google.com/sketchup/bin/answer.py?hl=en&answer=73815.

[19] Draft standard for standard device discovery, connection management and con-

trol protocol for ieee 1722 based devices - draft d19. Online, April 2012.

[20] Seismic Audio. Online, November 2012. Available from: http:

//www.seismicaudiospeakers.com/32-Channel-Splitter-Snake-p/

satss-32x1530.htm.

[21] UNOS Creator. Online, 2012. Available from: http://www.unosnet.com/

unosnet/index.php/unos-core.html.

[22] Dibley, J. Audio networks, March-April 2012.

[23] Foltz, J. Class: SKSocket. Online, May 2012. Available from:

http://rubydoc.info/github/jimfoltz/SketchUp-Ruby-API-Doc/master/

SKSocket.

76

[24] Foss, R. XFN Application Programming Interface. Universal Media Access

Networks, November 2009.

[25] Foss, R. UNOS Creator User Manual. UMAN, February 2011.

[26] Foulkes, P. An investigation into the control of audio streaming across net-

works having diverse quality of service mechanisms. PhD thesis, Rhodes, Septem-

ber 2011.

[27] Harman. HIQNet System Architect 2 Workflow Overview.

[28] Harman. HiQnet Third Party Programmer Documentation. Harman, December

2010.

[29] Harman. HiQNet System Architect. Online, 2012. Available from: http:

//hiqnet.harmanpro.com/general/system_architect.

[30] Haw, S. The x170 protocol as a vehicle for 3d sound control. Thesis, November

2011.

[31] Hilbert, M., and Lpez, P. The worlds technological capacity to store, com-

municate, and compute information. Online Journam, February 2011.

[32] Igumbor, O. libavdecc software library. Tech. rep., Rhodes University, 2012.

[33] Kulandai, J. Association, Aggregation, Composition, Abstraction, General-

ization, Realization, Dependency. Online, June 2010. Available from: http:

//javapapers.com/oops/.

[34] Kurose, J., and Ross, K. Computer Networking, vol. 5. Pearson, 2010.

[35] Lininger, S. Inserting an external Sketchup Component. Online,

March 2008. Available from: http://sketchupapi.blogspot.com/2008/03/

inserting-external-sketchup-component.html.

[36] Otten, F. Overview of Sound System Control and X-170. PhD thesis, Rhodes,

2012.

