Corpus Construction and Translation · Data requirements Acquiring Data Data cleaning and preparation Translation using Moses Conclusions and **Future work** Machine an optimal standard notation can do this SignWriting can be used, is the easiest to find data for, and is most accessible to signer Build a SW corpus for SASL Modify translation scripts for sign

Analysis of Notation Systems for Machine Translation of Sign Languages

presented by Jessica Hutchinson supervised by James Connan

Corpus Construction and Translation · Data requirements Acquiring Data Data cleaning and preparation Translation using Moses Conclusions and **Future work** Machine an optimal standard notation can do this SignWriting can be used, is the easiest to find data for, and is most accessible to signer Build a SW corpus for SASL Modify translation scripts for sign

Analysis of Notation Systems for Machine Translation of Sign Languages

presented by Jessica Hutchinson supervised by James Connan

- Use of Space and Time simultaneous sequential
- Classifier Predicates
- Variation: general statistical differences handedness emphasis
- Notations

simultaneous sequential

Movement-Hold Model

hidl

Movement-Hold Model

- Use of Space and Time simultaneous sequential
- Classifier Predicates
- Variation: general statistical differences handedness emphasis
- Notations

 Phonetics: not based on meaning, based on how things are produced

Distinguished by features

• Phonological processes: movement epenthesis, hold deletion, metathesis, assimilation

- Use of Space and Time simultaneous sequential
- Classifier Predicates
- Variation: general statistical differences handedness emphasis
- Notations

- general statistical differenceshandedness
- emphasis

- Use of Space and Time simultaneous sequential
- Classifier Predicates
- Variation: general statistical differences handedness emphasis
- Notations

- Early field of Computer Science (hence "machine")
 Funded by US government to decipher enemy communication from Russian texts
 Currently making progress due to new focus worldwide communication
 - - **Translation Types**

Rule-based

Empirical
Example-based
Statistical

Machine

History

- Early field of Computer Science (hence "machine")
- Funded by US government to decipher enemy communication from Russian texts
- Currently making progress due to new focus worldwide communication

based Em

Types

Rule-based

Empirical

Example-based Statistical

Machine Translation of SLs

- Speech recognition: two media, one language
- Spoken language translation: one medium, two languages
- Sign language translation: two media, two languages

Two steps to the process: translation and recognition/synthesis

Two directions: Text-To-Sign, Sign-To-Text

- Use of Space and Time simultaneous sequential
- Classifier Predicates
- Variation: general statistical differences handedness emphasis
- Notations

Stokoe

```
B_{\alpha}B_{\alpha}^{2} \overrightarrow{W}\overrightarrow{W}^{\dot{\alpha}} 3^{\perp} [] /C^{\dagger}/C^{\dot{\gamma}}. 3Y^{\circ} /G_{\Lambda}^{<\dot{\gamma}<}
B_{\alpha} /B_{\Lambda} /S G^{\perp} B_{\Lambda}^{\dagger} B_{\Lambda} \stackrel{\downarrow}{\nabla} D \stackrel{\downarrow}{A}^{\circ \dot{\chi}} B_{D} B_{D} \stackrel{\downarrow}{\wedge}
G^{\dot{\gamma}} ^{\dot{\gamma}} ^{
```

- First notation
- Does have ASCII representation
- Limited cannot describe NMFs

- Does have computer representation
- Does represent NMFs
- Lexical, not continuous

GLOSS

```
(Gloss RH English) running hare
(Gloss LH English) running hare
(Head) n
(Brows) f
(Eye Aperture) s
(Cheeks) p
```

- Successfully used in MT before
- Can be as detailed as needed
- No standards at all
- Not universal
- Difficult to move forward

SignWriting

Coded representationsCan describe NMFs

• Widely used for many sign

languages

zero or more symbol keys with placement coordinates.

Example M518x599814e30481x471827105503x48

Text	Description	
M	middle lime	
528×529	maximum coordinate (28,29)	
S1/4e20	symbol key	
481×471	placement coordinate (-19,-29)	
\$27106	symbol key	
503x489	placement coordinate (3,-11)	

Sign

A sign is a combination of a lane maker (BLMR), followed by the maximum coordinate, followed by zero or more symbol keys with placement coordinates.

Example: M518x529S14c20481x471S27106503x489

Text	Description
M	middle lane
528x529	maximum coordinate (28,29)
S14c20	symbol key
481x471	placement coordinate (-19,-29)
S27106	symbol key
503x489	placement coordinate (3,-11)

• Translation using Moses Sign Linguistics

· Use of Space and Time
· Variation and Phonology

· Notations History Machine Translation Types
Rule-based Empirical
Empirical
Empirical
Empirical
Empirical
Empirical
Empirical Machine Translation of SLS Watning Iranslation one medium, two
Speech recognition two medium one medium, two
Janguages
Janguages • Spoken language translation: one medium to languages translation: two media, two languages languages Two steps to the process translation and recognition synthesis Two directions: Text-To-Sign, Sign-To-Text

Corpus Construction and Translation

- Data requirements
- Acquiring Data
- Data cleaning and preparation
- Translation using Moses

Conclusions and Future work

- Systems need to be optimised finding and using an optimal standard notation can do this
- Sign Writing can be used, is the easiest to find data for, and is most accessible to signers
- Future work:
 - Build a SW corpus for SASL
 - Modify translation scripts for sign languages
 - Research mapping recognition to SW and SW to synthesis
 - Expand the domains
 - Others?

Corpus Construction and Translation · Data requirements Acquiring Data Data cleaning and preparation Translation using Moses Conclusions and **Future work** Machine an optimal standard notation can do this SignWriting can be used, is the easiest to find data for, and is most accessible to signer Build a SW corpus for SASL Modify translation scripts for sign

Analysis of Notation Systems for Machine Translation of Sign Languages

presented by Jessica Hutchinson supervised by James Connan