
Project Proposal: Deep Routing Simulation

Principal Investigator: Mr. A. Herbert

February 2012

1 Statement of the Problem

Currently the large scale network simulators lacks the ability to correctly
simulate delay and implementing such functionality may result in some other
features needing to be reviewed within the network simulator.

2 Object of Research

To re-implement/improve on existing large scale traffic routing simulators
and features such as delay, packet loss, data corruption and other such com-
mon network errors. These features have to implemented all while making
sure not to cause unexpected behaviour within the overall features of the
network simulator systems which the traffic routing simulator will be run-
ning alongside. This simulator will run at the core of the simulated network
and will simulate edge to edge traffic by routing traffic through itself by
acting as a Super Node that handles all responses in such a way that the
client machine believes it is actually receiving replies from multiple nodes.
This will lead to a more realistic traffic routing simulator which will yield
more accurate results.

3 History and Background

A network simulator can best be described as a piece of hardware or software
that can be used to simulate network activity without the presence of an
actual network. These network simulators usually support protocols such
as TCP and UDP and even allow for these protocols to be simulated on
WLAN (Wireless Local Area Network) [9].

There is already quite a lot of research that has been put into this area
of knowledge and it is still growing, this is owing to the fact that there is a

1



need to know what strains are put on large networks during peak times.
These strains on networks that lead to peak periods are mainly due to
major network congestion, heavy bandwidth use through FTP and HTTP
protocols and even real time traffic such as UDP and VoIP cause major time
constraint demands on networks as the need for timely delivery of data is
required. This comes with problems though as traffic can vary greatly from
each of these peaks and getting exact figures is more difficult than it may
seem [2].

Existing simulators include PacketStorm made by Communications Inc [5],
Linktropy by Apposite Technologies [1] and ISEAGE [7] among many more.
The Linktropy emulator allows for simulation speeds between 300bps and
1Gbps [1]. This with functionality to capture and replay network condi-
tions [1] makes it a powerful tool in network simulation.

The use of such simulators are relevant in todays day and age as one can
simulate traffic within a network and use such data to find bottlenecks and
possible problems that may arise in the future. From this one can create
solutions and as a result increase throughput and reduce delays within a
network leading to a more efficient network.

Also simulations can be done on denial of service. This can be achieved
by removing nodes out of the simulated network and then preforming tests
to see how the simulated network would function after such changes have
been applied.

Other applications that can be done are data transfer times to test band-
width and through put, delay between hosts, infection simulation of viruses
and time taken to cure a network of them. There are also other possibilities
that are available for testing on such systems.

There are also simulators such as NS-2, NS-3 and BPGVista. NS-2 is
designed to simulate TCP (Transport Control Protocol), routing and multi-
casting over not only wired but also wireless networks and even satellites [6].
NS-3, the newer release of NS-2, is primarily designed for education purposes
and is driven by discrete-event based system to simulate its network [8].

simBGP was designed and implemented to simulate BGP (Border Gate-
way Protocol) traffic [3]. As BGP is possible to simulate it may be used
as a future feature in the traffic routing simulator that I am to design and
implement.

2



4 Approach

The first step is to create a working proof of concept. The idea behind this
is to read in standard trace routes as done by a Unix Terminal and graph
the nodes. This will be done by reading in a file which has all the routes
dumped into it, the program will have to discern from what is usable and
what is garbage, such as unresponsive connections and information headers
generated by the traceroute command.

Initially each node simulated will store the real nodes IP and average
latency however this will be expanded on later to include other data fields
such as MTU (Maximum Transfer Unit) and connection speed. Connection
speed may be specified or may need to be calculated before it is inputted
into a node. As the IP is unique to nodes in network, they should not be
duplicated. This will be handled by a hash table as it provides quick access
to unique values, which is needed considering the number of nodes that will
be simulated.

A node will contain all details about the real node it is simulating as
well as which nodes it is connected to. As traffic can flow both ways the
algorithm will have to include not only linking the newly added node to
its adjacent nodes, but also connecting them back again. For the proof of
concept it will only be a one way graph as there should be no down streamed
data. Later on the when the nodes require it for communication they will
be doubly linked as to allow for an upstream and downstream of data flow.

At this point all that’ll be left to do in the proof of concept will be to sniff
a packet from a connected client machine and simulate a basic traceroute
by replying with the appropriate responses that the client would expect to
receive if it were waiting for a response from a real network. After this task
is completed the proof of concept will be complete.

How the routing simulator will pick up on network requests and respond
to it will be implemented by using the libnet and pcap libraries to sniff
packets on the network and send packets back onto the network. Once a
packet has been sniffed it will be broken down and the network simulator
will act as the host and respond to the client with appropriate messages to
the requests made by that client.

Next routing data will have to be parsed in much larger quantity. The
data will not be collected by myself but rather by requesting the data
from CAIDA who deals in collecting such information [4]. This will lead
to changes in the systems route parsing algorithm as the routes read in will
most likely not be in the same format as a simple UNIX traceroute.

During the simulation process, features such as adding latency to the

3



responses of packets will be implemented by looking up the average delay of
the link between nodes and sleeping the thread handling the request for the
average latency time. This will make the simulated network more realistic,
however this feature may be implemented in real time where one would
have to wait for the reply, but one may have the ability to turn off real
time simulation and just have packets respond with actual latency values
attached to them except without having to physically wait for them.

Throughput is also a possible feature to be added where simulated file
transfer times will be calculated by the maximum bandwidth available on
the routed connection. A maximum flow algorithm may need to be used
here to ensure maximum bandwidth utilization.

Other features will be added as deemed needed and currently cannot be
commented on until a later stage when the need arises for their addition.

Once the simulator is stable, threading will be introduced as to allow for
more effective use of resources available on the host machine. The threads
will be pooled and as the network simulator receives a request it will assign
a thread to handle the request. In this way the multi-threaded host machine
will be able to handle higher data throughput. No problems should arise
from using multiple threads in this system as once the graph has been laid
out, there is no longer any writing of data into the system and only data
read requests will occur, thus resources don’t have to be shared.

Also a graphical representation of the network’s nodes will be advanta-
geous to further the ease of understanding of the links made between nodes.
This will most likely be done by dumping all nodes in the simulator to file
or other memory source and then reading them in using python and one
of its graphical libraries. The reason for deviating from C/C++ architec-
ture is because the graphical representation is not essential to the running
of the simulator and also python is an easy to use language with many li-
braries that handle such graphical data representation and allow for easy
implementation all round.

5 Requirements/Resources

For proof of concept a standard desktop computer will be required but when
this system is implemented on a large scale it would require much more
resources to work with.

Memory usage and CPU usage is fairly linear and so standard calcula-
tions can be done to determine a good estimate to the memory and CPU
needs of the machine set to run this simulator.

4



So to start off development and initial testing will be run a on single
system and once deemed stable, it will be moved to a larger system to allow
for a larger scale of traffic routing simulation.

References

[1] Apposite Technologies. WAN Emulation Made Easy. Online, 2011.
Site for packet storm. Available from: http://www.apposite-tech.

com/index.html.

[2] Asmussen, S., and Glynn, P. W. Stochastic Simulation: Algorithms
and Analysis, vol. 57. Springer Science++ Business Media, LLC, 2007.

[3] BGPVista. bgpVista. Online, 2006 - 2009. Available from: http:

//www.bgpvista.com/simbgp.php.

[4] CAIDA. CAIDA Data - Overview of Datasets, Monitors, and Reports.
Online, 2002 - 2012. Available from: http://www.caida.org/data/

overview/.

[5] Communications, Inc. Network emulation with data rates up to 10
Gbps. Online, 2004-2012. site of packetstorm. Available from: http:

//packetstorm.com/psc/psc.nsf/site/index.

[6] DARPA, SAMAN, NSF, CONSER and ACIRI. The Network Simu-
lator NS-2. Online, 1995. Available from: http://www.isi.edu/nsnam/
ns/.

[7] Iowa State University. What is ISEAGE? Online, 2012. site of
ISEAGE. Available from: http://www.iac.iastate.edu/iseage/.

[8] National Science Foundation. NS-3. Online, 2011 - 2012. Available
from: http://www.nsnam.org/.

[9] Salam A. Najim, Ibrahiem M. M. El Emary, and Samir M. Saied.
Performance evaluation of wireless ieee 802.11b used for e-learning class-
room network. IAENG International Journal of Computer Science 34
(2007), 1.

5


