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0.1 Introduction

Fiducial marker navigation on mobile robots has been achieved successfully by researchers,
for example, in monitoring underwater domains using an amphibious robot [21]. But,
many implementations of these kinds of systems do not optimize the paths that the
mobile robots travel. In most robot navigation systems in which minimum paths are
calculated whilst avoiding obstacles, target tracking is not done using fiducial markers;

instead methods based on GPS coordinates are used.

This chapter reviews literature on the WiFiBoT Lab mobile robot, fiducial markers, the
toolkits available for fiducial marker detection and various search algorithms that can
be used for robot path planning. Current systems that implement fiducial markers for
navigational purposes as well as systems that implement efficient path planning are also

discussed.

The chosen toolkit for marker detection needs to be reasonably accurate and, owing
to the processing and memory constraints on many mobile robots, not too computation-
ally demanding. In addition, the chosen search algorithm needs to have the following

properties:
e It must be able to calculate the optimal path from the robot to the marker, avoiding
obstacles.

e [t must be able to function effectively in known, partially known and unknown

environments.
e It must be able to function effectively with a moving target.

e [t must be sufficiently computationally efficient for use on mobile robots.

0.2 WiFiBoT Lab

Wifibot Lab is a mobile robot intended for educational purposes as well as the develop-
ment of affordable robotic systems!. Processing is done on the robot using an Intel Atom

D510 processor?. Since this high-end mobile robot is being used for experimentation in

Thttp://www.wifibot.com /wifibot-wifibotlab.html
http://ark.intel.com /products/43098 /Intel- Atom-Processor-D510-(1M-Cache-1_66-GHz)
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this project, more common, lower specification robots must be considered when choosing
between the different libraries and algorithms available. WiFiBoT has been used suc-
cessfully in various systems in the past, two of which are mentioned. The first is the
PotPet robot [10]. This robot is a mobile flowerpot that allows users to grow plants in a
more effective and enjoyable way. It is built using a WiFiBoT platform owing to its good
mobility. PotPet is autonomous and automatically moves into areas with more sunlight
as well as towards people when it requires more water. Demetriou et al. [5] describe
the second system, which allows for mobile robot localization using WiFi signal strength
measurements from a number of access points. This system provides a low-cost localiza-
tion method for robotic applications in indoor environments, where GPS is unavailable.

WiFiBoT was the robot chosen for testing the system.

0.3 Fiducial Marker Detection

Fiducial Markers

Fiducial, or fiduciary markers are image like objects, which are designed to be detectable
and which usually contain an interpretable meaning [34]. Fiducials are used in many
fields, including augmented reality, robotics and medicine. In robot navigation systems,
an autonomous robot can follow a set path with the aid of fiducial markers [16]. Such
markers offer performance, identification and localization improvements, and are more
cost-effective when compared to other techniques used for path-planning in unknown en-
vironments [16]. In the medical field, fiducial markers are used when treating prostate
cancer. During the treatment, doctors need to have an accurate view of the prostate
gland and since this view is often not sufficient, gold fiducial markers are placed in the
prostate to enhance vision®.

Fiducial markers can vary from small dots to complicated bar-code images and can be
of various shapes [18]. According to Owen et al. [18] and verified by Li et al. [15], two-
dimensional, bar-coded, square fiducial markers are the best and most popular form of
marker to use. Since these are the types of markers used for augmented reality or robot
navigation systems [8], they seem appropriate. Examples of these types of markers are
ARToolKit or ArUco markers. ARToolKit and ArUco markers consist of a black border
and a black and white, uniquely patterned interior. The border of such a marker aids in

the initial detection of the marker, whilst the interior pattern is used for identification of

3http://clinicaltrials.gov/ct2/show/NCT00061347
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the marker [18]. The pattern must be unique [18] and as stated above, may have meaning
encoded into its graphical representation. Technology such as a robot with an attached
camera and running the required software can easily interpret such a pattern. Owing to
the square nature of the marker, its position and orientation can be calculated accurately

with respect to a calibrated camera [18].

Important Design Criteria

Owen et al. [18] state that, in order for fiducial markers to be most accurately recognized,
various factors should be considered when designing the markers. Firstly, the shape of
the fiducial should emit at least four points. The simplest of these shapes is a square and
due to its simplicity, computational advantages are noted. In addition, the fiducial image
can contain most colours, but it is best if a monochrome colour is used. This is because a
monochrome image is easier to recognize against bright, contrasting backgrounds. Using a
monochrome colour also gives computational advantages as the algorithms are simplified.
Thirdly, the size of the marker is dependent on the resolution of the camera being used,
with the border of the marker constituting at least 13% of the marker’s width. Other
important and more technical criteria concerning effective marker design, according to

Owen et al. [18] are as follows:

There should be no ambiguity when determining the marker’s position and orienta-

tion relative to a camera.

Markers should not favour certain orientations.

If multiple markers are used in the system, they must all be unique.

Simple algorithms that are not intensive should be used to locate and identify the
marker quickly. For these algorithms to be used, the marker itself needs to be

designed with this intent in mind.

Libraries used for Detecting Fiducial Markers

Libraries that can be used for marker detection include ARTag*, ARToolKit® and ArUco®.
According to ARTag’s homepage, it is currently unavailable as a research aid and therefore

is not discussed further for use in this project.

4http://www.artag.net/index.html
Shttp://www.hitl.washington.edu/artoolkit/
Shttp://www.uco.es/investiga/grupos/ava/node /26
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0.3.1 ARToolKit

ARToolkit was first released in 1999 by Dr Hirokazo Kato, after which its further devel-

opment was maintained by the Human Interface Technology Laboratory [1].

ARToolKit is a successful, robust marker based system, commonly used in the augmented
reality field [7]. It is C and C++ language oriented, although Java and Matlab are also
supported. ARToolKit can be used to detect pre-programmed ARToolKit markers in im-
ages and augment three-dimensional virtual objects onto these markers [1]. However, the
marker detection functionality of the software can be used on its own without implement-
ing any of the augmented reality functionality. Once a marker is identified, ARToolKit
returns the marker ID as well as the location of the four corners of the marker relative to
the camera device [6]. ARToolKit markers are two-dimensional and planar, and consist
of a unique, black and white, patterned interior which is surrounded by a black bor-
der [7]. The large contrast between the black and white colours on the markers aids in
ARToolKit’s robustness [7].

Advantages

Two of ARToolKit’s advantages with greatest relevance to this project are that it is open
source for non-commercial use and is widely used [6]. Since it is widely used, there is
extensive research material available. Furthermore, according to the feature list on the
ARToolKit home page [1], ARToolKit supports multiple platforms including Windows,
Linux, Mac OS X and SGI; it has real-time detection for two-dimensional markers; and
there is sufficient documentation. The documentation available includes installation in-
structions, a simple calibration procedure as well as executable sample code. ARToolKit
has precise detection, is easy to use and is well suited for the implementation of low-cost

tracking systems, as the only added hardware requirement is a camera [2].

Disadvantages

Hornecker and Psik [9] point out some disadvantages of using ARToolKit, the first of
which being that it does not recognize a marker if the full marker is not in the camera’s
view. Secondly, owing to its large black border, when the marker is printed on certain
laser printers, light may be reflected causing inconsistencies in the video feed. The lighting
issue can be resolved by printing the markers on an ink-jet printer [9]. Moreover, since
ARToolKit is threshold based [8], a chosen threshold may not detect markers in different
lighting conditions. Hirzer [8] further claims that ARToolKit has a high false positive rate.
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History of Use

ARToolKit has been used extensively in marker tracking and augmented reality and,
according to the "Projects” tab on the ARToolKit homepage, is used globally by over
300 researchers for a wide variety of purposes. Past applications that use ARToolKit
vary from creating virtual environments in which ancient artifacts can be restored and

viewed [22], to tracking human body movements [20].

0.3.2 ArUco - Based on OpenCv

The search for literature on ArUco yielded few results, perhaps owing to its fairly recent
release. As a result, a large section of the literature presented below was found in online

documents such as the ArUco homepage’.

ArUco was developed by Rafael Munoz-Salinas from the University of Cordoba and re-
leased in November 2010 under a BSD license®. It is a basic C++ library used for the
detection of fiducial markers and intended for augmented reality purposes [3]. It is based
on OpenCv (Open Source Computer Vision), a vision based library, which is the most

popular library in the computer vision field [3][4].

Features

According to ArUco’s homepage, some of the features that ArUco offers are listed below:

e Markers can be detected using one line of C++ code.
e Use can be made of AR boards (a grid of markers) to increase detection accuracy.
e There are 1024 different ArUco markers available.

e Since it is based on OpenCv, ArUco detects markers quickly and reliably and is

cross-platform.
e Examples and sample code are available.

e [t is low-cost owing to possession of a BSD license.

Thttp://www.uco.es/investiga/grupos/ava/node /26
8http:/ /softwaredd.net /softs/linux/games/aruco.html
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ArUco also provides various applications with the library, two of which are relevant to this
project [3]. The first application creates a marker, given an identification number, and
saves this as a jpg file for printing. The second application, which is the main application,
detects markers in a live video feed or pre-recorded video. Camera calibration is also

possible using OpenCv.

History of Use

Speers et al. [21] reported using an amphibious, autonomous robot to monitor underwater
sensors. In this system, fiducial markers are displayed on sessile sensors and are used to
communicate with the robot using the ArUco library. ArUco has also been used in various
unpublished projects, some of which are listed on the ArUco homepage. These projects
include: the Soldamatic Project?, the purpose of which is to aid in the training of welders
by using augmented reality to create welding simulations, as well as OpenSpace3D,

which is used for developing interactive, real-time 3D projects.

0.4 Search Algorithms

Requirements for Project

The robot in this project needs to be able to travel towards the fiducial marker in an
environment that may contain obstacles. Since the robot should travel along the shortest
path, a suitable search algorithm needs to be implemented such that the optimal path,
avoiding obstacles, from the robot’s current position to the marker is chosen. Further-
more, an efficient search algorithm needs to be implemented to keep computation to a
minimum. Incremental search algorithms, some of which are presented below, are search
algorithms that use previous search information when searching for minimal traversals
and therefore can perform faster than searching from scratch [29]. These algorithms are

popular for robot path planning!!.

Most research literature concerning path planning for mobile robots does not take nav-
igation in unknown environments into account but rather, it is assumed that the entire
map is initially known [24]. In this project, the robot will be placed in an environment

which may be partially known or completely unknown as well and will therefore need to

9http:/ /seabery.es/simulador-de-soldadura-soldamatic/?lang=en
Ohttp://www.openspace3d.com/
Hhttp://www-scf.usc.edu/ xiaoxuns/research.html
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acquire map information using its lidar sensor. An algorithm that functions in unknown
environments is therefore required. Since the marker will be moving whilst the robot
attempts to travel towards it, the moving target search problem needs to be taken into
account as well. The moving target search problem is a path planning problem, often

encountered in computer games, where a hunter attempts to catch a moving target [29].

Representing the Environment

A specific robot configuration can be represented using a state, and the distance between
two states can be represented using an arc. Therefore, a graph of these states, joined
together by arcs, can represent a robot’s environment. The search algorithms discussed
use this representation [29][25]. The robot’s environment, or map information, needs to
be stored internally in a structure on the robot. This will allow the robot to update its
map information whenever it is acquired from its sensors, plan an optimal path and know
where to move. Two common structures that can be used to store map information are

metric and topological maps.

Metric maps are usually implemented using occupancy grids. According to Thrun and
Bucken [32], in the area of mobile robotics, occupancy grids are the most successful
environmental representations. This is verified by Kraetzschmar et al. [13]. Although
two-dimensional occupancy grids are most common, three-dimensional grids have also
been implemented [30]. These grids represent the robot’s environment using a matrix of
cells, each of which contains an occupancy value [30][32]. This occupancy value is the
probability that the cell is occupied [32]. Kuffner [14] states that many systems use grid-
based maps to internally represent a robot’s environment and then search for optimal
paths from start to goal states using the grid’s embedded graph. Occupancy maps are
easily implemented and simple to use [13][31]. There is also no ambiguity in determining
the robots position in its grid from its actual position in the environment [31]. Occupancy
maps have the disadvatage of generating maps that are often inaccurate and do not rep-
resent sections of the environment correctly [30]. These inconsistencies generally occur in
busy environments, unlike the environment used in this project. Another disadvantage
of using grid-based maps such as occupancy grids is that, when a high resolution grid is

required, memory requirements can become an issue [19][13].

Topological maps represent the environment using a graph [12]. This graph consists
of a collection of nodes which are connected by arcs. The nodes correspond to distinctive

landmarks and the arcs correspond to the distances between these landmarks. Unlike oc-
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cupancy grids, the resolution of a topological map is purely dependent on the complexity
of the environment. This allows for faster planning and less memory requirements than
when using an occupancy grid [31]. Topological maps have disadvantages in that they are
difficult to implement and maintain in large evironments and that similar landmarks are

often ambigouosly recognized, resulting in inacurate map information [31][32].

Both grid-based and topological maps have their unique advantages and disadvantages.
Therefore, researchers have integrated the two types of maps by generating topological
maps on top of grid-based maps [32][19]. Firstly, the grid-based map is partitioned into
smaller regions. These regions are seperated by criticial lines. An algorithm is then used
to map this partitioned map into a topological graph with each region corresponding to a
node and each critical line corresponding to an arc. This hybrid allows for accurate map

representations as well as efficient planning. [32]

History of Use

Search algorithms have been used extensively in the fields of Computer Science and
Robotics in a wide variety of applications. Examples are: computer games [17] such
as computer chess'?, Google’s famous search engine!3, and robot path planning. Further

applications are discussed below.

Principal Search Algorithms

Although some other search algorithms are mentioned, the main algorithms that I have
investigated for use in the robot’s navigation are A*, the D* family of algorithms, Gen-

eralized Fringe-Retrieving A*, and Moving Target D* Lite.

0.4.1 A*

The A* search algorithm, which is an extension of Dijkstra’s algorithm [17], is one of the
most widely used search algorithms in the field of Artificial Intelligence [29], and forms
the basis for the other search algorithms discussed in this section. It was first introduced
by Hart, Nilsson and Raphael in 1968 [17].

A* performs faster than Dijkstra’s algorithm by using heuristics [17]. It is a best-first

2http: / /verhelst.home.xs4all.nl/chess/search.html
Bhttp:/ /www.techi.com/2012/03/googles-search-algorithm-changes-1998-2012/



0.4. SEARCH ALGORITHMS 9

search algorithm and is used to calculate a minimal path from a start to a goal state [17].
A* calculates paths most accurately when all the map information is known. When not

all the map information is known, D* is recommended**.

According to Sun et al. [29], the moving target search problem can be solved using A*
in a dynamic environment to calculate the path with the lowest cost between the current
start and goal states whenever a change in the environment or a deviation of the goal
state from the current path occurs. This is computationally expensive as the new path

has to be planned from scratch each time a change occurs [29].

0.4.2 D* (Dynamic A¥*)

D* refers to any of the three incremental search algorithms: Original D*, Focused D*
and D* Lite [17]. Stentz first described the original D* algorithm in 1994 [24] and further
developed it in 1995, giving rise to the Focused D* algorithm [23]. D* (Dynamic A*) is
a generalization of A* for partially unknown, completely unknown or dynamic environ-
ments [24][23]. D* Lite differs algorithmically from the other D* algorithms, but is used
to solve the same path-planning problems [17][11]. D* Lite was introduced by Koenig and
Likhachev in 2002 and is based on the authors’ Lifelong Planning A* (LPA*) [11].

Algorithm Description

All three of the D* algorithms can be used to solve the path-planning problem in which a
robot traverses from a start to a goal state in an unknown environment [17]. Since this is
possible in an unknown environment, the three algorithms are also successful in this task
in partially unknown and known environments. Nosrati et al. [17] gives a brief overview
of how these algorithms function.

Initially, assumptions regarding the unknown map information are made and the minimal
path from start state to goal state is calculated. The robot then traverses the planned
path until a discrepancy in the map information is found. This new map information (a
previously unknown obstacle, for example) is then added to the robot’s map information.
If this new information conflicts with the current path, a new minimal path from the
robot’s current position to the goal state is planned. This is repeated until either the
goal state is reached, resulting in success, or no path can be calculated to the goal state,

resulting in failure.

Y“http:/ /theory.stanford.edu/ amitp/GameProgramming/Variations.html
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Map Strategies for Unknown Terrain

When calculating the lowest cost path from the start state to the goal state using partial
map information, three map strategies can be used to estimate the cost values of these
unknown cells [25]. These strategies are known as the optimistic, pessimistic and average
values strategies. For the optimistic strategy, unknown sections of the map are assumed
to be easily traversable areas. For the pessimistic strategy, these sections are assumed to
be the hardest areas to traverse, yet are still traversable. For the average value strategy,
unknown cells are assumed to be similar to the known cells in their surrounding area and

so an average of these cost values is calculated. [25]

Comparison of Original D*, Focused D* and D* Lite

If D* is implemented in an unknown environment, replanning occurs often. As discussed
in the A* review, this replanning calculation can be computationally expensive. D* solves
the computational issue that algorithms such as A* suffer from by using incremental graph
theory techniques [25]. Stentz [25] states that, in environments with many states, D* can
perform hundreds of times faster than brute force replanning algorithms such as repeated
A* searches and, as stated in [17], provided that the goal state is static, the D* algorithms
all outperform repeated A* searches. Stentz [25] further states that D* can guide a robot
in real-time through unknown and dynamic environments. Compared to the original D*,
Focused D* reduces computation by only updating states that are still relevant to the
robots traversal using a heuristic [17]. The Focused D* algorithm is algorithmically com-

plicated and is therefore difficult to understand and implement [11][26].

Unlike, Focused D*, D* Lite is simple to understand and therefore easily analysable
and extendable [17][11]. Koenig and Likhachev [11] state that its efficiency is greater
than or equal to that of Focused D*’s. This is confirmed by Nosrati et al. [17]. Although,
researchers have extended D* Lite in a straightforward manner in order to solve moving

target search problems in changing environments, it is slow [29].

History of Use

The D* algorithm is viewed as a landmark in the area of mobile robot navigation [26] and
has been implemented extensively on mobile robots [11]. Two of these implementations
include indoor Nomad robots and outdoor High Mobility Multipurpose Wheeled Vehicles
(HMMWVs) [11]. It seems that current systems generally implement D* Lite rather
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than the older D* algorithms. Even researchers in Stentz’s lab, from where the D*
algorithm originated, now often use D* Lite instead of D* for their current projects [33].
On Koenig’s research page'®, some applications of D* Lite are listed. These include the
prototype system tested on the Mars rovers ” Spirit” and ” Opportunity”, in which elements
of D* Lite were used. Another was Carnegie Mellon University’s winning DARPA Urban
Challenge vehicle, where elements of D* Lite were used for maneuvers such as navigating

through parking lots and complicated U-turns.

0.4.3 Generalized Fringe-Retrieving A*

Generalized Fringe-Retrieving A* (G-FRA*) was introduced in 2010 by Xiaoxun Sun,
William Yeoh and Sven Koenig [28]. G-FRA* is an incremental search algorithm, which
is a generalization of Fringe-Retrieving A* (FRA*). Tt allows for moving target searches
to be solved on arbitrary graphs instead of using two-dimensional gridworlds, which are
not realistic when working with robotic systems. This algorithm was designed for moving
target search problems in static, known environments. The hunter traverses along the
optimal path from its current state to the current state of the target and whenever the
target deviates from the path, a new optimal path is calculated. This new path is cal-
culated using A*, but instead of replanning from scratch, previous search information is

used. This process is repeated until the hunter catches the target. [29][28]

According to Sun et al. [28], FRA* is the fastest algorithm for moving target search
problems using two-dimension grids and, according to experimentation, G-FRA* proved
to be the fastest algorithm for moving target search problems using arbitrary graphs. It
performed better than Generalized Adaptive A* (GAA*) which was the former fastest
algorithm for the task using arbitrary graphs, by up to one order of magnitude. These
experiments were performed on known state lattices, used for UGV navigation [28]. Al-
though GAA™ was tested in a static known environment [28], it can also be used in

dynamic environments [27].

0.4.4 Moving Target D* Lite

The search for literature on this algorithm yielded few results, perhaps owing to its recent

publication. Moving Target D* Lite (MT-D* Lite) as the name suggests, is an algorithm

http://idm-lab.org/research.html
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used for solving moving target search problems [29]. Specifically, it is an extension of
D* Lite which makes use of the principle behind G-FRA* for recalculation of optimal
traversals from the hunter to the target in dynamic environments [29]. MT-D* Lite is a

recent algorithm introduced by Sun, Yeoh and Koenig in 2010 [29].

Sun et al. [29] state that D* Lite is not suitable for moving target search problems as
it performs slowly. This is because it shifts the map in order to maintain a stationary
start state. Much of the information obtained from previous searches is not reusable ow-
ing to this shift and therefore D* Lite can perform slower than letting A* search from
scratch [29]. Sun et al. [29] go on to state that many other incremental search algorithms
including D*, FRA* and G-FRA*, are not suitable for solving moving target search prob-
lems in dynamic environments. This is because these algorithms were designed for use
in static environments or systems in which the start state is kept stationary [29]. These
performance issues led to the development of the two incremental search algorithms, Basic
MT-D* Lite and MT-D* Lite, which are both extensions of D* Lite, but do not have to
transform the map and solve moving target search problems in dynamic environments [29].
Under experimentation, MT-D* Lite performed four to five times faster than Generalized
Adaptive A* (GAA*) [27], the former fastest incremental search algorithm for solving the
moving target search problem in dynamic environments [29]. GAA* was also introduced
by Sun, Yeoh and Koenig [27].

Basic MT-D* Lite and MT-D* Lite Performance

For moving target search problems in dynamic environments, D* Lite can be used by
calculating the optimal path from the hunter to the target whenever a change in the
environment is observed or the target deviates from the known path. Basic MT-D* Lite
increases the performance of this algorithm by calling its BasicDeletion() method instead
of problematically shifting the map [29]. MT-D* Lite is an optimization of Basic MT-D*
Lite which calls an optimized method, OptimizedDeletion(), instead of BasicDeletion(),
and therefore, also does not require shifting of the map [29]. Pseudocode can be found
in [29] for both the Basic MT-D* Lite and the MT-D* Lite algorithms. MT-D* Lite
achieves improved performance compared to Basic MT-D* Lite by using the principle be-
hind G-FRA* [29]. Under test conditions, Basic MT-D* Lite and MT-D* Lite performed
better than GAA* in both static and dynamic environments. This is due to the fact that
Basic MT-D* Lite and MT-D* Lite reuse previous search information whereas GAA*
searches from scratch [29]. MT-D* Lite also performed better than Basic MT-D* Lite in

both static and dynamic environments [29]. These experiments were performed in both
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static and dynamic, known environments.

The search for literature on the performance of MT-D* Lite in partially unknown and

completely unknown environments yielded no results.

0.5 Conclusion

The discussed literature indicates that systems with similar purposes to this project’s do
exist, but are implemented differently. Although some literature could not be found, it
seems plausible that, using the toolkits and algorithms discussed in this chapter, the pro-
posed robot navigation system can be implemented on mobile robots successfully, meeting
all the project requirements. By implementing this system using a slightly different ap-
proach, this project provides an opportunity to add to the areas of robot navigation using

fiducial markers and robotic path planning.
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