LITERATURE REVIEW

Submitted in partial fulfilment of the requirements of
the degree

BACHELOR OF SCIENCE (HONOURS)
COMPUTER SCIENCE

Rhodes University - Grahamstowm

Mitchell Hedges
2012

Contents

1. Introduction

2. Sound System Control Protocols
2.1 Harman Pro HiQNet

2.2.1 XFN MeSSages . . v v v v v v v i e e e e e e e e
23 AVDECC e
2.3.1 Sub Protocols
2.3.2WinPcap

3. Graphical Sound Installation
3.1 UNOS Creator
3.2 Harman System Architect
3.2.1 Defining the venue 0L
3.2.2 Adding devices by their location
3.2.3 Associating the devices by their location
3.2.4 Routing the audio
3.3 BSS London Architect oL

4. Google Sketchup
41 Ruby ...
4.1.1 Ruby in Sketchup o
4.2 User Interfaceo
4.3 Cameras e
4.4 Entitieso

5. Linking Visual C++ to Google Sketchup
5.1 Socket programming in Visual C+4 and Sketchup

1. Introduction

The field of sound control is a popular area of research as there are many
different ways that this may be done. It was conventionally done by having fixed
physical point-to-point cabling in which signals could be sent from a source to
a destination. As this is progressing into digital control, there is software which
can be used to control Ethernet AVB (Audio/Video Bridged) devices from a
GUI (Graphical User Interface). This paper explores various components that
can be used in unison to control devices from a 3D (3 Dimensional) GUI. There
are a total of four different fields that will be looked at in-depth, and reason
will be given such as to why these particular ones have been chosen. These are
sound system control protocols, graphical sound installation, Google Sketchup,
and linking Visual C++ to Google Sketchup. Alternative methods will also be
looked at with their respective advantages and disadvantages with reason given

as to why they have not been chosen for this project.

2. Sound System Control Protocols

This section will look at three different sound control protocols for monitoring
and controlling distributed audio devices. These three protocols (in respective
order) are the XFN, Harman HiQNet, and IEEE 1722.1 AVDECC.

2.1 Harman Pro HiQNet

The HiQNet protocol, developed by the Harman group, is aimed at a single
solution for all Harman networked devices based on standard networking tech-
nologies [8]. It is controlled by a single application, System Architect, which has
been developed to the specification of this protocol in order to optimize both
tour sound and sound installation environments [10]. This protocol has a tiered
approach with the top level representing the actual device (node) where each
node must the have at least one virtual device; this acts as a node manager.

Each virtual device (as well as the objects in the virtual devices) can contain
objects and parameters which make up a useful unit which allows designers a
convenient method of segmenting the product. At each level in the hierarchy
there are also attributes, which are member variables containing data about

the virtual device, parameters or objects. Attributes can be classed into three

different types, which are static, instance, or instance & dynamic. Static vari-
ables contain the same values across all the different devices of the same model.
Instance variables are initialized on start up and have their values set, while
the instance & dynamic are set on start up and can have their values changed
throughout their lifetime.

Each item (Virtual device, object, or parameter) has its own unique Class ID
and Class Name. This allows each one to be uniquely identified in order for the

designer to work with them individually [23].

Node

Virtual Device (Node Manager) Virtual Device

Figure 1: HiQNet Device Architecture

Objects in HiQNet are collections of parameters or other objects conveniently
grouped together. The smallest modifiable parameter is actually held within a
HiQNet parameter as these contain various variables of the audio objects such
as frequencies or fader values. The number of parameters contained within the
product will differ depending on the complexity of the product, products such
as mixing consoles will have many parameters while the simpler products will
only have a few. These parameters support several primitive data types and
when sending a HiQNet message, it is important to use the appropriate data
format [23].

2.2 XFN

The XFN (Cross Fire Network) Protocol is an IP based peer-to-peer network
layer [26] command and control protocol [17] [21]. This protocol has two broad
functionalities which are connection management, and monitoring and control-
ling devices [25].

A device must satisfy three prerequisites in order to use the XFN protocol,

which are as follows:
e It must have at least one fully functional networking interface
e It must conform to the TCP/IP stack
e It must be capable of hosting an implementation of the stack of the device

Each XFN device within a network is represented as a hierarchical, seven level
tree of device parameters. Due to the structure of the tree, each parameter in
an XFN network must be addressed via the fixed seven level address. Each level
has a unique value assigned to it, with an associated alias in order to describe
its functionality [21].

The seven levels of the hierarchy are described below, in descending order.

1. Section Block: Any single device is may be a composition of various sec-
tions such as output or patching [21]. This part of the hierarchy is used for
identifying the section in which parameters are contained.

2. Section Type: This identifies the distinct type of the section. The output
of a mixing console may have digital or analogue output so it is important to
distinguish the type [21]

3. Section Number: The section number is used to identify specific instances
of the section [21]. A mixing console may have an output section to various
channels that need to be individually addressed, which is what the section num-
ber is used for [25].

4. Parameter Block: The parameter block is used to describe which section
the parameter is found in. This section may be less critical for simpler devices
which contain a single block of various parameters [25]

5. Parameter Block Index: The parameter block index is used to refer to
different subsections of the parameter block [21]. This may follow the Param-
eter Block closely and is also negligible for simpler devices [25].

6. Parameter Type: The parameter type describes the type of parameter

being addressed [21]. There can be many different types of parameters within
a single device such as frequency or gain, which needs to be addressed individ-
ually [25].

7. Parameter Index: The parameter index is the lowest level in the hierar-
chy, which addresses the different parameters individually in their lowest level

of grouping.

2.2.1 XFN Messages

Any XFN devices are allowed to send and receive XFN messages between their
networked peers. The XFN stack provides facilities for the transmission and
receipt of these messages according to the predefined XFN specification [19].
Every XFN message can be classed as either a request or a response. A request
is a message sent from one XFN device to another requesting an action, while
the response is a "reply” to a request message [25]. Not every request message
has a response; this is purely determined by the nature of the message. In some
of the XFN messages such as the setRemoteParam Value_nonb_fdb ', there is
boolean parameter named responseRequired which may be set to true or false
depending on whether the sender requires a response or not [19].

Contained within these messages is the Command FEzxecutive and Command
Qualifier [25] [21]. The Ezecutive describes the fundamental nature of the mes-
sage, while the Qualifier allows it to direct at a certain attribute of a parame-
ter [21].

2.3 AVDECC

The Institute of Electrical and Electronics Engineers (IEEE) 1722.1 specifies
protocols for device management on an Ethernet AVB network which use Au-
dio Video Transport Protocol (IEEE 1722 [17]) for streaming [27]. This pro-
tocol is named Audio/Video Discovery Enumeration, Connection management
and Control (AVDECC). Devices that make use of the ADVECC protocol are
known as ADVECC devices, and are thus capable of sending AVDECC compli-
ant layer 2 AVTP control messages [27].

LA non blocking method which sends a request to set a remote parameter value [19]

AVDECC devices can be classed according to their functionality, as one or more
of the following [14]:

Entity: An end station which allows the facilitation of transmission and receipt
of AVDECC messages within an Ethernet AVB network.

Controller: An AVDECC entity which initiates message exchange between
other entities. There may be more than one controller on a network, however,
the LOCK_ENTITY command must be called for atomic operations.
Listener: An AVDECC entity which allows transmission and receipt of AVDECC
messages and is also a listener on the AVB network.

Proxy: An AVDECC controller which forwards AVDECC messages. This can
be done between both network layer 2 and network layer 3 for completeness.
Talker: An AVDECC entity which allows transmission and receipt of AVDECC

messages and is also a talker on the AVB network.

2.3.1 Sub Protocols

The AVDECC protocol is comprised of three sub-protocols (where each is re-

sponsible for the functions suggested in the names) [27]:
e AVDECC Discovery Protocol (ADP)
e AVDECC Connection Management Protocol (ACMP)
e AVDECC Enumeration and Control Protocol (AECP)

The AVDECC Discovery Protocol (ADP) is a Layer 2 protocol which is re-
sponsible for the discovery of networked, AVDECC compliant devices. This
dynamically identifies the different AVDECC devices as they are added or re-
moved from the network. It uses three different notification messages to indicate
whether entities are available, unavailable, or searching for available [14].

The AVDECC Enumeration and Control Protocol (AECP) is responsible for
controlling parameters of an entity, from another entity. Controls for this pro-
tocol would include setting or getting values of parameters such as volume or
muting. A requirement for this is that the device receiving the control message
is able to understand it [27].

The AVDECC Connection Management Protocol (ACMP) is responsible for the

management of connections between the sources and sinks [14]. This is achieved

by the transfer of single packets known as AVDECC Connection Management
Protocol Data Units (ACMPDU). These structures utilize the feature of time-

outs and contain a sequence identification for reliability purposes. [27]

p 1 2 3
01234567 890123 45¢6 7890123 45¢67828901

00
 E— controller_guid —
04
e e e Ay Iy

08
— talker_guid —

AcMPData Pl LUl pp g g
16

— listener_guid —
e e e e e T A

talker_unique_id listener_unique_id

I) Y Y Ay
stream_dest_mac

A S A A

connection_count
e e A Iy

20

24

28

32

36

Figure 2. ACMPDU Structure [14]

2.3.2 WinPcap

WinPcap (Windows Packet capture) is a standard tool for link layer (layer
2) packet access in windows environments [29]. This library is able to capture
"raw” packet data, data which is usually accessed from higher levels in which
the operating systems take care of the lower level data processing. This is useful
as it is entirely independent from the host protocols, as it simply ”sniffs” the
packets as they pass [29].

The Pcap library would be useful in the field of digital sound as it can enumerate
and gather information about devices on the network. It is particularly needed
for controlling devices that conform to the IEE 1722.1 standard as they both
operate on the link layer. The Pcap library is natively used in C [29] but can
also be used in Visual C++ within Microsoft Visual Studio 2010 [13]. It requires
the installed Pcap library with the "#include <pcap.h>" in the code header

of the file in order to successfully compile [13].

3. Graphical Sound Installation

3.1 UNOS Creator

UNOS Creator is sound installation software developed by Universal Media
Access Networks (UMAN). It’s core functionality is the ability to create custom
interfaces by drag and drop instead of writing lines of code for an interface [16].
UNOS Creator provides the user with a desk item editing capability, which
allows the user to specify various images for the different desk item controls.
Desk item controls are controls that are found on a desk top such as sliders and
meters [20]. Each desk item has a parameter associated with it which is known
as a ”control parameter”, this effectively controls the value associated with the
desk item [20].

The UNOS Creator GUI editor can be accessed from the ”tools” menu within
UNOS Vision. UNOS Vision displays different devices for the various subnet
configurations. The devices can then be selected to display the matrix mixer

which is responsible for control and patching of the devices [20].

UNOS Vision
Tools ~ Options ~ About

i: MultiCorel Send

ADAT IO
192.168.2.2
Errors: 0 Subnet 192. 0 Subnet 192.
u fini Router
192.168.2.4
Subret 192.168.6.0

-

Figure 3: Small network configuration as it appears in UNOS Vision [20]

3.2 Harman System Architect

System Architect is the software application developed by the Harman group
to control HiQNet systems. It is the user interface for the HiQNet protocol,
discussed earlier. Sound control can take place after setting the software up
according to your network configuration. The network can be set up to be used

in four steps as shown below [22].

3.2.1 Defining the venue

The user is required to graphically design the venue for the sound installation.
This can be done by using the preset shapes provided by System Architect
which can be shaped into a realistic representation of the venue. A crucial
feature provided whilst doing this is the ability to have a background image
whilst creating the layout, effectively allowing the user to "trace” the layout of

the venue.

3.2.2 Adding devices by their location

After the venue design is completed, the user will then add the distributed audio
devices to the venue. These can be specifically placed as they will correspond
to their physical location within the venue. The list of devices provided by
System Architect is preset and includes various devices by AKG, BSS, Crown,
dbx, JBL, and Lexicon [24]. The physical layout of the devices is important as

the interface will indicate which rooms have problems (if they occur).

3.2.3 Associating the devices by their location

Although amplifiers have only one physical location, they typically end where
the loudspeakers begin [22]. This stage of the setup involves associating the
user specifying which amplifiers are connected to speakers in different sections
of the venue. System Architect allows a drag and drop technique to allow the

user to specify which amplifier channels to connect on installation.

3.2.4 Routing the audio

Audio routing is a highly complex step within general sound installation. System

Architect has aimed to simplify it by allowing the user to route to specific zones

Fellowship

Figure 4: Placing devices in a custom made venue with System Architect [22]

within the venue, instead of specific devices. This is a high level abstraction as

the "behind the scenes” device routing is all taken care of.

3.3 BSS London Architect

London Architect is software which allows graphical sound installation, devel-
oped by BSS Audio. BSS Audio is part of the Harman group and also uses the
HiQNet protocol [9]. London Architect is a powerful tool which makes use of a
user orientated drag and drop GUI. It provides standard sets of audio devices
for the user to add to the interface and simply connect to other devices. This
software provides a wide range of functions will allow scheduling as well as au-
tomatic system adjustments according to the state of the devices [9].

Despite the difference between the interface appearances, this software is in
many ways similar to System Architect. Despite the similarities, there is one
major difference in that System architect allows connection between zones, while
London Architect allows explicit connection between devices. The London Ar-
chitect device interface shows all the input and output jacks for the list of preset
devices which allow the user to specify exactly which inputs and outputs are

connected between devices. System Architect does all this for the user ”behind

the scenes”, which is ideal from a user friendly point of view, but essentially

gives less direct control over the devices.

[Analogus Unes

W@ﬂ

H
TJ‘

[a3 b
a5
iz
[e —
s
[e —
ey
[
L] 1
L e
—— ‘ B
3 JBGM Optol
Yol s b fimes
R — e
p— BRE
Stage Front Fil 1,
e o Stage Front Fl 2.
gl E Stage Fron 3
‘Stage Front Fil 4.
Mo Name.
Blu-Ray Direct B e s
Connection 7 Bk 1o By lnk Cut
s
pr—
Fhief
towsums
bt
LOW SURR 3,
— . LOWSURRA)
Bwsms
LOW SURR 6.
P
st
et
UBPER SURR 4.
ety
_ iEmamy
Ty
R
N Neme,
L Salim swiou

Figure 5: London Architect user interface, showing connections between various

devices

4. Google Sketchup

Google Sketchup is an open source software tool developed by Google. It is a tool
that allows 3D construction of objects using a standard set of tools provided.
These tools are categorized into principle, drawing, modification, camera, con-
struction, walkthrough, sandbox, and 3D Warehouse. By using these tools, one
is able to create any possible 3D structure within the 3D interface of Sketchup.
[12]. Plugins for Sketchup can be written to provide a wide range of functions

and adapt the user interface to suit the user.

4.1 Ruby

Ruby is a functional programming language created by Yukihiro Matsumoto
as a blend of different languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) in

10

order to create a programming language that balanced functional and imperative
programming [1]. His main aim was to develop a language more powerful than
Perl, yet more object orientated than Python. Everything in Ruby is treated as
an object, with its own properties and actions. Encapsulating everything into
the object type is one of ruby’s main ease of use objectives, as everything is

treated in a similar fashion with a standard set of rules being followed.

4.1.1 Ruby in Sketchup

Sketchup has not only the capabilities of 3D imaging, it also has an embed-
ded programming feature, the Ruby API (Application Programming Interface).
Ruby is associated with Sketchup in the form of ”plugins”, which are loaded on
start up from the ”Sketchup/Plugins” folder. Plugins extend the functionality
of Sketchup tremendously as they can perform actions such as adding tools,
simplify multi-step operations, and otherwise improve the way you work with
Sketchup [15]. Ruby scripts can be written in any basic text editing program,
and saved in the ”"plugins” folder as ”.rb” files. These files are then loaded
and the appropriate actions will take place whether they are function calls, or
user interface customization. The functions within the script can then be called
from various different user defined places, or the standard Ruby console which

is provided in Sketchup. [2]

4.2 User Interface

The " User Interface” or Ul classes contains various methods which can add to
the user interface, which are called upon start up. They are able to create and
manage various elements such as drop down menus, timers, message boxes, in-
put boxes, panels, and URLs [7]. Custom submenus and items can be added to
existing menus by assigning a name to a menu, and then adding it via the built
in methods. These must be added to the Sketchup menus, which are not all vis-
ible on start up (such as the plugins menu). The menus available in Sketchup
are "File”, "Edit”, ”View”, ”Camera”, ” Create”, ”Tools”, "Page”, ”Window”,

"Plugins”, and "Help”. [7]

Consider the example below (Adapted from [7], [6])

plugins_menu = UI.menu()

11

submenuCamera = plugins_menu.add_submenu()

submenuCamera.add_item() { cameraStats }

This section of code initializes a variable to the ”Plugins” menu, add a sub-
menu called ”Cameras”, and then add an item called ”View Camera Proper-
ties”. This example includes two of the three methods for editing a menu, the
other is ”add_separator” which simply adds a menu separator to the given menu
or submenu. A function called ”cameraStats” is then bound to that item and
called when the user clicks on the item. This function will be written elsewhere
in the script, and can also be called from other menu items, as well as the console

window.

4.3 Cameras

The camera class in Sketchup is the class in which the methods are contained
that manipulate the camera. The camera is the current ”point of view” that the
user is observing the 3D model from. Cameras are able to be moved around the
3D environment in two ways, the first is interacting with the 3D environment
by moving it around using the mouse or tools, the second is manipulating it’s
attributes from a Ruby function. A camera object has 3 attributes which have
to be defined in order for a fully functional camera to be created, the "Eye”,
"Target”, and ”"Up Vector”. The "Eye” is the physical position of the camera
within the 3D environment, given as a distance from the origin in the form of a
3D co-ordinate. The ”Target” is a specific co-ordinate within the environment
that is in the center of the camera’s vision. The ”Up Vector” is a vector that
describes the direction in which the top of the camera is facing. This is com-
prised of 3 vectors (z, y, z) in which each vector can be described as an element
given by uin {u | v € R, -1 < v < 1} [3]

Consider the example below (Adapted from [3])

eye = []
target = []
up = []

my_camera = Sketchup::Camera.new eye, target, up
view = Sketchup.active_model.active_view

view.camera = my_camera

12

Presuming that [X1..Z3] have been previously defined somewhere in the pro-
gram, this section of code creates 3 array type data structures, each containing
3 elements for the ”eye”, "target”, and "up” (where X3, Y3, and Z3 must obey
the rule mentioned above). The current Sketchup camera is then changed to
the newly created camera, effectively ”moving” the camera to the new point of

view created by the user [3].

4.4 Entities

The entities class serves as a container class for all the entities in a Sketchup 3D
model [4]. This container is continuously updated as more entities are added
and/or removed from the model. A single entity is a member of the base class
”Entity” which is anything that is contained in the model such as edges, planes,
component instances, and groups [5]. Entities can be referenced from the con-
tainer class and actions can then be performed on them which will be methods
from the "Entity” class (It is important to distinguish between the ”Entities”

and "Entity” classes as they are separate).

Consider the example below (Adapted from [4], [5])
entities = Sketchup.active_model.entities
entitycur = entities[0]
puts entitycur.typename

puts entities.count

The code above makes use of both the "Entity” and ”Entities” class. It as-
signs the current active model’s entities to an array called ”entities”, and then
assigns a current entity named ”entitycur” to the first entity in the model (en-
tity at position 0 of the entity container array construct). The entity’s type will
then be printed out in the form ”Face”, "Edge”, ”ComponentInstance”, etc.,

along with the count of the total entities in the model.

5. Linking Visual C++4 to Google Sketchup

The controlling aspect of this project will be based on the .NET framework’s
Visual C++ platform. This programming is done through Visual Studio, a

13

development program which provides a user friendly Integrated Development
Environment (IDE) as well as coding interface [11]. This will have to commu-
nicate with Sketchup in order to send and receive the control protocol messages
from the 3D user interface to the control interface. This will be achieved by
creating a parallel running Transmission Control Protocol (TCP) socket server
within the C++ application which will be responsible for the transmission and
receipt of messages from the 3D user interface. TCP is connection oriented layer

3 protocol which provides a full duplex service between two processes [26]

5.1 Socket programming in Visual C++ and Sketchup

The server structure will be set up on the Visual C++ side of the application.
This essentially contains methods for listening in on a socket for connections
from other programs. Once the data stream is transmitting and receiving, there
is no fundamental difference between the client and server [26].

Setting up a socket server in most languages, follows the process of 4 steps [28]
1. Create a socket
2. Bind the socket to a network interface
3. Listen on the socket
4. Accept connections

The creation of the socket will create a TCP /IPv4 socket in which the program
will listen on. The 3D interface will provide a method in order to connect to
this socket to transfer data. The listening method will have to be run in parallel
to the main program as this will have to keep listening in case Sketchup is dis-
connected and needs to reconnect. This will have to be synchronized with the
main thread so that no transmission occurs whilst the socket is not connected
to a client [25].

Sketchup has a socket class named ”SKSocket” which is officially unsupported
and undocumented [18]. This class has 4 methods which allow basic read and
write socket operations. These methods are connect, disconnect, add_socket_listener
and write [18]. These methods will be bound to calls from the user interface
in order to perform the appropriate control actions with callbacks to the main

interface.

14

Bibliography

1]

About Ruby. Online. Available from: http://www.ruby-lang.org/en/
about/.

Google Sketchup Ruby API. Online. Available from: https://
developers.google.com/sketchup/.

Google Sketchup Ruby API - Cameras. Online. Available from: https:

//developers.google.com/sketchup/docs/ourdoc/camera.

Google Sketchup Ruby API - Entities. Online. Available from: https:
//developers.google.com/sketchup/docs/ourdoc/entities.

Google Sketchup Ruby API - Entity. Online. Available from: https:
//developers.google.com/sketchup/docs/ourdoc/entity#entityID.

Google Sketchup Ruby API - Menu. Online. Available from: https:

//developers.google.com/sketchup/docs/ourdoc/menu#tadd_submenu.

Google Sketchup Ruby API - UL Online. Available from: https:
//developers.google.com/sketchup/docs/ourdoc/ui.

HiQnet Protocol and Harman System Architect. Online. Available
from: http://www.akg.com/site/products/powerslave,id, 948,pid,
948,nodded, 2, _language,EN.html.

About London Architect. Online, 2010. Available from: http://www.

bssaudio.com/LA_Features.php.

What is System Architect? Online, 2010. Available from: http://hiqnet.

harmanpro.com/about/.

15

[11]

[12]

[13]

Microsoft Visual Studio 2010 Products. Online, 2011. Available from:

http://www.microsoft.com/visualstudio/en-za/products.

Sketchup Tools. Online, February 2011. Available from: http://support.
google.com/sketchup/bin/answer.py7hl=en&answer=73815.

Visual c++ 2010 express and winpcap compiling issues. Online, January
2011. Available from: http://social.msdn.microsoft.com/Forums/sk/
Vsexpressvc/thread/22fd5e36-084f-4a3d-896b-4aed820066e2.

Draft standard for standard device discovery, connection management and
control protocol for ieee 1722 based devices - draft d19. Online, April 2012.

Ruby Scripts. Online, 2012. Available from: http://sketchup.google.
com/intl/en/download/rubyscripts.html.

UNOS Creator. Online, 2012. Available from: http://www.unosnet.com/

unosnet/index.php/unos-core.html.
DiBLEY, J. Audio networks, March-April 2012.

Forrz, J. Class: SKSocket. Online, May 2012. Available from:
http://rubydoc.info/github/jimfoltz/SketchUp-Ruby-API-Doc/
master/SKSocket.

Foss, R. XFN Application Programming Interface. Universal Media Access
Networks, November 2009.

Foss, R. UNOS Creator User Manual. UMAN, February 2011.

FOULKES, P. An investigation into the control of audio streaming across
networks having diverse quality of service mechanisms. PhD thesis, Rhodes,
September 2011.

HARMAN. HIQNet System Architect 2 Workflow Quverview.

HARMAN. HiQnet Third Party Programmer Documentation. Harman, De-
cember 2010.

HARMAN. HiQNet System Architect. Online, 2012. Available from: http:

//hignet.harmanpro.com/general/system_architect.

16

[25] Haw, S. The x170 protocol as a vehicle for 3d sound control. Thesis,
November 2011.

[26] KUROSE, J., AND Ross, K. Computer Networking, vol. 5. Pearson, 2010.

[27] OTTEN, F. Overview of Sound System Control and X-170. PhD thesis,
Rhodes, 2012.

[28] WILSON, J. Socket Programming with MFC (Part 1). Online, November
2005. Available from: http://www.codeproject.com/Articles/12209/
Socket-Programming-with-MFC-Part-1.

[29] WINPcapP. WinPcap Documentation. Online, 2008. Available from: http:

//www.winpcap.org/.

17

Plan of action

|

Date

Event

28th May

Literature review and Plan of Action due in.

4th - 18th June

Examinations

19th - 22nd June

Vac Project work

30th June - 7th July

Away (SAU Squash)

8th July - 16th July

Vac Project work

16th - 20th July

Fieldtrip

24th/31st July & Tth August

Second oral presentations

23rd July - 13th August

Advanced Architecture and Graphics modules

14th August

Begin main programming component

20th August - 17th September

Real Time Multimedia Module

29th-31st October

Third oral presentations

2nd November

PROJECT DUE

5th November

Website due

21st/22nd November

Final research oral examinations

During the June/July vac I will be in Grahamstown for a total of about 10

days, which I will fully dedicate to project work. During this time I will try

and complete the majority of the underlying research before the time comes to

start the main programming component. By the time I am busy with the main

component, I will have completed 5/6 modules for the year. The last module
will be Real Time Multimedia which I think will be useful to be doing whilst

doing the main component of the project as they will most likely compliment

each other. At the moment I feel that I am a bit behind as things have come

to a halt with exams and the literature review due in. I plan to be back to the

original time frame after the July vac.

18

