
Literature Review

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Luke Ross

Grahamstown, South Africa

May 28, 2012



0.1. INTRODUCTION 1

0.1 Introduction

Fiducial marker navigation on mobile robots has been achieved successfully by researchers,

for example, in monitoring underwater domains using an amphibious robot [21]. But,

many implementations of these kinds of systems do not optimize the paths that the

mobile robots travel. In most robot navigation systems in which minimum paths are

calculated whilst avoiding obstacles, target tracking is not done using fiducial markers;

instead methods based on GPS coordinates are used.

This chapter reviews literature on the WiFiBoT Lab mobile robot, fiducial markers, the

toolkits available for fiducial marker detection and various search algorithms that can

be used for robot path planning. Current systems that implement fiducial markers for

navigational purposes as well as systems that implement efficient path planning are also

discussed.

The chosen toolkit for marker detection needs to be reasonably accurate and, owing

to the processing and memory constraints on many mobile robots, not too computation-

ally demanding. In addition, the chosen search algorithm needs to have the following

properties:

• It must be able to calculate the optimal path from the robot to the marker, avoiding

obstacles.

• It must be able to function effectively in known, partially known and unknown

environments.

• It must be able to function effectively with a moving target.

• It must be sufficiently computationally efficient for use on mobile robots.

0.2 WiFiBoT Lab

Wifibot Lab is a mobile robot intended for educational purposes as well as the develop-

ment of affordable robotic systems1. Processing is done on the robot using an Intel Atom

D510 processor2. Since this high-end mobile robot is being used for experimentation in

1http://www.wifibot.com/wifibot-wifibotlab.html
2http://ark.intel.com/products/43098/Intel-Atom-Processor-D510-(1M-Cache-1 66-GHz)



0.3. FIDUCIAL MARKER DETECTION 2

this project, more common, lower specification robots must be considered when choosing

between the different libraries and algorithms available. WiFiBoT has been used suc-

cessfully in various systems in the past, two of which are mentioned. The first is the

PotPet robot [10]. This robot is a mobile flowerpot that allows users to grow plants in a

more effective and enjoyable way. It is built using a WiFiBoT platform owing to its good

mobility. PotPet is autonomous and automatically moves into areas with more sunlight

as well as towards people when it requires more water. Demetriou et al. [5] describe

the second system, which allows for mobile robot localization using WiFi signal strength

measurements from a number of access points. This system provides a low-cost localiza-

tion method for robotic applications in indoor environments, where GPS is unavailable.

WiFiBoT was the robot chosen for testing the system.

0.3 Fiducial Marker Detection

Fiducial Markers

Fiducial, or fiduciary markers are image like objects, which are designed to be detectable

and which usually contain an interpretable meaning [34]. Fiducials are used in many

fields, including augmented reality, robotics and medicine. In robot navigation systems,

an autonomous robot can follow a set path with the aid of fiducial markers [16]. Such

markers offer performance, identification and localization improvements, and are more

cost-effective when compared to other techniques used for path-planning in unknown en-

vironments [16]. In the medical field, fiducial markers are used when treating prostate

cancer. During the treatment, doctors need to have an accurate view of the prostate

gland and since this view is often not sufficient, gold fiducial markers are placed in the

prostate to enhance vision3.

Fiducial markers can vary from small dots to complicated bar-code images and can be

of various shapes [18]. According to Owen et al. [18] and verified by Li et al. [15], two-

dimensional, bar-coded, square fiducial markers are the best and most popular form of

marker to use. Since these are the types of markers used for augmented reality or robot

navigation systems [8], they seem appropriate. Examples of these types of markers are

ARToolKit or ArUco markers. ARToolKit and ArUco markers consist of a black border

and a black and white, uniquely patterned interior. The border of such a marker aids in

the initial detection of the marker, whilst the interior pattern is used for identification of

3http://clinicaltrials.gov/ct2/show/NCT00061347



0.3. FIDUCIAL MARKER DETECTION 3

the marker [18]. The pattern must be unique [18] and as stated above, may have meaning

encoded into its graphical representation. Technology such as a robot with an attached

camera and running the required software can easily interpret such a pattern. Owing to

the square nature of the marker, its position and orientation can be calculated accurately

with respect to a calibrated camera [18].

Important Design Criteria

Owen et al. [18] state that, in order for fiducial markers to be most accurately recognized,

various factors should be considered when designing the markers. Firstly, the shape of

the fiducial should emit at least four points. The simplest of these shapes is a square and

due to its simplicity, computational advantages are noted. In addition, the fiducial image

can contain most colours, but it is best if a monochrome colour is used. This is because a

monochrome image is easier to recognize against bright, contrasting backgrounds. Using a

monochrome colour also gives computational advantages as the algorithms are simplified.

Thirdly, the size of the marker is dependent on the resolution of the camera being used,

with the border of the marker constituting at least 13% of the marker’s width. Other

important and more technical criteria concerning effective marker design, according to

Owen et al. [18] are as follows:

• There should be no ambiguity when determining the marker’s position and orienta-

tion relative to a camera.

• Markers should not favour certain orientations.

• If multiple markers are used in the system, they must all be unique.

• Simple algorithms that are not intensive should be used to locate and identify the

marker quickly. For these algorithms to be used, the marker itself needs to be

designed with this intent in mind.

Libraries used for Detecting Fiducial Markers

Libraries that can be used for marker detection include ARTag4, ARToolKit5 and ArUco6.

According to ARTag’s homepage, it is currently unavailable as a research aid and therefore

is not discussed further for use in this project.

4http://www.artag.net/index.html
5http://www.hitl.washington.edu/artoolkit/
6http://www.uco.es/investiga/grupos/ava/node/26



0.3. FIDUCIAL MARKER DETECTION 4

0.3.1 ARToolKit

ARToolkit was first released in 1999 by Dr Hirokazo Kato, after which its further devel-

opment was maintained by the Human Interface Technology Laboratory [1].

ARToolKit is a successful, robust marker based system, commonly used in the augmented

reality field [7]. It is C and C++ language oriented, although Java and Matlab are also

supported. ARToolKit can be used to detect pre-programmed ARToolKit markers in im-

ages and augment three-dimensional virtual objects onto these markers [1]. However, the

marker detection functionality of the software can be used on its own without implement-

ing any of the augmented reality functionality. Once a marker is identified, ARToolKit

returns the marker ID as well as the location of the four corners of the marker relative to

the camera device [6]. ARToolKit markers are two-dimensional and planar, and consist

of a unique, black and white, patterned interior which is surrounded by a black bor-

der [7]. The large contrast between the black and white colours on the markers aids in

ARToolKit’s robustness [7].

Advantages

Two of ARToolKit’s advantages with greatest relevance to this project are that it is open

source for non-commercial use and is widely used [6]. Since it is widely used, there is

extensive research material available. Furthermore, according to the feature list on the

ARToolKit home page [1], ARToolKit supports multiple platforms including Windows,

Linux, Mac OS X and SGI; it has real-time detection for two-dimensional markers; and

there is sufficient documentation. The documentation available includes installation in-

structions, a simple calibration procedure as well as executable sample code. ARToolKit

has precise detection, is easy to use and is well suited for the implementation of low-cost

tracking systems, as the only added hardware requirement is a camera [2].

Disadvantages

Hornecker and Psik [9] point out some disadvantages of using ARToolKit, the first of

which being that it does not recognize a marker if the full marker is not in the camera’s

view. Secondly, owing to its large black border, when the marker is printed on certain

laser printers, light may be reflected causing inconsistencies in the video feed. The lighting

issue can be resolved by printing the markers on an ink-jet printer [9]. Moreover, since

ARToolKit is threshold based [8], a chosen threshold may not detect markers in different

lighting conditions. Hirzer [8] further claims that ARToolKit has a high false positive rate.



0.3. FIDUCIAL MARKER DETECTION 5

History of Use

ARToolKit has been used extensively in marker tracking and augmented reality and,

according to the ”Projects” tab on the ARToolKit homepage, is used globally by over

300 researchers for a wide variety of purposes. Past applications that use ARToolKit

vary from creating virtual environments in which ancient artifacts can be restored and

viewed [22], to tracking human body movements [20].

0.3.2 ArUco - Based on OpenCv

The search for literature on ArUco yielded few results, perhaps owing to its fairly recent

release. As a result, a large section of the literature presented below was found in online

documents such as the ArUco homepage7.

ArUco was developed by Rafael Munoz-Salinas from the University of Cordoba and re-

leased in November 2010 under a BSD license8. It is a basic C++ library used for the

detection of fiducial markers and intended for augmented reality purposes [3]. It is based

on OpenCv (Open Source Computer Vision), a vision based library, which is the most

popular library in the computer vision field [3][4].

Features

According to ArUco’s homepage, some of the features that ArUco offers are listed below:

• Markers can be detected using one line of C++ code.

• Use can be made of AR boards (a grid of markers) to increase detection accuracy.

• There are 1024 different ArUco markers available.

• Since it is based on OpenCv, ArUco detects markers quickly and reliably and is

cross-platform.

• Examples and sample code are available.

• It is low-cost owing to possession of a BSD license.

7http://www.uco.es/investiga/grupos/ava/node/26
8http://softwaredd.net/softs/linux/games/aruco.html



0.4. SEARCH ALGORITHMS 6

ArUco also provides various applications with the library, two of which are relevant to this

project [3]. The first application creates a marker, given an identification number, and

saves this as a jpg file for printing. The second application, which is the main application,

detects markers in a live video feed or pre-recorded video. Camera calibration is also

possible using OpenCv.

History of Use

Speers et al. [21] reported using an amphibious, autonomous robot to monitor underwater

sensors. In this system, fiducial markers are displayed on sessile sensors and are used to

communicate with the robot using the ArUco library. ArUco has also been used in various

unpublished projects, some of which are listed on the ArUco homepage. These projects

include: the Soldamatic Project9, the purpose of which is to aid in the training of welders

by using augmented reality to create welding simulations, as well as OpenSpace3D10,

which is used for developing interactive, real-time 3D projects.

0.4 Search Algorithms

Requirements for Project

The robot in this project needs to be able to travel towards the fiducial marker in an

environment that may contain obstacles. Since the robot should travel along the shortest

path, a suitable search algorithm needs to be implemented such that the optimal path,

avoiding obstacles, from the robot’s current position to the marker is chosen. Further-

more, an efficient search algorithm needs to be implemented to keep computation to a

minimum. Incremental search algorithms, some of which are presented below, are search

algorithms that use previous search information when searching for minimal traversals

and therefore can perform faster than searching from scratch [29]. These algorithms are

popular for robot path planning11.

Most research literature concerning path planning for mobile robots does not take nav-

igation in unknown environments into account but rather, it is assumed that the entire

map is initially known [24]. In this project, the robot will be placed in an environment

which may be partially known or completely unknown as well and will therefore need to

9http://seabery.es/simulador-de-soldadura-soldamatic/?lang=en
10http://www.openspace3d.com/
11http://www-scf.usc.edu/ xiaoxuns/research.html



0.4. SEARCH ALGORITHMS 7

acquire map information using its lidar sensor. An algorithm that functions in unknown

environments is therefore required. Since the marker will be moving whilst the robot

attempts to travel towards it, the moving target search problem needs to be taken into

account as well. The moving target search problem is a path planning problem, often

encountered in computer games, where a hunter attempts to catch a moving target [29].

Representing the Environment

A specific robot configuration can be represented using a state, and the distance between

two states can be represented using an arc. Therefore, a graph of these states, joined

together by arcs, can represent a robot’s environment. The search algorithms discussed

use this representation [29][25]. The robot’s environment, or map information, needs to

be stored internally in a structure on the robot. This will allow the robot to update its

map information whenever it is acquired from its sensors, plan an optimal path and know

where to move. Two common structures that can be used to store map information are

metric and topological maps.

Metric maps are usually implemented using occupancy grids. According to Thrun and

Bucken [32], in the area of mobile robotics, occupancy grids are the most successful

environmental representations. This is verified by Kraetzschmar et al. [13]. Although

two-dimensional occupancy grids are most common, three-dimensional grids have also

been implemented [30]. These grids represent the robot’s environment using a matrix of

cells, each of which contains an occupancy value [30][32]. This occupancy value is the

probability that the cell is occupied [32]. Kuffner [14] states that many systems use grid-

based maps to internally represent a robot’s environment and then search for optimal

paths from start to goal states using the grid’s embedded graph. Occupancy maps are

easily implemented and simple to use [13][31]. There is also no ambiguity in determining

the robots position in its grid from its actual position in the environment [31]. Occupancy

maps have the disadvatage of generating maps that are often inaccurate and do not rep-

resent sections of the environment correctly [30]. These inconsistencies generally occur in

busy environments, unlike the environment used in this project. Another disadvantage

of using grid-based maps such as occupancy grids is that, when a high resolution grid is

required, memory requirements can become an issue [19][13].

Topological maps represent the environment using a graph [12]. This graph consists

of a collection of nodes which are connected by arcs. The nodes correspond to distinctive

landmarks and the arcs correspond to the distances between these landmarks. Unlike oc-



0.4. SEARCH ALGORITHMS 8

cupancy grids, the resolution of a topological map is purely dependent on the complexity

of the environment. This allows for faster planning and less memory requirements than

when using an occupancy grid [31]. Topological maps have disadvantages in that they are

difficult to implement and maintain in large evironments and that similar landmarks are

often ambigouosly recognized, resulting in inacurate map information [31][32].

Both grid-based and topological maps have their unique advantages and disadvantages.

Therefore, researchers have integrated the two types of maps by generating topological

maps on top of grid-based maps [32][19]. Firstly, the grid-based map is partitioned into

smaller regions. These regions are seperated by criticial lines. An algorithm is then used

to map this partitioned map into a topological graph with each region corresponding to a

node and each critical line corresponding to an arc. This hybrid allows for accurate map

representations as well as efficient planning. [32]

History of Use

Search algorithms have been used extensively in the fields of Computer Science and

Robotics in a wide variety of applications. Examples are: computer games [17] such

as computer chess12, Google’s famous search engine13, and robot path planning. Further

applications are discussed below.

Principal Search Algorithms

Although some other search algorithms are mentioned, the main algorithms that I have

investigated for use in the robot’s navigation are A*, the D* family of algorithms, Gen-

eralized Fringe-Retrieving A*, and Moving Target D* Lite.

0.4.1 A*

The A* search algorithm, which is an extension of Dijkstra’s algorithm [17], is one of the

most widely used search algorithms in the field of Artificial Intelligence [29], and forms

the basis for the other search algorithms discussed in this section. It was first introduced

by Hart, Nilsson and Raphael in 1968 [17].

A* performs faster than Dijkstra’s algorithm by using heuristics [17]. It is a best-first

12http://verhelst.home.xs4all.nl/chess/search.html
13http://www.techi.com/2012/03/googles-search-algorithm-changes-1998-2012/



0.4. SEARCH ALGORITHMS 9

search algorithm and is used to calculate a minimal path from a start to a goal state [17].

A* calculates paths most accurately when all the map information is known. When not

all the map information is known, D* is recommended14.

According to Sun et al. [29], the moving target search problem can be solved using A*

in a dynamic environment to calculate the path with the lowest cost between the current

start and goal states whenever a change in the environment or a deviation of the goal

state from the current path occurs. This is computationally expensive as the new path

has to be planned from scratch each time a change occurs [29].

0.4.2 D* (Dynamic A*)

D* refers to any of the three incremental search algorithms: Original D*, Focused D*

and D* Lite [17]. Stentz first described the original D* algorithm in 1994 [24] and further

developed it in 1995, giving rise to the Focused D* algorithm [23]. D* (Dynamic A*) is

a generalization of A* for partially unknown, completely unknown or dynamic environ-

ments [24][23]. D* Lite differs algorithmically from the other D* algorithms, but is used

to solve the same path-planning problems [17][11]. D* Lite was introduced by Koenig and

Likhachev in 2002 and is based on the authors’ Lifelong Planning A* (LPA*) [11].

Algorithm Description

All three of the D* algorithms can be used to solve the path-planning problem in which a

robot traverses from a start to a goal state in an unknown environment [17]. Since this is

possible in an unknown environment, the three algorithms are also successful in this task

in partially unknown and known environments. Nosrati et al. [17] gives a brief overview

of how these algorithms function.

Initially, assumptions regarding the unknown map information are made and the minimal

path from start state to goal state is calculated. The robot then traverses the planned

path until a discrepancy in the map information is found. This new map information (a

previously unknown obstacle, for example) is then added to the robot’s map information.

If this new information conflicts with the current path, a new minimal path from the

robot’s current position to the goal state is planned. This is repeated until either the

goal state is reached, resulting in success, or no path can be calculated to the goal state,

resulting in failure.

14http://theory.stanford.edu/ amitp/GameProgramming/Variations.html



0.4. SEARCH ALGORITHMS 10

Map Strategies for Unknown Terrain

When calculating the lowest cost path from the start state to the goal state using partial

map information, three map strategies can be used to estimate the cost values of these

unknown cells [25]. These strategies are known as the optimistic, pessimistic and average

values strategies. For the optimistic strategy, unknown sections of the map are assumed

to be easily traversable areas. For the pessimistic strategy, these sections are assumed to

be the hardest areas to traverse, yet are still traversable. For the average value strategy,

unknown cells are assumed to be similar to the known cells in their surrounding area and

so an average of these cost values is calculated. [25]

Comparison of Original D*, Focused D* and D* Lite

If D* is implemented in an unknown environment, replanning occurs often. As discussed

in the A* review, this replanning calculation can be computationally expensive. D* solves

the computational issue that algorithms such as A* suffer from by using incremental graph

theory techniques [25]. Stentz [25] states that, in environments with many states, D* can

perform hundreds of times faster than brute force replanning algorithms such as repeated

A* searches and, as stated in [17], provided that the goal state is static, the D* algorithms

all outperform repeated A* searches. Stentz [25] further states that D* can guide a robot

in real-time through unknown and dynamic environments. Compared to the original D*,

Focused D* reduces computation by only updating states that are still relevant to the

robots traversal using a heuristic [17]. The Focused D* algorithm is algorithmically com-

plicated and is therefore difficult to understand and implement [11][26].

Unlike, Focused D*, D* Lite is simple to understand and therefore easily analysable

and extendable [17][11]. Koenig and Likhachev [11] state that its efficiency is greater

than or equal to that of Focused D*’s. This is confirmed by Nosrati et al. [17]. Although,

researchers have extended D* Lite in a straightforward manner in order to solve moving

target search problems in changing environments, it is slow [29].

History of Use

The D* algorithm is viewed as a landmark in the area of mobile robot navigation [26] and

has been implemented extensively on mobile robots [11]. Two of these implementations

include indoor Nomad robots and outdoor High Mobility Multipurpose Wheeled Vehicles

(HMMWVs) [11]. It seems that current systems generally implement D* Lite rather



0.4. SEARCH ALGORITHMS 11

than the older D* algorithms. Even researchers in Stentz’s lab, from where the D*

algorithm originated, now often use D* Lite instead of D* for their current projects [33].

On Koenig’s research page15, some applications of D* Lite are listed. These include the

prototype system tested on the Mars rovers ”Spirit” and ”Opportunity”, in which elements

of D* Lite were used. Another was Carnegie Mellon University’s winning DARPA Urban

Challenge vehicle, where elements of D* Lite were used for maneuvers such as navigating

through parking lots and complicated U-turns.

0.4.3 Generalized Fringe-Retrieving A*

Generalized Fringe-Retrieving A* (G-FRA*) was introduced in 2010 by Xiaoxun Sun,

William Yeoh and Sven Koenig [28]. G-FRA* is an incremental search algorithm, which

is a generalization of Fringe-Retrieving A* (FRA*). It allows for moving target searches

to be solved on arbitrary graphs instead of using two-dimensional gridworlds, which are

not realistic when working with robotic systems. This algorithm was designed for moving

target search problems in static, known environments. The hunter traverses along the

optimal path from its current state to the current state of the target and whenever the

target deviates from the path, a new optimal path is calculated. This new path is cal-

culated using A*, but instead of replanning from scratch, previous search information is

used. This process is repeated until the hunter catches the target. [29][28]

According to Sun et al. [28], FRA* is the fastest algorithm for moving target search

problems using two-dimension grids and, according to experimentation, G-FRA* proved

to be the fastest algorithm for moving target search problems using arbitrary graphs. It

performed better than Generalized Adaptive A* (GAA*) which was the former fastest

algorithm for the task using arbitrary graphs, by up to one order of magnitude. These

experiments were performed on known state lattices, used for UGV navigation [28]. Al-

though GAA* was tested in a static known environment [28], it can also be used in

dynamic environments [27].

0.4.4 Moving Target D* Lite

The search for literature on this algorithm yielded few results, perhaps owing to its recent

publication. Moving Target D* Lite (MT-D* Lite) as the name suggests, is an algorithm

15http://idm-lab.org/research.html



0.4. SEARCH ALGORITHMS 12

used for solving moving target search problems [29]. Specifically, it is an extension of

D* Lite which makes use of the principle behind G-FRA* for recalculation of optimal

traversals from the hunter to the target in dynamic environments [29]. MT-D* Lite is a

recent algorithm introduced by Sun, Yeoh and Koenig in 2010 [29].

Sun et al. [29] state that D* Lite is not suitable for moving target search problems as

it performs slowly. This is because it shifts the map in order to maintain a stationary

start state. Much of the information obtained from previous searches is not reusable ow-

ing to this shift and therefore D* Lite can perform slower than letting A* search from

scratch [29]. Sun et al. [29] go on to state that many other incremental search algorithms

including D*, FRA* and G-FRA*, are not suitable for solving moving target search prob-

lems in dynamic environments. This is because these algorithms were designed for use

in static environments or systems in which the start state is kept stationary [29]. These

performance issues led to the development of the two incremental search algorithms, Basic

MT-D* Lite and MT-D* Lite, which are both extensions of D* Lite, but do not have to

transform the map and solve moving target search problems in dynamic environments [29].

Under experimentation, MT-D* Lite performed four to five times faster than Generalized

Adaptive A* (GAA*) [27], the former fastest incremental search algorithm for solving the

moving target search problem in dynamic environments [29]. GAA* was also introduced

by Sun, Yeoh and Koenig [27].

Basic MT-D* Lite and MT-D* Lite Performance

For moving target search problems in dynamic environments, D* Lite can be used by

calculating the optimal path from the hunter to the target whenever a change in the

environment is observed or the target deviates from the known path. Basic MT-D* Lite

increases the performance of this algorithm by calling its BasicDeletion() method instead

of problematically shifting the map [29]. MT-D* Lite is an optimization of Basic MT-D*

Lite which calls an optimized method, OptimizedDeletion(), instead of BasicDeletion(),

and therefore, also does not require shifting of the map [29]. Pseudocode can be found

in [29] for both the Basic MT-D* Lite and the MT-D* Lite algorithms. MT-D* Lite

achieves improved performance compared to Basic MT-D* Lite by using the principle be-

hind G-FRA* [29]. Under test conditions, Basic MT-D* Lite and MT-D* Lite performed

better than GAA* in both static and dynamic environments. This is due to the fact that

Basic MT-D* Lite and MT-D* Lite reuse previous search information whereas GAA*

searches from scratch [29]. MT-D* Lite also performed better than Basic MT-D* Lite in

both static and dynamic environments [29]. These experiments were performed in both



0.5. CONCLUSION 13

static and dynamic, known environments.

The search for literature on the performance of MT-D* Lite in partially unknown and

completely unknown environments yielded no results.

0.5 Conclusion

The discussed literature indicates that systems with similar purposes to this project’s do

exist, but are implemented differently. Although some literature could not be found, it

seems plausible that, using the toolkits and algorithms discussed in this chapter, the pro-

posed robot navigation system can be implemented on mobile robots successfully, meeting

all the project requirements. By implementing this system using a slightly different ap-

proach, this project provides an opportunity to add to the areas of robot navigation using

fiducial markers and robotic path planning.



Bibliography

[1] ARToolKit. ONLINE. Available from: http://www.hitl.washington.edu/

artoolkit/.

[2] Artoolkit - based tracking: A new device in VRPN. Tech. rep., Universidad de los

Andes, 2007.

[3] Brunner, J. ArUco: Augmented Reality library from the University of Cor-

doba. ONLINE. Available from: http://www.ros.org/doc/api/aruco_pose/

html/index.html.

[4] Coombs, J., and Prabhu, R. OpenCV on TI’s DSP+ARM platforms: Mitigating

the challenges of porting OpenCV to embedded platforms. White Paper - Texas

Instruments, 2011.

[5] Demetriou, G., Vystavkin, A., Anastasiou, S., Theofilou, A., Gi-

annopoulos, C., and Yerolemou, D. Indoor mobile robot localization using

a wireless network: Wifibot case study. In IC-AI (2008), H. R. Arabnia and Y. Mun,

Eds., CSREA Press, pp. 668–674.

[6] Fiala, M. ARToolKit applied to panoramic vision for robotic navigation. In Pro-

ceedings of the Vision Interface, Halifax, Nova Scotia, Canada, June 11-13, 2003

(2003).

[7] Fiala, M. ARTag, an improved marker system based on ARToolKit. Tech. rep.,

National Research Council of Canada, July 2004.

[8] Hirzer, M. Marker detection for augmented reality applications. Image, Rochester,

NY (2008).

[9] Hornecker, E., and Psik, T. Using ARToolKit markers to build tangible pro-

totypes and simulate other technologies. In Proceedings of the 2005 IFIP TC13 in-

14



BIBLIOGRAPHY 15

ternational conference on Human-Computer Interaction (Berlin, Heidelberg, 2005),

INTERACT’05, Springer-Verlag, pp. 30–42.

[10] Kawakami, A., Tsukada, K., Kambara, K., and Siio, I. Potpet: pet-like

flowerpot robot. In Proceedings of the fifth international conference on Tangible,

embedded, and embodied interaction (New York, NY, USA, 2011), TEI ’11, ACM,

pp. 263–264.

[11] Koenig, S., and Likhachev, M. Fast replanning for navigation in unknown

terrain. IEEE Transactions on Robotics 21, 3 (2005), 354–363.

[12] Kortenkamp, D., and Weymouth, T. Topological mapping for mobile robots

using a combination of sonar and vision sensing. In Proceedings of the twelfth national

conference on Artificial intelligence (vol. 2) (Menlo Park, CA, USA, 1994), AAAI’94,

American Association for Artificial Intelligence, pp. 979–984.

[13] Kraetzschmar, G. K., Pagès Gassull, G., and Uhl, K. Probabilistic

quadtrees for variable-resolution mapping of large environments. In Proceedings of

the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles (Lisbon, Por-

tugal, July 2004), M. I. Ribeiro and J. Santos Victor, Eds., Elsevier Science.

[14] Kuffner, J. Efficient optimal search of euclidean-cost grids and lattices. In

Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’04) (September

2004), IEEE.

[15] Li, Y., Wang, Y., and Liu, Y. Fiducial marker based on projective invariant for

augmented reality. J. Comput. Sci. Technol. 22, 6 (2007), 890–897.

[16] Mutka, A., Miklic, D., Draganjac, I., and Bogdan, S. A low cost vision

based localization system using fiducial markers. World Congress 17 (2008), 9528–

9533.

[17] Nosrati, M., Karimi, R., and Hasanvand, H. A. Investigation of the * (star)

search algorithms: Characteristics, methods and approaches. World Applied Pro-

gramming 2, 4 (April 2012), 251–256.

[18] Owen, C. B., Xiao, F., and Middlin, P. What is the best fiducial? In The

First IEEE International Augmented Reality Toolkit Workshop (Darmstadt, Ger-

many, Sept. 2002), pp. 98–105.



BIBLIOGRAPHY 16

[19] Portugal, D., and Rocha, R. P. Extracting topological information from grid

maps for robot navigation. In Proc. of 4th Int. Conf. on Agents and Artificial Intel-

ligence (ICAART’2012) (Vilamoura, Algarve, Feb. 2012), pp. 137–143.

[20] Sementille, A. C., Lourenço, L. E., Brega, J. R. F., and Rodello, I. A

motion capture system using passive markers. In Proceedings of the 2004 ACM SIG-

GRAPH international conference on Virtual Reality continuum and its applications

in industry (New York, NY, USA, 2004), VRCAI ’04, ACM, pp. 440–447.

[21] Speers, A., Topol, A., Zacher, J., Codd-Downey, R., Verzijlenberg,

B., and Jenkin, M. Monitoring underwater sensors with an amphibious robot.

In Proceedings of the 2011 Canadian Conference on Computer and Robot Vision

(Washington, DC, USA, 2011), CRV ’11, IEEE Computer Society, pp. 153–159.

[22] Stanco, F., Tanasi, D., Gallo, G., Buffa, M., and Basile, B. Augmented

perception of the past. the case of hellenistic syracuse. Journal of Multimedia 7, 2

(2012), 211–216.

[23] Stentz, A. The focussed D* algorithm for real-time replanning. In Proceedings

of the 14th international joint conference on Artificial intelligence - Volume 2 (San

Francisco, CA, USA, 1995), IJCAI’95, Morgan Kaufmann Publishers Inc., pp. 1652–

1659.

[24] Stentz, A. T. Optimal and efficient path planning for partially-known environ-

ments. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA ’94) (May 1994), vol. 4, pp. 3310 – 3317.

[25] Stentz, A. T. Map-based strategies for robot navigation in unknown environ-

ments. In Proceedings of the AAAI Spring Symposium on Planning with Incomplete

Information for Robot Problems (March 1996).

[26] Sumbal, M. S. U. K. Environment detection and path planning using the e-puck

robot. Master’s thesis, University of Girona, 2010.

[27] Sun, X., Koenig, S., and Yeoh, W. Generalized adaptive A*. In Proceedings

of the 7th international joint conference on Autonomous agents and multiagent sys-

tems - Volume 1 (Richland, SC, 2008), AAMAS ’08, International Foundation for

Autonomous Agents and Multiagent Systems, pp. 469–476.

[28] Sun, X., Yeoh, W., and Koenig, S. Generalized fringe-retrieving A*: faster

moving target search on state lattices. In Proceedings of the 9th International Con-



BIBLIOGRAPHY 17

ference on Autonomous Agents and Multiagent Systems: volume 1 - Volume 1 (Rich-

land, SC, 2010), AAMAS ’10, International Foundation for Autonomous Agents and

Multiagent Systems, pp. 1081–1088.

[29] Sun, X., Yeoh, W., and Koenig, S. Moving target D* Lite. In Proceedings of

the 9th International Conference on Autonomous Agents and Multiagent Systems:

volume 1 - Volume 1 (Richland, SC, 2010), AAMAS ’10, International Foundation

for Autonomous Agents and Multiagent Systems, pp. 67–74.

[30] Thrun, S. Learning occupancy grid maps with forward sensor models. Auton.

Robots 15, 2 (Sept. 2003), 111–127.

[31] Thrun, S., and Bcken, A. Learning maps for indoor mobile robot navigation.

Artificial Intelligence 99 (1998), 21–71.

[32] Thrun, S., and Bucken, A. Integrating grid-based and topological maps for

mobile robot navigation. In Proceedings of the thirteenth national conference on

Artificial intelligence - Volume 2 (1996), AAAI’96, AAAI Press, pp. 944–950.

[33] Wooden, D. T. Graph-based path planning for mobile robots. PhD thesis, Georgia

Institute of Technology, Atlanta, GA, USA, 2006. AAI3248795.

[34] Xu, A., and Dudek, G. Fourier tag: A smoothly degradable fiducial marker

system with configurable payload capacity. In Proceedings of the 2011 Canadian

Conference on Computer and Robot Vision (Washington, DC, USA, 2011), CRV ’11,

IEEE Computer Society, pp. 40–47.


