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Abstract

Regarding mobile robots, navigation using fiducial markers has already been achieved

and obstacle avoidance using search algorithms is common. However, the combination

of these two ideas is relatively uncommon, and therefore, is the focus of this research

project. Owing to the mobility of these robots, good performance of the system is of

utmost importance. The relevant options available for the creation of this hybrid system

are investigated, and an efficient system, capable of meeting its objectives, is designed

and implemented on the WifibotLab LIDAR mobile robot. Under testing, the system

showed good performance and proved accurate in terms of marker detection and the

routes determined. Several variables were identified that can be adjusted to increase

accuracy and/or performance even further. Although various setbacks were encountered,

the creation of a system usable in practical scenarios was successful, and therefore viable

for integration and use on other similarly equipped mobile robots.
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Chapter 1

Introduction

1.1 Background

Fiducial marker navigation on mobile robots has been implemented successfully by re-

searchers in various applications such as monitoring underwater domains using amphibi-

ous robots [24]. However, many implementations of these kinds of systems do not opti-

mize the paths that the mobile robots travel. In most robot navigation systems in which

minimal paths are calculated whilst avoiding obstacles, target tracking is not done us-

ing fiducial markers; instead methods based on GPS coordinates are more commonly used.

This project aims to add to the areas of mobile robot navigation and obstacle avoid-

ance techniques. Since most mobile robots have low to moderate processing power owing

to battery life constraints, significant emphasis is placed on the efficiency of the system

built.

1.2 Research Objectives

First, an investigation into the tools available for marker detection and the search algo-

rithms suited to this project is conducted. Using this contextual information, decisions

regarding the design of the system are made, after which the system is implemented. This

system must satisfy certain criteria and therefore the objectives for this research are as

follows:

• Detect fiducial markers accurately using a standard web camera.

1



1.3. THESIS ORGANISATION 2

• Navigate a mobile robot using a fiducial marker in a clear and obstacle-filled envi-

ronment.

• Ensure that the system performs well, and is therefore suitable for less powerful

robots.

1.3 Thesis Organisation

The subsequent chapters of this thesis are organised as follows:

Chapter 2 discusses literature on fiducial marker detection and obstacle avoidance. This

literature consists of previous research conducted in these areas as well as the various

options available for designing the proposed system.

Chapter 3 covers the design of the system. The reasoning behind the design decisions

made are explained, and the structure of the system is described.

Chapter 4 covers the implementation of the system and presents code listings of the

fundamental sections.

Chapter 5 compares the accuracy of the system with its performance when varying cer-

tain parameters regarding marker detection, occupancy grid design and search algorithm

design. Furthermore, it describes the major setbacks encountered during this project.

Chapter 6 gives a brief summary of this thesis, revisits the goals of this project and,

lastly, mentions the possibilities for future work.



Chapter 2

Background

2.1 Introduction

This chapter reviews literature on the WifibotLab mobile robot, fiducial markers, the

toolkits available for fiducial marker detection and various search algorithms that can

be used for robot path planning. Current systems that implement fiducial markers for

navigational purposes as well as systems that implement efficient path planning are also

discussed.

The chosen toolkit for marker detection needs to be reasonably accurate and, owing

to the processing and memory constraints on many mobile robots, not too computation-

ally demanding. In addition, the chosen search algorithm needs to have the following

properties:

• It must be able to calculate the optimal path from the robot to the marker, avoiding

obstacles.

• It must be able to function effectively in known, partially known and unknown

environments.

• It must be able to function effectively with a moving target.

• It must be sufficiently computationally efficient for use on mobile robots.

3



2.2. WIFIBOTLAB LIDAR 4

2.2 WifibotLab LIDAR

WifibotLab LIDAR is a mobile robot intended for educational purposes as well as the

development of affordable robotic systems1. The robot’s specifications are as follows:

• Commell LE-376 Embedded Intel Atom Miniboard

• Intel Atom D510, 1.66 GHz, 1 MB cache

• 1 GB DDR2-667 memory

• Logitech QuickCam R© Sphere AF

• 5.6 m range LIDAR (URG-04LX-UG01)

• 2 x Infrared (IR) sensors

• Atheros AR5413 a/b/g WiFi card

• 4 x 12 V motors

• 2 x Hall encoders

• 12 V NiMh, 9000 mAH Battery with charger

As listed above, the robot is equipped with a LIDAR (Light Detection And Ranging) sen-

sor. This sensor uses light (most often laser pulses) to measure the distances to objects

in its surroundings2. Since the Wifibot robot is well equipped and has high processing

capabilities, it was the robot chosen for testing the system.

As this high-end mobile robot is being used for experimentation in this project, more

common, lower specification robots must be considered when choosing between the dif-

ferent libraries and algorithms available. Wifibot has been used successfully in various

systems in the past, two of which are mentioned. The first is the PotPet robot [10].

This robot is a mobile flowerpot that allows users to grow plants in a more effective and

enjoyable way. It was built using a Wifibot platform owing to its good mobility. PotPet

is autonomous and automatically moves into areas with more sunlight as well as towards

people when it requires more water. Demetriou et al. [5] created a second system, which

1http://www.wifibot.com/wifibot-wifibotlab.html
2http://forsys.cfr.washington.edu/JFSP06/lidar technology.htm
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allows for mobile robot localization using WiFi signal strength measurements from a

number of access points. This system provides a low-cost localization method for robotic

applications in indoor environments where GPS is unavailable.

2.3 Fiducial Marker Detection

Fiducial Markers

Fiducial, or fiduciary markers are image like objects, which are designed to be detectable

and which usually contain an interpretable meaning [37]. Fiducials are used in many

fields, including augmented reality, robotics and medicine. In robot navigation systems,

an autonomous robot can follow a set path with the aid of fiducial markers [18]. Such

markers offer performance, identification and localization improvements, and are more

cost-effective when compared to other techniques used for path-planning in unknown en-

vironments [18]. In the medical field, fiducial markers are used when treating prostate

cancer. During the treatment, doctors need to have an accurate view of the prostate

gland and since this view is often not sufficient, gold fiducial markers are placed in the

prostate to enhance vision3.

Fiducial markers can vary from small dots to complicated bar-code images and can be

of various shapes [20]. According to Owen et al. [20] and verified by Li et al. [16], two-

dimensional, bar-coded, square fiducial markers are the best and most popular form of

marker to use. Since these are the types of markers used for augmented reality or robot

navigation systems [8], they seem appropriate. Examples of these types of markers are

ARToolKit or ArUco markers. ARToolKit and ArUco markers consist of a black border

and a black and white, uniquely patterned interior. The border of such a marker aids in

the initial detection of the marker, whilst the interior pattern is used for identification of

the marker [20]. The pattern must be unique [20] and as stated above, may have meaning

encoded into its graphical representation. Technology such as a robot with an attached

camera and running the required software can easily interpret such a pattern. Owing to

the square nature of the marker, its position and orientation can be calculated accurately

with respect to a calibrated camera [20].

Important Design Criteria

3http://clinicaltrials.gov/ct2/show/NCT00061347
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Owen et al. [20] state that, in order for fiducial markers to be most accurately recognized,

various factors should be considered when designing the markers. Firstly, the shape of the

fiducial should emit at least four points. The simplest of these shapes is a square and owing

to its simplicity, computational advantages are noted. In addition, the fiducial image can

contain most colours, but it is best if a monochrome colour is used. This is because a

monochrome image is easier to recognize against bright, contrasting backgrounds. Using a

monochrome colour also gives computational advantages as the algorithms are simplified.

Thirdly, the size of the marker is dependent on the resolution of the camera being used,

with the border of the marker constituting at least 13% of the marker’s width. Other

important and more technical criteria concerning effective marker design, according to

Owen et al. [20] are as follows:

• There should be no ambiguity when determining the marker’s position and orienta-

tion relative to a camera.

• Markers should not favour certain orientations.

• If multiple markers are used in the system, they must all be unique.

• Simple algorithms that are not intensive should be used to locate and identify the

marker quickly. For these algorithms to be used, the marker itself needs to be

designed with this intent in mind.

Libraries used for Detecting Fiducial Markers

Libraries that can be used for marker detection include ARTag4, ARToolKit5 and ArUco6.

According to ARTag’s homepage, it is currently unavailable as a research aid and therefore

is not discussed further for use in this project.

2.3.1 ARToolKit

ARToolkit was first released in 1999 by Dr Hirokazo Kato, after which its further devel-

opment was maintained by the Human Interface Technology Laboratory [1].

ARToolKit is a successful, robust marker based system, commonly used in the augmented

4http://www.artag.net/index.html
5http://www.hitl.washington.edu/artoolkit/
6http://www.uco.es/investiga/grupos/ava/node/26
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reality field [7]. It is C and C++ language oriented, although Java and Matlab are also

supported. ARToolKit can be used to detect pre-programmed ARToolKit markers in im-

ages and augment three-dimensional virtual objects onto these markers [1]. However, the

marker detection functionality of the software can be used on its own without implement-

ing any of the augmented reality functionality. Once a marker is identified, ARToolKit

returns the marker ID as well as the location of the four corners of the marker relative to

the camera device [6]. ARToolKit markers are two-dimensional and planar, and consist

of a unique, black and white, patterned interior which is surrounded by a black bor-

der [7]. The large contrast between the black and white colours on the markers aids in

ARToolKit’s robustness [7].

Advantages

Two of ARToolKit’s advantages with greatest relevance to this project are that it is open

source for non-commercial use and widely used [6]. Since it is widely used, there is ex-

tensive research material available. Furthermore, according to the feature list on the

ARToolKit home page [1], ARToolKit supports multiple platforms including Windows,

Linux, Mac OS X and SGI; it has real-time detection for two-dimensional markers; and

there is sufficient documentation. The documentation available includes installation in-

structions, a simple calibration procedure as well as executable sample code. ARToolKit

has precise detection, is easy to use and is well suited for the implementation of low-cost

tracking systems, as the only added hardware requirement is a camera [2].

Disadvantages

Hornecker and Psik [9] point out some disadvantages of using ARToolKit, the first of

which being that it does not recognize a marker if the full marker is not in the camera’s

view. Secondly, owing to its large black border, when the marker is printed on certain

laser printers, light may be reflected causing inconsistencies in the video feed. The lighting

issue can be resolved by printing the markers on an ink-jet printer [9]. Moreover, since

ARToolKit is threshold based [8], a chosen threshold may not detect markers in different

lighting conditions. Hirzer [8] further claims that ARToolKit has a high false positive rate.

History of Use

ARToolKit has been used extensively in marker tracking and augmented reality and,

according to the “Projects” tab on the ARToolKit homepage, is used globally by over

300 researchers for a wide variety of purposes. Past applications that use ARToolKit
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vary from creating virtual environments in which ancient artifacts can be restored and

viewed [25], to tracking human body movements [23].

2.3.2 ArUco - Based on OpenCv

The search for literature on ArUco yielded few results, perhaps owing to its fairly recent

release. As a result, a large section of the literature presented below was found in online

documents such as the ArUco homepage7.

ArUco was developed by Rafael Munoz-Salinas from the University of Cordoba and re-

leased in November 2010 under a BSD license8. It is a basic C++ library used for the

detection of fiducial markers and intended for augmented reality purposes [3]. It is based

on OpenCv (Open Source Computer Vision), a vision based library, which is the most

popular library in the computer vision field [3][4].

Features

According to ArUco’s homepage, some of the features that ArUco offers are listed below:

• Markers can be detected using one line of C++ code.

• Use can be made of AR boards (a grid of markers) to increase detection accuracy.

• There are 1024 different ArUco markers available.

• Since it is based on OpenCv, ArUco detects markers quickly and reliably and is

cross-platform.

• Examples and sample code are available.

• It is low-cost owing to possession of a BSD license.

ArUco also provides various applications with the library, two of which are relevant to this

project [3]. The first application creates a marker, given an identification number, and

saves this as a jpg file for printing. The second application, which is the main application,

detects markers in a live video feed or pre-recorded video. Camera calibration is also

7http://www.uco.es/investiga/grupos/ava/node/26
8http://softwaredd.net/softs/linux/games/aruco.html
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possible using OpenCv.

History of Use

Speers et al. [24] reported using an amphibious, autonomous robot to monitor underwater

sensors. In this system, fiducial markers are displayed on sessile sensors and are used to

communicate with the robot using the ArUco library. ArUco has also been used in various

unpublished projects, some of which are listed on the ArUco homepage. These projects

include: the Soldamatic Project9, the purpose of which is to aid in the training of welders

by using augmented reality to create welding simulations, as well as OpenSpace3D10,

which is used for developing interactive, real-time 3D projects.

2.4 Search Algorithms

Requirements for Project

The robot in this project needs to be able to travel towards the fiducial marker in an

environment that may contain obstacles. Since the robot should travel along the shortest

path, a suitable search algorithm needs to be implemented such that the optimal path,

avoiding obstacles, from the robot’s current position to the marker is chosen. Further-

more, an efficient search algorithm needs to be implemented to keep computation to a

minimum. Incremental search algorithms, some of which are presented below, are search

algorithms that use previous search information when searching for minimal traversals

and therefore can perform faster than searching from scratch [32]. These algorithms are

popular for robot path planning11.

Most research literature concerning path planning for mobile robots does not take nav-

igation in unknown environments into account but rather, it is assumed that the entire

map is initially known [27]. In this project, the robot will be placed in an environment

which may be partially known or completely unknown as well and will therefore need to

acquire map information using its LIDAR sensor. An algorithm that functions in un-

known environments is therefore required. Since the marker will be moving whilst the

robot attempts to travel towards it, the moving target search problem needs to be taken

into account as well. The moving target search problem is a path planning problem, often

9http://seabery.es/simulador-de-soldadura-soldamatic/?lang=en
10http://www.openspace3d.com/
11http://www-scf.usc.edu/ xiaoxuns/research.html
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encountered in computer games, where a hunter attempts to catch a moving target [32].

Representing the Environment

A specific robot configuration can be represented using a state, and the distance between

two states can be represented using an arc. Therefore, a graph of these states, joined

together by arcs, can represent a robot’s environment. The search algorithms discussed

use this representation [32][28]. The robot’s environment, or map information, needs to

be stored internally in a structure on the robot. This will allow the robot to update its

map information whenever it is acquired from its sensors, plan an optimal path and know

where to move. Two common structures that can be used to store map information are

metric and topological maps.

Metric maps are usually implemented using occupancy grids. According to Thrun and

Bucken [35], in the area of mobile robotics, occupancy grids are the most successful

environmental representations. This is verified by Kraetzschmar et al. [13]. Although

two-dimensional occupancy grids are most common, three-dimensional grids have also

been implemented [33]. These grids represent the robot’s environment using a matrix of

cells, each of which contains an occupancy value [33][35]. This occupancy value is the

probability that the cell is occupied [35]. Kuffner [14] states that many systems use grid-

based maps to internally represent a robot’s environment and then search for optimal

paths from start to goal states using the grid’s embedded graph. Occupancy maps are

easily implemented and simple to use [13][34]. There is also no ambiguity in determining

the robots position in its grid from its actual position in the environment [34]. Occupancy

maps have the disadvatage of generating maps that are often inaccurate and do not rep-

resent sections of the environment correctly [33]. These inconsistencies generally occur in

busy environments, unlike the environment used in this project. Another disadvantage

of using grid-based maps such as occupancy grids is that, when a high resolution grid is

required, memory requirements can become an issue [22][13].

Topological maps represent the environment using a graph [12]. This graph consists

of a collection of nodes connected by arcs. The nodes correspond to distinctive landmarks

and the arcs correspond to the distances between these landmarks. Unlike occupancy

grids, the resolution of a topological map is purely dependent on the complexity of the

environment. This allows for faster planning and less memory requirements than when

using an occupancy grid [34]. Topological maps have disadvantages in that they are dif-

ficult to implement and maintain in large evironments and that similar landmarks are
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often ambiguously recognized, resulting in inaccurate map information [34][35].

Both grid-based and topological maps have their unique advantages and disadvantages.

Therefore, researchers have integrated the two types of maps by generating topological

maps on top of grid-based maps [35][22]. Firstly, the grid-based map is partitioned into

smaller regions. These regions are separated by criticial lines. An algorithm is then used

to map this partitioned map into a topological graph with each region corresponding to a

node and each critical line corresponding to an arc. This hybrid allows for accurate map

representations as well as efficient planning. [35]

History of Use

Search algorithms have been used extensively in the fields of Computer Science and

Robotics in a wide variety of applications. Examples are: computer games [19] such

as computer chess12, Google’s famous search engine13, and robot path planning. Further

applications are discussed below.

Principal Search Algorithms

Although some other search algorithms are mentioned, the main algorithms that I have

investigated for use in the robot’s navigation are A*, the D* family of algorithms, Gen-

eralized Fringe-Retrieving A*, and Moving Target D* Lite.

2.4.1 A*

The A* search algorithm, which is an extension of Dijkstra’s algorithm [19], is one of the

most widely used search algorithms in the field of Artificial Intelligence [32], and forms

the basis for the other search algorithms discussed in this section. It was first introduced

by Hart, Nilsson and Raphael in 1968 [19].

A* performs faster than Dijkstra’s algorithm by using heuristics [19]. It is a best-first

search algorithm and is used to calculate a minimal path from a start state to a goal

state [19]. Heuristics are methods used to estimate the shortest path from any location in

its map representation to the goal state and therefore improve performance by sacrificing

optimality [17][21]. This means that A* does not guarantee that it will find the optimal

12http://verhelst.home.xs4all.nl/chess/search.html
13http://www.techi.com/2012/03/googles-search-algorithm-changes-1998-2012/
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path from source to goal since it uses a heuristic. However, if a path exists, it will be

found. This is often the optimal path, but when it is not, it is often close to being optimal.

Heuristics are used in scenarios where determining a path that is close to the shortest

path is suitable and where better performance is a requirement. [17]

Algorithm Description

A simple, but concise overview of the A* algorithm according to [15] is as follows. Two

lists, referred to as the “open” and “closed” lists, are maintained. The open list keeps

track of the cells in the occupancy grid that are being considered at the current time and

therefore, still need to be examined. Cells that are considered are those directly surround-

ing (a choice can be made regarding whether to include the diagonal cells) the current

cell, traversable (do not contain obstacles) and are not in the closed list. The closed list

contains cells that have already been examined. Starting from the source, the potential

cells are those directly surrounding the source cell that are traversable, and so these are

added to the open list. These new cells under examination point back to the source cell

and therefore the source cell is their parent. The F value, which is the sum of the cell’s

G and H values, of each of the cells in the open list is then calculated. The G value is

the cost of moving from the source to the cell along the path calculated while the H value

is the estimated cost from the cell to the goal and is based on the chosen heuristic. The

cell with the lowest F value in the open list is then chosen, removed from the open list

and added to the closed list. This process is then repeated from the selected cell. When

surrounding cells are being considered, if they are already in the open list, they are either

updated with a new parent cell as well as a new F and G score if the new path from the

source to the cell is shorter, or they are ignored if the new path is longer or the same

distance. This process is repeated until the target cell is added to the closed list (a path

has been found) or the open list is empty and the target has not been found (no path to

from the source to the goal exists). The path is then determined by following the path of

parent pointers from the goal back to the source. [15]

Heuristics

There are different heuristics that can be used with A*, some of which are discussed be-

low [21]. A heuristic must be chosen according to the needs of the programmer and the

hardware available. If a heuristic, h(n), is such that h(n) = 0, then the heuristic is not

used in the calculation of f(n), and A* becomes Dijkstra’s algorithm. When this heuristic

is used, the shortest path is guaranteed, but the worst performance will be achieved. As

the value of h(n) increases, the accuracy of the algorithm decreases and the performance
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of the algorithm increases and so a trade-off between the two must be decided on. Three

well-known heuristics for use with grid maps are the Manhatten, Diagonal and Euclidean

distance heuristics. [21]

The Manhattan distance heuristic is the standard heuristic for use on square grids and

if movement is restricted to four directions, it is preferable [21]. This heuristic can be

calculated using the formula in Equation 2.1.

h(n) = d× (|n.x− goal.x|+ |n.y − goal.y|) (2.1)

In Equation 2.1, n represents the grid cell that the heuristic to the goal is being calculated

from while the constant d is used to scale the heuristic and is usually set to equal the low-

est cost to move between adjacent grid squares. On the contrary, the Diagonal distance

heuristic, also known as the Chebyshev distance, is useful when movement includes the

diagonal directions, thus allowing movement in all eight directions. Its formula is shown

in Equation 2.2.

h(n) = d×max(|n.x− goal.x|, |n.y − goal.y|) (2.2)

The Euclidean distance heuristic is mainly used when movement is not restricted to the

usual grid directions, but is allowed in any direction. This heuristic can be calculated

using Equation 2.3.

h(n) = d×
√

(n.x− goal.x)2 + (n.y − goal.y)2 (2.3)

Although this heuristic is still usable on grid maps, and although optimal, or close to

optimal paths will be calculated, performance is poor. [21]

A* calculates paths most accurately when all the map information is known. When

not all the map information is known, D* is recommended14.

Moving Target Search Problem

According to Sun et al. [32], the moving target search problem can be solved using A*

in a dynamic environment to calculate the path with the lowest cost between the current

start and goal states whenever a change in the environment or a deviation of the goal

14http://theory.stanford.edu/ amitp/GameProgramming/Variations.html
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state from the current path occurs. This is computationally expensive as the new path

has to be planned from scratch each time a change occurs [32].

2.4.2 D* (Dynamic A*)

D* refers to any of the three incremental search algorithms: Original D*, Focused D*

and D* Lite [19]. Stentz first described the original D* algorithm in 1994 [27] and further

developed it in 1995, giving rise to the Focused D* algorithm [26]. D* (Dynamic A*) is

a generalization of A* for partially unknown, completely unknown or dynamic environ-

ments [27][26]. D* Lite differs algorithmically from the other D* algorithms, but is used

to solve the same path-planning problems [19][11]. D* Lite was introduced by Koenig and

Likhachev in 2002 and is based on the authors’ Lifelong Planning A* (LPA*) [11].

Algorithm Description

All three of the D* algorithms can be used to solve the path-planning problem in which a

robot traverses from a start state to a goal state in an unknown environment [19]. Since

this is possible in an unknown environment, the three algorithms are also successful in

this task in partially unknown and known environments. Nosrati et al. [19] gives a brief

overview of how these algorithms function.

Initially, assumptions regarding the unknown map information are made and the minimal

path from start state to goal state is calculated. The robot then traverses the planned

path until a discrepancy in the map information is found. This new map information (a

previously unknown obstacle, for example) is added to the robot’s map information. If

this new information conflicts with the current path, a new minimal path from the robot’s

current position to the goal state is planned. This is repeated until either the goal state

is reached, resulting in success, or no path can be calculated to the goal state, resulting

in failure.

Map Strategies for Unknown Terrain

When calculating the lowest cost path from the start state to the goal state using partial

map information, three map strategies can be used to estimate the cost values of these

unknown cells [28]. These strategies are known as the optimistic, pessimistic and average

values strategies. For the optimistic strategy, unknown sections of the map are assumed

to be easily traversable areas. For the pessimistic strategy, these sections are assumed to
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be the hardest areas to traverse, yet are still traversable. For the average value strategy,

unknown cells are assumed to be similar to the known cells in their surrounding area and

so an average of these cost values is calculated. [28]

Comparison of Original D*, Focused D* and D* Lite

If D* is implemented in an unknown environment, replanning occurs often. As discussed

in the A* review, this replanning calculation can be computationally expensive. D* solves

the computational issue that algorithms such as A* suffer from by using incremental graph

theory techniques [28]. Stentz [28] states that, in environments with many states, D* can

perform hundreds of times faster than brute force replanning algorithms such as repeated

A* searches and, as stated in [19], provided that the goal state is static, the D* algorithms

all outperform repeated A* searches. Stentz [28] further states that D* can guide a robot

in real-time through unknown and dynamic environments. Compared to the original D*,

Focused D* reduces computation by only updating states that are still relevant to the

robot’s traversal using a heuristic [19]. The Focused D* algorithm is algorithmically com-

plicated and is therefore difficult to understand and implement [11][29].

Unlike Focused D*, D* Lite is simple to understand and therefore easily analysable and

extendable [19][11]. Koenig and Likhachev [11] state that its efficiency is greater than

or equal to that of Focused D*. This is confirmed by Nosrati et al. [19]. Although, re-

searchers have extended D* Lite in a straightforward manner in order to solve moving

target search problems in changing environments, it is slow [32].

History of Use

The D* algorithm is viewed as a landmark in the area of mobile robot navigation [29] and

has been implemented extensively on mobile robots [11]. Two of these implementations

include indoor Nomad robots and outdoor High Mobility Multipurpose Wheeled Vehicles

(HMMWVs) [11]. It seems that current systems generally implement D* Lite rather

than the older D* algorithms. Even researchers in Stentz’s lab, from where the D*

algorithm originated, now often use D* Lite instead of D* for their current projects [36].

On Koenig’s research page15, some applications of D* Lite are listed. These include the

prototype system tested on the Mars rovers “Spirit” and “Opportunity”, in which elements

of D* Lite were used. Another was Carnegie Mellon University’s winning DARPA Urban

Challenge vehicle, where elements of D* Lite were used for maneuvers such as navigating

through parking lots and complicated U-turns.

15http://idm-lab.org/research.html
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2.4.3 Generalized Fringe-Retrieving A*

Generalized Fringe-Retrieving A* (G-FRA*) was introduced in 2010 by Xiaoxun Sun,

William Yeoh and Sven Koenig [31]. G-FRA* is an incremental search algorithm, which

is a generalization of Fringe-Retrieving A* (FRA*). It allows for moving target searches

to be solved on arbitrary graphs instead of using two-dimensional gridworlds, which are

not realistic when working with robotic systems. This algorithm was designed for moving

target search problems in static known environments. The hunter traverses along the

optimal path from its current state to the current state of the target and whenever the

target deviates from the path, a new optimal path is calculated. This new path is cal-

culated using A*, but instead of replanning from scratch, previous search information is

used. This process is repeated until the hunter catches the target. [32][31]

According to Sun et al. [31], FRA* is the fastest algorithm for moving target search prob-

lems using two-dimensional grids and, according to experimentation, G-FRA* proved to

be the fastest algorithm for moving target search problems using arbitrary graphs. It

performed better than Generalized Adaptive A* (GAA*) which was the previous fastest

algorithm for the task using arbitrary graphs, by up to one order of magnitude. These

experiments were performed on known state lattices, used for UGV navigation [31]. Al-

though GAA* was tested in a static known environment [31], it can also be used in

dynamic environments [30].

2.4.4 Moving Target D* Lite

The search for literature on this algorithm yielded few results, perhaps owing to its recent

publication. Moving Target D* Lite (MT-D* Lite) as the name suggests, is an algorithm

used for solving moving target search problems [32]. Specifically, it is an extension of D*

Lite that makes use of the principle behind G-FRA* for recalculation of optimal traver-

sals from the hunter to the target in dynamic environments [32]. MT-D* Lite is a recent

algorithm introduced by Sun, Yeoh and Koenig in 2010 [32].

Sun et al. [32] state that D* Lite is not suitable for moving target search problems as

it executes slowly. This is because it shifts the map in order to maintain a stationary

start state. Much of the information obtained from previous searches is not reusable ow-

ing to this shift and therefore D* Lite can perform slower than when A* searches from

scratch [32]. Sun et al. [32] go on to state that many other incremental search algorithms
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including D*, FRA* and G-FRA*, are not suitable for solving moving target search prob-

lems in dynamic environments. This is because these algorithms were designed for use

in static environments or systems in which the start state is kept stationary [32]. These

performance issues led to the development of the two incremental search algorithms, Basic

MT-D* Lite and MT-D* Lite, which are both extensions of D* Lite, but do not have to

transform the map and solve moving target search problems in dynamic environments [32].

Under experimentation, MT-D* Lite performed four to five times faster than Generalized

Adaptive A* (GAA*) [30], the previous fastest incremental search algorithm for solving

the moving target search problem in dynamic environments [32]. GAA* was also intro-

duced by Sun, Yeoh and Koenig [30].

Basic MT-D* Lite and MT-D* Lite Performance

For moving target search problems in dynamic environments, D* Lite can be used by

calculating the optimal path from the hunter to the target whenever a change in the

environment is observed or the target deviates from the known path. Basic MT-D* Lite

increases the performance of this algorithm by calling its BasicDeletion() method instead

of problematically shifting the map [32]. MT-D* Lite is an optimization of Basic MT-D*

Lite which calls an optimized method, OptimizedDeletion(), instead of BasicDeletion(),

and therefore, also does not require shifting of the map [32]. Pseudocode can be found

in [32] for both the Basic MT-D* Lite and the MT-D* Lite algorithms. MT-D* Lite

achieves improved performance compared to Basic MT-D* Lite by using the principle be-

hind G-FRA* [32]. Under test conditions, Basic MT-D* Lite and MT-D* Lite performed

better than GAA* in both static and dynamic environments. This is due to the fact that

Basic MT-D* Lite and MT-D* Lite reuse previous search information whereas GAA*

searches from scratch [32]. MT-D* Lite also performed better than Basic MT-D* Lite in

both static and dynamic environments [32]. These experiments were performed in both

static and dynamic, known environments.

The search for literature on the performance of MT-D* Lite in partially unknown and

completely unknown environments yielded no results.

2.5 Summary

The discussed literature indicates that systems with a similar purpose to this project

do exist, but are implemented differently. Although some literature could not be found,
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it seems plausible that, using the toolkits and algorithms discussed in this chapter, the

proposed robot navigation system can be successfully implemented on mobile robots,

meeting all the project requirements. By implementing this system using a different

approach, this project provides an opportunity to add to the areas of robot navigation

using fiducial markers and robotic path planning.



Chapter 3

System Design

3.1 Introduction

The aim of this project is to design and implement a system that allows for the navigation

of the Wifibot robot in open and busy environments using a fiducial marker. In Chapter

2, the criteria for this system were outlined and various options available for the construc-

tion of this system were investigated. This chapter focuses on the design of the system

and therefore, the design decisions made concerning these options and the reasoning for

these decisions are discussed.

The first section of this chapter covers the detection and tracking of the marker, af-

ter which algorithms for avoiding obstacles are discussed. Details regarding the robot’s

movement in the different modes of the system are then explained. Finally, the overall

picture detailing how the different parts of the system fit together, is presented.

3.2 Fiducial Marker Tracking

The two libraries that were considered for tracking fiducial markers were ARToolKit

and ArUco. Both of these libraries seemed likely candidates as they are both open

source, cross-platform and, even though little information was found on the use of ArUco,

both libraries are well documented. Owing to ARToolKit’s robustness, popularity and

widespread use, it was initially chosen. Unfortunately technical issues were experienced

19
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when attempting to set up ARToolKit and it was therefore abandoned. It seems that

much tweaking is required in order for ARToolKit to function correctly with Ubuntu

10.04 LTS which is perhaps owing to ARToolKit being out-dated. Since ArUco seemed

just as competent, offers many great features as discussed in Chapter 2, and is up-to-date,

it was chosen instead. Version 1.2.4 of Aruco was used along with OpenCv 2.4.2.

As noted previously, ArUco ships along with various sample applications, making under-

standing the library significantly simpler. Since ArUco was chosen, creating the marker

could be done using one of the sample applications. This application allows for the pro-

duction of up to 1024 different fiducial markers and saves the marker as a jpg image file

of specified resolution. The marker can then be printed out and immediately used for

tracking. Three different markers created using ArUco are shown in Figure 3.1. A marker

size of length 160 mm was initially used for testing the system and after the system had

been completed, the marker length was varied and a size that proved accurate whilst not

too visually distracting was chosen.

Figure 3.1: Markers created with ArUco

Most inexpensive web cameras with panning capability do not have the ability to pan in

a full 360 degree circle. The web camera that the robot is equipped with is the Logitech

QuickCam R© Sphere AF1, and this camera, with its motorized tracking, can only view

within 189 degrees of its surroundings. Note that this means that the camera’s maximum

pan capabilities are less than 189 degrees. Since the entire 360 degree view of the robot’s

surroundings cannot be observed, when the robot turns to avoid an obstacle, the marker

needs to be kept within the camera’s panning limits. Since ArUco, like ARToolKit, can

only detect the marker if the entire marker is in the camera’s feed, this means that the en-

tire marker must be kept within 94.5 degrees either way from the robot’s forward direction.

1http://www.logitech.com/en-in/webcam-communications/webcams/quickcam-sphere-af
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Owing to the nature in which the search algorithm is used, which is discussed in Sec-

tion 3.3, it is not therefore possible for paths calculated avoiding certain arrangements of

obstacles to be traversed. To work around this problem, either a camera that can rotate

a full 360 degrees is required or several cameras would need to be set up, thus capturing

the robot’s entire surroundings. If several cameras are used, they would need to overlap

each other’s feeds since, as mentioned, ArUco requires that the full marker be visible in

the frame currently being processed. A problem that would then arise is that as soon as

the marker is brought too close to the web cameras, the cameras would need to overlap

further. Another possibility would be to stitch adjacent frames to form a single frame for

analysis, but this would be overly complicated. If the robot’s entire environment could

be viewed, the angle that the robot could turn from the marker would then be limited by

the LIDAR, which captures data in a 240 degree arc.

Owing to limited equipment and time constraints, these solutions were left for future

work, and the single camera system was kept and certain environmental layouts ignored.

To access the web camera’s controls, MJPG-Streamer2 could have been used by issu-

ing HTTP GET requests to the server, but this would mean that more than one process

would be accessing the webcam since MJPG-Streamer would also stream video from the

webcam. Only a single process can access the web cameras streaming functionality at a

time without tweaking and so if OpenCv is to be used for the video feed, this would not

be easily achievable. Instead, the web camera controls were accessed directly in the same

way that they are accessed by guvcview3, an interface for viewing and capturing video

from Linux UVC compatible devices as well as changing camera settings and controls.

This direct access is done using ioctl4 system calls along with the V4L2 I/O5 controls.

Guvcview can also be used to disable automatic exposure and other automatic lighting

enhancements of the camera as these hinder frame rates severely, and thus make the sys-

tem seem clumsy. Since the system is intended for use in near perfect lighting conditions,

disabling these settings should not affect accuracy.

2http://sourceforge.net/projects/mjpg-streamer/
3http://guvcview.sourceforge.net/
4http://pubs.opengroup.org/onlinepubs/009695399/functions/ioctl.html
5http://en.wikipedia.org/wiki/Video4Linux
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3.3 Search Algorithms

As mentioned in Chapter 2, the search algorithm to be implemented needs to produce

optimal paths, use minimal resources so that it is viable on low specification robots, and

function in known, partially known and unknown environments. These requirements are

satisfied by the replanning A* algorithm, the D* algorithms, the Generalized Adaptive

A* (GAA*) algorithm and the Moving Target D* Lite (MT-D* Lite) algorithm. Since

the system must further cater for a moving target, the GAA* and the Moving Target

D* Lite algorithms are more suitable as they should perform better. According to the

experimentation mentioned in Chapter 2, MT-D* Lite performs four to five times faster

than GAA* and therefore MT-D* Lite was initially chosen for the path calculation.

Unfortunately, it was soon realized that the odometer readings from the robot’s motors

were inaccurate and not repeatable. Owing to the poor accuracy, using this algorithm

efficiently was not possible because the odometer readings were to be used to indicate

the position of the robot on the environment’s map representation when adding data to

the map acquired from the robot’s LIDAR. It was not possible to localize the robot using

odometry or other means such as vision-based localization, as this was out of the scope

of the project. As a result, a map representation could not be constructed accurately.

Inaccurate odometer readings also meant that it was not possible to move the robot for-

ward by a certain distance, find out how far the robot had moved in a certain direction

or find out how much the robot had turned in a certain direction, and therefore a path

could not be calculated and then followed until a discrepancy in the map was found. This

meant that even if a map representation could be built, none of the search algorithms

mentioned thus far could be used in their usual manner to aid in traversing the robot from

source to goal. The search algorithm could be used to calculate an optimal path, but that

path could not be followed. If another robot with accurate odometer readings were used,

the map representation could be constructed as discussed above and then MT-D* Lite

could be implemented successfully. Thus, owing to this issue being common with many

inexpensive robots, this project’s aim was changed to implementing a system that would

allow the Wifibot robot to follow a fiducial marker, avoiding obstacles optimally, whilst

not relying on odometry at all.

Two algorithms were designed that could traverse past obstacles without having to know

how far the robot had moved or turned, or that did not require the robot to move or

turn by a certain amount. The first algorithm does not make use of a search algorithm,



3.4. ROBOT MOVEMENT 23

but instead uses simple mathematics on the data captured from the LIDAR to make de-

cisions about the direction to move in. This algorithm only considers obstacles that are

close to the robot - within 1 m - and is therefore prone to making incorrect decisions.

While the algorithm was successful in avoiding obstacles in simple scenarios, there were

many restrictions on the layout of these obstacles and the algorithm was unsuccessful in

more complicated environments. Such restrictions include that obstacles needed to be

spaced far apart from each other, especially when the robot was not facing the opening

between the two obstacles directly. Another issue was that, when only considering ob-

stacles within 1 m of the robot, determining optimal paths from the robot to the goal

correctly was highly unlikely. Owing to the algorithm’s shortcomings, it is not discussed

further.

A new algorithm was therefore needed, which led to the design of the second algorithm.

This algorithm uses A* in a similar manner to when it is used in a dynamic environment as

discussed in Chapter 2. The new algorithm differs, however, as the A* path is replanned

every few hundred milliseconds instead of whenever a discrepancy in the map is found

or the goal moves. Therefore a path is calculated only to determine in which direction

the robot should move next. The robot is then issued the appropriate command and a

new path is calculated. Since no information regarding the previous path calculated is

reusable, using an incremental search algorithm would no longer result in improved per-

formance. This is the reason that the A* search algorithm was chosen. This algorithm is

discussed in detail in Chapter 4. As mentioned in Chapter 2, two-dimensional occupancy

maps are the most successful environmental representations in the area of mobile robotics.

For this reason, and owing to their simplicity, which makes for easy understanding and

implementation, this representation was chosen over the more complicated topological

map representation to represent the robot’s environment in this project.

3.4 Robot Movement

3.4.1 Accessing Robot Functionality

Wifibot’s motors are accessible via the RS232 port on the robot chassis. This is the port

that the robot’s IR sensors and odometer and speed readings are read from as well. In

order to move the robot in a continuous manner, the specific move command needs to be

given every x ms, with x having a value of at most 250 ms. Therefore, since an interval of
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250 ms would give us reasonable accuracy with regard to movement and would be least

straining on system performance, this interval was chosen. Accessing the LIDAR and the

web camera on the robot is done in their respective manners as these devices have their

own manufacturers and are not part of the robot. This is explained in a later section.

3.4.2 Follow Marker Design

ArUco is used to detect the marker in the current frame of the web camera video feed.

The resolution of the video feed is set manually using OpenCv to 640x480. This reso-

lution was chosen initially and was used until the system had been implemented. After

implementation, the resolution was varied and tested according to the performance of

ArUco’s detect method and the marker detection accuracy. These results along with the

final decision with regard to the best resolution are discussed in Chapter 5.

To keep track of the marker, the robot’s web camera must pan, keeping the marker in its

view. Therefore, after the marker has been detected, the center needs to be determined.

If the center of the marker is not within two vertical thresholds, the camera must pan to

keep the marker’s center within these thresholds. These two thresholds should be set to

40% and 60% of the resolution width. Therefore, if a resolution of 640x480 is used, the

thresholds will be vertical lines placed at x=256 and x=384. Figure 3.2 shows the marker

being detected using ArUco with the thresholds edited in.

Figure 3.2: Detection with ArUco
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Since the robot needs to follow the marker and not just the camera, once the camera has

panned a certain amount the robot should turn towards the marker and while the robot is

turning, the camera should remain centered on the marker. The robot should then keep

turning until its front has lined up with the camera’s front. Therefore, once the robot has

finished turning, the robot will be facing in the direction of the marker, and so will the

camera. Since the robot needs to turn once the camera has panned past a certain amount,

the amount that the camera has panned must be stored and when this amount exceeds

either of the two thresholds, the appropriate move commands can be issued to the robot

motors. Since the maximum amount that the webcam can pan in either direction is 4000,

which is roughly 65 degrees from the camera’s default position, these two thresholds are

set at -1000 and 1000, roughly -16.2 and 16.2 degrees from the camera’s default position,

respectively.

Having covered the turning of the robot, now we explain how the robot follows the marker

successfully. Forward movement commands are issued to the robot when the marker is

detected and the robot is not turning. This means that if the marker is moved to the

left or right in the robot’s view, the robot continues moving forward while the web cam-

era pans. When the camera pans past one of the web camera thresholds, however, the

robot stops moving forward and turns in the correct direction until it is facing the marker

directly. The marker following process then continues. All this is done in a loop that

iterates as fast as it can process frames, and therefore, a lower resolution may be crucial

to ensure acceptable responsiveness of the system as a whole.

While following the marker, at some stage the robot could catch up to the marker. If

this happens, a stop command is sent to the robot when the distance between it and the

marker is less than a certain threshold, which was set to 750 mm as this distance seemed

appropriate. The process for calculating the distance from the robot to the marker is

explained below. First, a few calculations are done using the (x,y)-coordinates of the

detected marker. The greatest length in pixels from one corner to another of the marker

needs to be determined and in the case of the diagonal lengths, such as the length from

the marker’s top-left corner to bottom-right corner, the length along the x-axis (or y-axis,

since these are the same) must be estimated by calculation for comparison. These lengths

can be easily determined using trigonometry, since whenever a marker is detected, the x

and y pixel coordinates for each of its corners are stored in the marker’s Marker variable,

which is mentioned later. When the marker is a certain distance from the robot, the

value of its greatest length will be similar for all orientations of the marker, and thus

this distance can be robustly determined. In order for the distance from the robot to the
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marker to be calculated, a scaling constant is needed. To calculate this scaling constant,

a few distances from the robot’s web camera to the marker were measured and the longest

length between the marker’s corners at that distance was recorded. The scaling constant

was then calculated by finding the average of the longest length in pixels multiplied by

the measured distance from the robot’s camera to the marker, which was found to be 37.

Therefore, the distance between the robot and the marker, given the longest length in

pixels, can be calculated using the formula presented in Equation 3.1.

distance(mm) =
37

longestlength
× 1000 (3.1)

Note that this is an extremely rough estimate for the actual distance from the robot to

the marker and its accuracy can be affected by the height that the marker is held above

the ground as the vertical dimension was ignored in the calculations for simplicity. In

practice however, this does not cause any issues as very little accuracy is required for

this distance. Originally, to estimate the distance between the robot’s camera and the

marker, the ArUco area or perimeter methods were used on the detected marker, but this

was not as robust as the above method under certain orientations of the marker. This

calculated distance to the marker is not only used to issue a stop command to the robot

when the marker is too close, but is also used in placing the goal for the A* algorithm in

the occupancy grid as explained in the next section.

3.4.3 Obstacle Avoidance

The URG-04LX-UG01 LIDAR6 from Hokuyo is the LIDAR attached to the robot used

in this research. It can be accessed by making use of the URG library that is provided by

the manufacturer. There are two modes to choose from when reading from the LIDAR,

GD scan and MD scan. The GD scan, which is the read once mode, was chosen for this

system. The MD scan is the mode for continuously reading from the LIDAR, but, if

delays occur between consecutive reads, errors can occur.

The data returned from the LIDAR is stored in an array containing the distances (in

mm) to obstacles from the LIDAR. Since this LIDAR has a scan range of 240 degrees and

the gap between each scan is 0.35 degrees, the array contains 685 valid distance values.

Note that the LIDAR also has a dead zone as shown in Figure 3.3. Several measurements

recorded in this dead zone are also present in the returned array, but are not valid, and

6http://www.hokuyo-aut.jp/02sensor/07scanner/urg 04lx ug01.html
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therefore, must be ignored. As the scans occur from right to left in an anti-clockwise

direction, the distances are indexed in the array with the rightmost distances starting at

the beginning of the array and the leftmost distances contained towards the end of the

array.

Figure 3.3: LIDAR capabilities

In the various scenarios that are mentioned later, a method is needed for determining

whether obstacles exist in the robot’s near path. Since the robot’s width is 0.38 m, a

rectangle of 0.44 m (adding 30 mm to each side for certainty) by 1 m directly ahead of

the robot as shown in Figure 3.4, represents the robot’s near path ahead. If any obstacles

are detected within this rectangle from the LIDAR scan, the robot’s path is said to be

obstructed, else the path ahead is clear.

Figure 3.4: Rectangle used for checking path ahead

To construct the occupancy map, after the LIDAR has returned the array containing

the distances from the robot to the nearby obstacles, the data in the array needs to be
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converted into (x,y)-coordinates and then into occupancy grid coordinates. In Chapter 4,

more detail regarding these conversions are presented. The obstacles are then placed in

the occupancy grid. After a path has been calculated from the robot to the goal, avoid-

ing the obstacles, and the robot has been issued a move command, the above process is

repeated continuously to acquire updated map data, thereby updating the path to the

goal. Note that for the first algorithm mentioned in Section 3.3 that does not make use

of a search algorithm, only the array returned by the LIDAR is needed. No conversions

need to take place as no map is built.

Since the LIDAR can measure up to 5.6 m in its 240 degree scan range, a decision was

made regarding how much of the surrounding environment needs to be considered when

using A* to calculate the path. If the entire scanned area is represented, the occupancy

map will be larger and therefore A* will perform more slowly. When less scanned area is

represented, although performance is increased, the chance that incorrect or less optimal

paths are chosen increases. Initially, the entire scan range was represented as the robot

used in this system is reasonably powerful. However, after performance testing on the

implemented prototype, a suitable scan range was found.

Another decision made regarding the occupancy grid, was the size of the area that each of

the grid cells represent. The greater the area that each cell covers, the fewer cells needed

in the grid, meaning better performance can be achieved. On the other hand, if each cell

represents a smaller area, more cells are needed, resulting in a more accurate representa-

tion. This decision could only be made after performance testing, and so, initially each

cell represented a ground area of 7744 mm2, with the length of each side being 88 mm.

For convenience hereafter, the distance represented by the sides of each cell is referred

to as the cell size. The reason that a length of 88 mm was chosen is that it is a fifth

of 440 mm, which is the robot’s width (note that the width of the robot is greater than

the length). This means that whenever an obstacle is inserted into the occupancy grid,

additional obstacles are also inserted into all cells that are within two cells of the obstacle

- meaning that 24 additional obstacles are inserted. This eliminates the possibility of

calculating paths that are too narrow for the robot to traverse. Since a cell size of 88 mm

is used, the scan area is limited to 5588 mm.

An extra two rows and columns are needed surrounding the grid for reasons explained

below and therefore, the dimension of the occupancy grid is 131x131. The actual valid

area, ignoring the area behind the robot, makes up a grid with dimensions 127x127. The

two rows and the two columns on each side of the grid give an extra four rows and four
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columns, thus giving the final dimensions of 131x131. Since the fiducial marker will often

be held by a person, the data returned from the LIDAR includes the detection of the

person’s feet or lower legs. This data is then exaggerated by placing an extra 24 obstacles

surrounding each cell in which the person is detected. The goal cell is therefore often

surrounded by obstacles, eliminating the chance of a path to the goal being found. To

prevent this from happening, obstacles (actual or exaggerated) surrounding the goal cell

(all cells within four cells of the goal cell) are not placed in the occupancy grid. A sim-

ilar issue is experienced surrounding the robot’s cell, where obstacles near to the robot

exaggerate and cause the cell to become completely surrounded. This too, eliminates

the chance of a path being calculated. To solve this issue, obstacles close to the robot

cannot be completely ignored, as this would result in the robot making contact with the

obstacles. Instead a simple algorithm, which is discussed in Chapter 4, was designed, to

solve this issue.

Since the LIDAR scans in an arc shape and the occupancy grid is a square, a ring of

obstacles, two obstacles deep, is placed surrounding the robot’s scan area. This is the

reasoning for the addition of the extra two rows and columns mentioned above. Two

lines of obstacles, once again two obstacles deep, are also placed from directly behind the

robot to the ring of obstacles along the 120 degree and -120 degree scan line from the

robot’s LIDAR. The ring and the two lines are placed such that paths that are out of the

scan area specified by the user or in the dead zone of the LIDAR cannot be calculated.

The reason that both the ring and the two lines are two obstacles deep is that if all eight

surrounding cells on the occupancy grid are considered for movement, and when a single

line of obstacles is placed diagonally, paths can be calculated that get through into the

area that the ring and lines are trying to block off. Figure 3.5 illustrates the occupancy

grid with the ring and two lines of obstacles placed in it.

Figure 3.5: Occupancy grid showing blocking obstacles
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On the occupancy grid, the robot is placed in the cell at row and column 65 - the center

of the grid. If the LIDAR scan range is limited or a different cell size is used, this will

affect the dimension of the grid and therefore it is likely that the center of the grid will

have a different row and column number. In order to place the goal on the grid, the angle

between and the distance from the robot to the marker need to be calculated or estimated.

Estimating the distance has already been discussed in Section 3.4.2. Estimating the

angle is done by dividing the stored pan position, discussed earlier, by 61.5. The reason

for using 61.5 is that when the camera pans by a value of 100, the measured rotation of

the camera is 1.626 degrees and 100/61.5=1.626. The goal cell is then determined using

these two values; a detailed process of how this is done is given in Chapter 4. It should be

noted that these two values are estimated and only reasonable accuracy is required since

there is no need to pinpoint the exact location of the marker on the map because we are

working with a 88 mm resolution and, even if the goal cell is off by one or two cells, the

system should not function any differently.

Another decision that needed to be made concerned the number of directions in which the

robot can possibly move on the occupancy map, or rather, which of the eight surrounding

cells are eligible. For this project the choice was between four (no diagonal movement)

and eight (includes diagonal movement) directions. If the robot can only move in four

directions, fewer cells are considered for movement and thus the A* algorithm performs

faster, but the paths calculated will not be as optimal as if eight possible directions are

used. When eight directions are considered the performance is reduced. After implemen-

tation, the difference in performance was reviewed and a final decision made. Initially,

all eight possible directions were considered for movement. The Diagonal (Chebyshev)

heuristic was selected for use with the A* algorithm for reasons discussed in Chapter 2.

If the final decision were changed to consider only the four adjacent directions, the Man-

hattan heuristic would be used along with the A* algorithm.

Every time the LIDAR scans the surrounding area, a map is constructed and a new path

from the robot to the marker is calculated. Therefore, two OpenCv Mat images showing

the path avoiding the obstacles are created and displayed each time the LIDAR scans.

The first of these images contains the robot’s surrounding environment as it is (without

any extra obstacles added or ignored), while the second shows the exaggerated map (with

the 24 extra obstacles added and the obstacles surrounding the goal cell removed) so that

the user can obtain a clear picture of what is happening.
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3.4.4 Searching

Owing to the circumstances concerning the robot’s poor odometer accuracy, it is not pos-

sible to implement an elegant manner in which the robot can wander. Under different

circumstances, when the marker is lost, the most recent location of the marker could be

kept as the goal and then the robot could traverse towards it in an attempt to find it again.

Once that location has been reached, a wandering process could begin. An example of

a wandering algorithm that could be used if the robot’s odometry were accurate would

be to randomly choose a cell in the occupancy map to set as the goal and then traverse

towards the goal while panning the webcam searching for the marker. Cells could also no

longer be traversable (by setting the cell in the occupancy map appropriately) once they

have been traversed, provided that placing an obstacle in that cell would not close off any

area that had not yet been searched. This is done to avoid searching in areas that have

already been searched in.

Since this approach was not possible, when the marker is lost, the robot and its cam-

era remain stationary for 5 s, thus allowing sufficient time for the user to display the

marker in the camera’s view. If the marker has not been detected by the time that this

period has elapsed, the marker is searched for by panning the web camera all the way

in one direction and then all the way in the other direction. The direction in which the

web camera initially pans is the direction in which the marker was last detected. If the

marker has still not been detected, the robot performs a turn of roughly 360 degrees

(roughly, since the odometry cannot be measured). The direction of this turn is towards

the direction in which the marker was last detected. Thus, after the 5 s time period has

elapsed, the searching mode includes three stages - panning the camera in the most likely

direction, panning the camera in the other direction and, finally, the robot performing a

full 360 degree turn. If the marker has not been detected after these three stages have

been performed, another 5 s delay occurs, followed by a repeat of the search process.

3.5 Putting it all together

As discussed in Sections 3.4.2 - 3.4.4, the state of the robot at any time is either: following

the marker normally when no obstacles are in its path, avoiding obstacles in an attempt

to follow the marker normally, or searching in an attempt to find a lost marker. This

means that the robot can be in one of three different modes at any time. After all the
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devices have been initialized and all the startup processes performed, the system enters

into the main loop. When entering the loop, mode 3 - the searching mode - is the default

and thus this is the robot’s initial mode. The searching process as described in Section

3.4.4 is carried out until the marker is detected. On detection of the marker, the robot

switches to mode 1 - following the marker normally - by default, and begins following

the marker. The robot remains in mode 1 provided that no obstacles are detected in the

robot’s path, meaning that no obstacles are detected within the rectangle described in

Section 3.4.3. If an obstacle is detected inside this rectangle, the system switches into

mode 2, obstacle avoidance mode. For a transformation from mode 2 back to mode 1, the

robot needs to have successfully avoided any obstacles in its path to the marker. Then,

the system changes back into mode 1 if either the marker is detected directly ahead of the

robot and the path ahead of the robot is clear, or the marker is detected and its distance

from the robot is 750 mm or less. If the marker is lost in either mode 1 or mode 2, the

robot switches to mode 3. Whenever a switch to mode 3 occurs, the mode that is being

switched from is recorded so that when the marker is detected again, the previous mode

can be reinstated. The switching between modes is represented visually using a state

diagram in Figure 3.6.

Figure 3.6: State diagram of mode switching

In order for this system to be implemented successfully, three loops are required, two of

which are run in separate threads that are spawned at startup. The first of these is the

main loop for the system. This loop receives frames from the camera, detects the marker
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in the frames, pans the web camera, sets a flag to indicate that the robot’s motors should

be issued specific commands provided the system is in mode 1 or mode 3, and displays

the video feed showing the detected marker. Note that in this loop, a flag indicating that

the robot should move in a certain direction is set. This flag is checked in the second

loop, which is where the actual commands to the robot’s motors are issued. If the flag

is set to move forward and is not changed for the next few seconds, the move forward

command is continuously issued to the motors and, for this reason, this process needs to

be implemented using a simultaneously executing loop. This loop runs in its own thread,

the robotmove thread.

Figure 3.7: Information flow between looping threads

The third loop is used to read data from the LIDAR and indicate to the main loop whether

the path ahead of the robot is clear. When the system is in mode 2, this loop also handles

the obstacle avoidance process and the display of the optimal path, calculated to avoid

the obstacles. When calculating the optimal path avoiding the obstacles in mode 2, this

third loop, like the main loop, sets a flag instructing the robot’s next move. The search

algorithm is therefore called from this loop. Since data from the LIDAR must be read

continuously, the loop has been implemented to run in its own thread, which is called the
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readlidar thread.

These three loops, along with some of the system’s main functionality, are shown in

Figure 3.7. When the system starts up, all the devices are initialized and various startup

processes are performed. After this, the two threads, robotmove and readlidar, are created

and execution of these two loops begins. After these threads have been spawned, the third

loop, where the marker detection takes place, is started in the main() method itself.

Since this system requires quite a few processes running in parallel, implementation needs

to be carried out using good coding practice and must be as efficient and optimal as

possible. Even though the robot used in this system has high specifications, as discussed

in Chapter 2, the system was designed in such a way as to require as few resources as

possible since many other mobile robots have much lower harware specifications.

3.6 Summary

In this chapter, design decisions regarding the options investigated in Chapter 2 were

made. Some of these decisions proved impractical owing to hardware issues experienced

with the Wifibot robot, and therefore, some of these options were reconsidered. ArUco

was finally chosen for the detection of fiducial markers and the A* search algorithm, used

in a repetitive manner, for obstacle avoidance. Owing to their popularity and simplicity,

occupancy grids were chosen to represent the robot’s environment. The manner in which

the robot would function as well as how the system would operate were described in detail.



Chapter 4

System Implementation

4.1 Introduction

Whereas Chapter 3 covered the design of the system, this chapter deals with the imple-

mentation of the system. As mentioned previously, implementation was done in C++ on

the robot itself.

The first section of this chapter shows how the robot’s different devices were accessed.

Marker detection using ArUco and the logic behind the robot’s navigation when following

the marker normally are then discussed. Next, the process of constructing the occupancy

grid, calculating an optimal path to the marker and determining the direction in which

the robot should move, is detailed. Finally, implementation-specific details concerning

the searching process are presented.

4.2 Accessing Robot Functionality

The Robot’s Motors

Issuing commands as well as accessing information such as the odometer readings and

the current speed of Wifibot’s motors were done through the robot’s RS232 serial port as

mentioned in Chapter 3. If required, other information such as information from the IR

sensors could also be obtained through this port. When issuing a command, data is sent

to the serial port, which then sends the command to the DSPIC33F, the microcontroller

35
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that controls the robot’s motors. Reading is done in a similar manner. Before sending

or receiving data from the serial port, the port needs to be opened and initialised at a

baud rate of 19200. Once the port has been opened and initialised, data can be sent to or

read from the robot, in the form of a buffer. For setting the robot’s motors to a certain

speed in a certain direction, the RS232 serial port expects nine 8-bit characters to be sent

in a buffer in a particular format. The important indices of this buffer are indices three

to seven. The third and fourth characters make up the desired speed of the robot’s left

motor while the fifth and sixth make up the speed of the right motor. According to the

“Protocol Sheet” document available for download from the manufacturer’s website1, the

seventh 8-bit character is decomposed as follows:

Bit 7 (128) - Left side closed loop speed control :: 1 -> ON / 0 -> OFF

Bit 6 (64) - Left side forward/backward speed flag :: 1 -> Forward / 0 -> Reverse

Bit 5 (32) - Right side closed loop speed control :: 1 -> ON / 0 -> OFF

Bit 4 (16) - Right side forward/backward speed flag :: 1 -> Forward / 0 -> Reverse

Bit 3 (8) - PID speed :: 1 -> 10 ms / 0 -> 50 ms (50 ms is recommended)

Bit 2 (4) - Not used, set to 0 (future option)

Bit 1 (2) - Not used, set to 0 (future option)

Bit 0 (1) - Not used, set to 0

For the robot to move smoothly, move commands must be issued periodically, at least

every 250 ms. If data is not sent after 250 ms, a timeout occurs and the robot’s speed is

set to zero, therefore causing movement to become jerky. To send a move command to

the robot the three methods discussed in Appendix A.1 are used.

To move the robot forward using both motors at a speed of 130 tics, the setRS232Motor33f()

method is called in the manner shown in Listing 4.1.

1 while ( true ) {
2 setRS232Motor33f (hUSB, 130 , 130 , 80) ;

3 us l e ep (250000) ; // s l e e p in microseconds

4 }

Listing 4.1: Move robot forward continuously

According to Appendix A.1 and Listing 4.1, to send a command, a buffer needs to be

filled with the appropriate hexadecimal values, and then sent one byte at a time to the

1http://www.wifibot.com/page5.php
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RS232 port. Note that the characters in the buffer’s second to seventh indices are used

to calculate the cyclic redundancy check (CRC) value, which is then stored in the buffer’s

eighth and ninth indices. To give the robot a turn command at the same speed as in

the example in Listing 4.1, the seventh character in the buffer must be changed from 80

(64+16) to 16 for a left turn or 64 for a right turn. These values can be easily calculated

using the information on the seventh character, decomposed as mentioned earlier. As

mentioned in Chapter 3, robot commands are issued from a seperate thread owing to

the command having to be resent every 250 ms. The main section of this thread, the

robotmove thread, is shown in Listing 4.2.

1 void∗ robotmove (void ∗) {
2

3 // a l l ows f o r te rminat ion from main ( )

4 pth r ead s e t canc e l t ype (PTHREAD CANCEL ASYNCHRONOUS, NULL) ;

5

6 //move robot

7 // speeds : min=70, max=240

8 while (1 ) {
9 i f ( move cmd == 0) { //move forward

10 setRS232Motor33f (hUSB, 130 , 130 , 80) ;

11 us l e ep (250000) ;

12 }
13 else i f ( move cmd == 1) { // turn l e f t

14 setRS232Motor33f (hUSB, 160 , 160 , 16) ;

15 us l e ep (250000) ;

16 }
17 else i f ( move cmd == 2) { // turn r i g h t

18 setRS232Motor33f (hUSB, 160 , 160 , 64) ;

19 us l e ep (250000) ;

20 }
21 else

22 us l e ep (250000) ;

23

24 // . . .

25 }
26 }

Listing 4.2: The robotmove thread

Here, it can be seen how the flag, move cmd, is set to instruct the robot to move in a

particular manner. Since the thread loops until the user ends the program, the thread’s

cancel type has been set, as seen in line 4, so that it can be terminated easily from the
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main loop when the user requests the program to shut down.

To read data from the robot, the process is reversed. The DSPIC33F sends 21 char-

acters every 10 ms to the RS232 port. This data is accessed by first reading from the

serial port and then extracting the data from the buffer. Reading from the robot’s chassis

was successful but, as mentioned before, the accuracy of the odometer readings was poor,

and since this was the only reason for data to be read, this functionality was not required.

Web Camera Control

Two methods for panning and tilting the web camera were implemented successfully. The

first method involved using MJPG-Streamer, as described in Chapter 3. The GET re-

quests were given to the server by making use of the cURL2 library. Since the camera’s

feed could not be accessed by OpenCv at the same time as the MJPG-Streamer server

was running, another method for accessing the camera controls was needed. Panning and

tilting were eventually implemented using ioctl system calls along with the V4L2 I/O

controls as discussed in Chapter 3. Listing 4.3 shows the function called to pan or tilt the

web camera and in line 31 an example is given of how to pan the camera to the left by a

small amount.

1 void p a n t i l t ( int dev , int pan , int t i l t , int r e s e t ) {
2 struct v 4 l 2 e x t c o n t r o l x c t r l s [ 2 ] ;

3 struct v 4 l 2 e x t c o n t r o l s c t r l s ;

4

5 i f ( r e s e t > 0) {
6 switch ( r e s e t ) {
7 case 1 :

8 x c t r l s [ 0 ] . id = V4L2 CID PAN RESET ;

9 x c t r l s [ 0 ] . va lue = 1 ;

10 break ;

11 case 2 :

12 x c t r l s [ 0 ] . id = V4L2 CID TILT RESET ;

13 x c t r l s [ 0 ] . va lue = 1 ;

14 break ;

15 }
16 c t r l s . count = 1 ;

17 c t r l s . c o n t r o l s = x c t r l s ;

18 }
19 else {

2http://curl.haxx.se/
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20 x c t r l s [ 0 ] . id = V4L2 CID PAN RELATIVE ;

21 x c t r l s [ 0 ] . va lue = pan ;

22 x c t r l s [ 1 ] . id = V4L2 CID TILT RELATIVE ;

23 x c t r l s [ 1 ] . va lue = t i l t ;

24 c t r l s . count = 2 ;

25 c t r l s . c o n t r o l s = x c t r l s ;

26 }
27 i f ( i o c t l ( dev , VIDIOC S EXT CTRLS , &c t r l s ) < 0 )

28 per ro r ( ”VIDIOC S EXT CTRLS − Pan/ T i l t e r r o r . Contro l s are not

a v a i l a b l e \n” ) ;

29 }
30

31 p a n t i l t ( dev , 1 0 0 , 0 , 0 ) ; // pans webcam to the l e f t

Listing 4.3: Pan/tilt controls

Tilting or resetting the camera can be done by setting the third and fourth parameters

of the function appropriately. The only time that the camera is tilted in this system

is immediately after it is reset. When the system starts up, the camera is reset to its

default position and therefore tilted up slightly to account for the height of a person hold-

ing the marker. The camera is also reset after it pans, searching for the marker in mode 3.

Reading Data from the LIDAR

In Chapter 3, two modes for reading data from the LIDAR - the GD scan and the MD

- were mentioned. Since the GD scan was found to be more suitable, it was chosen for

implementation as explained below. After the LIDAR device’s setup and variable reser-

vation processes have been performed, a request for the GD data is sent to the LIDAR

device. After a successful response, the data is retrieved into the data array mentioned

in Chapter 3. Listing 4.4 shows the process of requesting, retrieving and then accessing

the data from the LIDAR.

1 int min length = urg minDistance(&urg ) ;

2 int max length = urg maxDistance(&urg ) ;

3

4 // reque s t f o r LIDAR GD data − s i n g l e read mode

5 int r e t = urg requestData(&urg , URG GD, URG FIRST, URG LAST) ;

6 i f ( r e t < 0)

7 u r g e x i t (&urg , ” urg requestData ( ) ” ) ;

8

9 // r e c e p t i o n o f data
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10 int max = urg rece iveData (&urg , data , data max ) ;

11 i f (max < 0)

12 u r g e x i t (&urg , ” urg rece iveData ( ) ” ) ;

13

14 for ( i = 0 ; i < n ; i++) {
15 i f ( ( data [ i ] <= min length ) | | ( data [ i ] >= max length ) )

16 continue ; // i gnore out o f range va lue s

17 p r i n t f ( ”%d : %ld \n” , i , data [ i ] ) ;

18 }

Listing 4.4: Request and retrieval of LIDAR data

4.3 Detection and Following

By making use of OpenCv, streaming from the web camera and processing each frame

received from it is simple and neat. Once a VideoCapturer object has been instantiated

and opened, frames can be read from it in a loop and processed in the same iteration

before the next frame is obtained. Decisions on what actions the robot should perform in

mode 1 and mode 3 are all made in this loop. ArUco allows the detection of markers in an

image using a single line of code as shown in Listing 4.5. This listing shows an example of

using OpenCv and ArUco to: stream images from a web camera, detect a marker in the

image, draw a box around the marker, calculate the x-coordinate of the marker’s center

and output the marker’s details.

1 int key = 0 ;

2 int cente rx ;

3 f loat marke r s i z e = 0 . 1 5 9 ;

4 MarkerDetector marker detec tor ;

5 CameraParameters cam params ;

6 VideoCapture v ideo cap tu r e r ;

7 vector<Marker> markers ;

8 Mat input img , input img copy ;

9

10 // capture u n t i l ESC

11 while ( key !=27 && v ideo cap tu r e r . grab ( ) ) {
12 cente rx = −1; // a l s o to check i f marker detec ted

13 v ideo cap tu r e r . r e t r i e v e ( input img ) ;

14 marker detec tor . de t e c t ( input img , markers , cam params , marke r s i z e ) ;

15 input img . copyTo ( input img copy ) ;
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16 for (unsigned int i = 0 ; i < markers . s i z e ( ) ; i++) {
17 markers [ i ] . draw ( input img copy , Sca l a r (0 , 0 , 255 ) , 2) ; // o u t l i n e marker

18 cente rx = markers [ i ] . getCenter ( ) . x ; // get x coord o f c en t e r o f marker

19 }
20 imshow ( ” Live f e ed ” , input img copy ) ; //show output

21 key=waitKey (2 ) ;

22 }

Listing 4.5: Dectection using ArUco

As seen in this listing, when ArUco’s detect method is called, the markers vector contains

information on as many markers, stored as Marker variables, as are detected in the cur-

rent frame. For this system, since only one marker was needed, the vector only contains

up to one marker at a time.

To make decisions regarding whether the robot should pan its camera in a certain di-

rection, or turn itself in a certain direction etc., conditional statements containing the cri-

teria for such decisions discussed in Chapter 3 were implemented. Two examples showing

these kinds of decisions are given in Listing 4.6. Note that these are just examples and al-

though they do exist in the system as shown, the scope in which they are used is different.

1 // example 1

2 i f ( ( cente rx != −1) && ( centerx < 128) && ( pan pos <= 4000) ) {
3 p a n t i l t ( dev , 100 , 0 , 0) ; // pans webcam to the l e f t

4 pan pos += 100 ;

5 cam pan = true ;

6 // . . .

7 }
8 else i f ( ( cente rx != −1) && ( centerx > 192) && ( pan pos >= −4000) ) {
9 p a n t i l t ( dev , −100, 0 , 0) ; // pans webcam to the r i g h t

10 pan pos −= 100 ;

11 cam pan = true ;

12 // . . .

13 }
14

15 // example 2

16 i f ( ( cente rx != −1) && ( pan pos > 1000) ) {
17 move cmd = 1 ; // robot turns l e f t

18 turn marker = 1 ; // used to i n d i c a t e that robot i s turn ing l e f t towards

the marker

19 not de t e c t ed = 0 ;

20 // . . .
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21 }
22 else i f ( ( cente rx != −1) && ( pan pos < −1000) ) {
23 move cmd = 2 ; // robot turns r i g h t

24 turn marker = 2 ; // used to i n d i c a t e that robot i s turn ing r i g h t towards

the marker

25 not de t e c t ed = 0 ;

26 // . . .

27 }

Listing 4.6: Implementation of various decisions

The actual panning of the camera is done from within these if statements whilst the

movement of the robot is done by setting the global variable move cmd appropriately.

This variable is then checked in the loop in the robotmove thread and according to its

value the appropriate move command is sent to the robot’s motors.

An issue was experienced during implementation where, owing to the marker being moved

quickly around in the camera’s view, individual frames became blurred, causing ArUco

not to be able to detect the marker. This in turn would caused the robot to change

to mode 3, and subsequently stop. The marker would again be detected soon after the

motion had stabilized causing the robot to switch back to mode 1 and continue following.

This caused the robot to move in a jerky manner. To solve the problem, the variable,

not detected - used in Listing 4.6, was introduced in an attempt to smooth the robot’s

movement. The variable is a simple counter that counts from zero to four and is incre-

mented by one whenever the marker is not detected. When it reaches four, the marker is

considered lost and the system changes to mode 3, but whenever the marker is detected,

not detected is reset to zero. This allows for much smoother movement when following the

marker. Note that this functionality is crucial to the smoothness of the robot’s movement,

especially when the frame rate of the camera is low.

4.4 Obstacle Avoidance

Path Ahead Rectangle Implementation

In order for the system to switch from mode 1 to mode 2, at least one obstacle needs to be

detected in the path ahead of the robot. This path ahead, as mentioned in Chapter 3, is

defined to be the rectangular area ahead of the robot, which is represented using an array
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with the indices representing the scan number of the LIDAR and the distance from the

LIDAR to the edge of the rectangle being stored in the appropriate indices. Figure 4.1

shows a more detailed representation of this rectangle.

Figure 4.1: Detailed representation of rectangle

It can be seen in this figure that the “rectangle” only has three straight sides. This is

indeed the case as the side from corner 1 to corner 5 is actually triangular because the

scan range of the LIDAR is limited to create this fourth “edge”. Nevertheless, the shape

is still referred to as a rectangle.

Since the size of the arc that the LIDAR needs to check to see if obstacles are in its

direct path is roughly 119 degrees, and since the LIDAR scans with a 0.35 degree reso-

lution, the array has 340 elements. The distances from the location of the LIDAR along

their respective LIDAR scan lines of the first 137 elements as well as the last 137 elements

of the array are represented by the two blue lines from corners 1 to 2 and corners 5 to 4,

respectively, as shown in Figure 4.1. The values for the first blue line are the same as those

for the second and are calculated using formula A given in Listing 4.7. The distances for

elements 137 to 169 and 170 to 202 are represented by the two green lines from corners

2 to 3 and corners 4 to 3, respectively. The values for these lines are also equal and are

calculated using formula B. The red lines in the figure represent the distances along their

respective scan lines. Therefore, if the LIDAR scans an obstacle on a certain scan line

and the distance to the obstacle is less than the distance specified in the array at that

scan line’s index, the obstacle is said to be in the robot’s direct path. Listing 4.7 shows

how the values for this array are calculated.

1 int l eng th s [ 3 4 0 ] ; // conta in s d i s t a n c e s in 1m by 0 .44m box f o r LIDAR
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2 f loat ang le = 30 ;

3 int temp ;

4

5 for ( int i = 0 ; i < 170 ; i++) {
6 i f ( i < 137) {
7 temp = (220/( cos ( ( ang le ∗3 . 14 ) /180) ) ) +0.5 ; // formula A

8 l eng th s [ i ] = temp ;

9 l eng th s [339− i ] = temp ;

10 }
11 else i f ( i < 170) {
12 temp = (1000/( cos (((90− ang le ) ∗3 . 14 ) /180) ) ) +0.5 ; // formula B

13 l eng th s [ i ] = temp ;

14 l eng th s [202−( i −137) ] = temp ;

15 }
16 ang le += 0 . 3 5 ;

17 }

Listing 4.7: Rectangle array value calculation

Note that the corresponding values of the array are offset to those of the data array re-

turned by the LIDAR by a value of 215. This is because the size of the arc needed to

check the robot path is 120 degrees whereas the arc that the LIDAR scans is 240 degrees.

In both formulas presented, a value of 0.5 is added to the final distance - the reason being

that the distances are stored as integers and therefore, are automatically rounded down.

By adding a value of 0.5, the lengths are rounded off to the closest whole number.

Obstacle Avoidance Algorithm

As mentioned in Chapter 3, an algorithm was designed to calculate optimal routes from

the robot to the marker avoiding all obstacles in its path by making use of the A* search

algorithm. The pseudo code for this algorithm is as follows:

while true:

1. if marker detected directly in front of robot AND path ahead of

robot is clear:

break out of loop and follow marker normally

else if marker lost:

break out of loop and search for marker

2. lidar scans for obstacles up to 5.6 m away in 240 degree arc

3. obstacle data received from lidar is converted to occupancy map
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coordinates through conversion process described later

4. obstacles are placed in the occupancy map using these coordinates

5. fixed position of robot is placed in occupancy map

6. goal coordinates are calculated using distance from the robot to

marker and angle between direction that robot faces and marker

7. goal placed in occupancy map using goal coordinates

8. A* search algorithm used to calculate optimal path from robot to

marker

9. path calculated is analysed to determine robot action

10. robot given the appropriate command

According to this pseudo code, after A* is used to calculate the path, the path is analysed

to determine which move command the robot should be given. This is done by looking

at the first cell of the occupancy map that the calculated path occupies - the cell that

the robot needs to move to first. The robot is then issued a turn left, turn right, or move

forward command based on this cell before the process is repeated.

This algorithm, although more complex and resource intensive, solves all the issues that

were experienced with the first algorithm and can calculate paths past obstacles in a

range of up to 5.6 m, limited only by the LIDAR’s scan range, versus the 1 m limit of

the first algorithm. Although this algorithm is more complicated because it involves a

search algorithm and requires building a map, it provides more control and is easier to

understand and visualize when compared to the first algorithm, discussed in Section 3.3.

Occupancy Grid Construction

To construct the occupancy grid each time the LIDAR is read, the following steps need to

be carried out. Firstly, since it would be wasteful to recalculate the grid cells for the ring

and the two lines of obstacles each time new data is received from the LIDAR, these cells

are determined once and then stored in an array. Each time that the LIDAR is scanned,

the contents of the array are copied into the new occupancy map before the actual obsta-

cles detected by the LIDAR are inserted. Note that this initial calculation is also done

for the map images that are displayed and the initial data is stored in a Mat variable.

The data that is read from the LIDAR then needs to go through a conversion process

so that coordinates for the occupancy map’s two-dimensional array can be determined.

Figure 4.2 details this process.
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Figure 4.2: Conversion process

As shown in this figure, the LIDAR returns an array with each of its elements containing

the appropriate distance values illustrated by l1 to ln. Since the LIDAR scans with a 0.35

degree resolution, each index of the LIDAR array is a scan 0.35 degrees greater than the

previous scan and therefore can be associated with an angle. Therefore, since the LIDAR

array holds distance and angle information, the Cartesian coordinates for each element

of the array can be calculated. These coordinates are calculated using the first formula

given in Figure 4.2.

Once the (x, y)-coordinates have been calculated, the coordinates for the occupancy grid

can be calculated using the second set of formulas demarcated by 2 in Figure 4.2. The

value 88 in these formulas is the size of the cells in the map and therefore, if a different

cell size is used, this value would change accordingly. The value 44 is half the cell size

and therefore would also change. The reason that half the cell size is added or subtracted

is so that the cell that the robot, or rather the LIDAR, is present in is accounted for as

all distances to obstacles are measured from the center of this cell. Note that a value

of one is either added if xi is positive, or subtracted if xi is negative. This is so that

when converting from a floating point value to an integer, the result is rounded up if xi is

positive, or rounded down if xi is negative.

The results from those calculations are then translated according to the third set of

formulas, so that (0, 0) is the center of the occupancy map. The red cell is the example

cell that has been determined from the formulas discussed, whilst the blue cell is the

center of the occupancy map containing the robot. The value 65 in these formulas depicts

the row and the column number of the center of the occupancy map, since the map is

represented using a two-dimensional array and so row and column zero represent its top

left corner. If a different cell size or limit to the LIDAR scan range is used, the value 65
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would also change. The two-dimensional array’s columns, or x-coordinates, increase from

left to right, and since this is the manner in which it should remain, the x-coordinate is

translated by adding the value of 65. The rows of the array increase from top to bottom.

Since the y-coordinates should increase from the bottom to the top, the additive inverse

of the y-coordinate (i.e., negative y) is first calculated, after which it is translated by

adding the value of 65.

After this conversion process, these coordinates are used for the occupancy grid as well

as the two map images mentioned earlier. Since these images are stored in Mat variables,

which have a similar structure to a two-dimensional array, this is possible. These images

are illustrated in Figure 5.11 in Chapter 5. The robot, as well as the goal cell, which is

discussed later, are represented in these images as blue pixels; the obstacles as red pixels;

and the path from the robot to the goal, also discussed later, as green pixels. Whereas,

the robot, goal, obstacles and the path are represented as differently coloured pixels in

the map images, in the occupancy grid itself, different integers are used for these repre-

sentations.

While explaining how the occupancy map is built, the center cell was said to contain

the robot itself. In fact, this cell actually contains the LIDAR, but will still be referred

to as containing the robot. This is mentioned merely for completeness.

As mentioned earlier, the exaggeration map contains exaggerated obstacles and no ob-

stacles in the near surroundings of the goal cell. There is also an algorithm that limits

obstacle placement surrounding the robot, as mentioned in Chapter 3. Therefore, each

time an obstruction is detected, there is slightly more logic and calculation involved than

that showed in Figure 4.2. The pseudo code below describes the simplified process that

takes place for each obstruction that the LIDAR detects.

for each length in lidar array:

1. calculate cartesian coordinates for obstruction

2. calculate coordinates for occupancy map

3. place obstacle in normal map image

for the actual and each of the 24 extra obstacles:

4. if obstacle being placed surrounding goal cell:

continue

5. else if obstacle NOT being placed surrounding source cell:

place obstacle in exaggerated map
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place obstacle in occupancy grid

//therefore obstacle being placed surrounding robot

6. else if actual obstacle being placed

OR actual obstacle not in surrounding cells

OR actual obstacle in surrounding cells, but extra obstacle being

placed 1 cell away (any direction) from the actual obstacle:

place obstacle in exaggerated map

place obstacle in occupancy grid

//else don’t place the obstacle!

The logic used in placing obstacles surrounding the robot’s cell ensures that any extra

obstacles that need to be added to a particular side of the robot, but which are exagger-

ations of an obstacle detected on a different side, are not inserted. This logic is shown in

part 6 of the pseudocode. Therefore obstacles placed near to the robot do not block off

traversable routes unnecessarily.

In order for the path from the start state to the goal state to be calculated, the goal

coordinates on the occupancy grid need to be calculated. As discussed in Chapter 3,

the goal cell is calculated using the distance from the robot to the marker and the angle

between the front of the robot and the marker. The (x, y)-coordinates for the goal are

calculated using Equations 4.1 and 4.2.

x = distance× cos(angle× π
180

) (4.1)

y = distance× sin(
angle× π

180
) (4.2)

These coordinates are then scaled and translated to a cell on the occupancy map as shown

in the process above. If the distance from the robot to the marker exceeds the distance to

the outer ring, which is determined by the maximum area for the LIDAR to scan, the ob-

stacle is placed at that limited distance. As in mode 1, in mode 2 a counter, not detected,

is kept to smooth out the detection process and therefore if the marker is not detected

for a few frames and then is detected again, the obstacle avoidance process does not halt,

but instead the last location of the goal is used. There is no need to estimate where the

marker will be when it is not detected as the time period is so small owing to the high

frame rate of the camera. Therefore, it is sufficient to use the last known goal coordinate.
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A* Implementation

When first implementing the A* algorithm, the Boost C++ libraries3 were used as they

have their own built in A* search. Although the A* search itself performed reasonably, the

paths it calculated were often not optimal and this was probably owing to the Euclidean

heuristic that was used. Other than this, when using the Boost library methods, there

was little control over decisions such as whether the robot should consider diagonal cells

on the grid when calculating the path or only adjacent cells, and the manner in which the

implementation was carried out seemed overly complicated for the purpose of this project.

Therefore, A* was implemented manually, closely following the method obtained from

the Web4. This simpler implementation, once integrated into the system, performed

much faster than when using the Boost library and was not overly complicated. More-

over, additional functionality could be added to the system with ease. Changing between

different heuristics and considering diagonal cells for movement were achieved easily and

changing to a different heuristic solved the issue of incorrect paths being calculated. Since

performance was improved significantly and much more functionality was gained, this ver-

sion of the A* algorithm was implemented. The exact differences in terms of performance

are given in Chapter 5.

Appendix A.2 shows the code for the chosen A* implementation along with comments.

Some of the less important sections of the implementation have been removed and re-

placed with comments to keep the listing compact. A brief explanation of this algorithm

can be found in Chapter 2. In order to calculate the optimal path from one cell on the

map to another, the pathFind() method in the code is called with the appropriate (x,

y)-coordinates of the two cells. The function returns a string containing the directions to

follow cell by cell.

As seen in the implementation, each cell or node in the occupancy map, when under

consideration, consists of an x- and y-coordinate on the map, a level g(n), and a priority

f(n). These attributes are stored using the node class. All the maps, namely, the oc-

cupancy map itself, the open list map representation, the closed list map representation

and the map containing the back pointers, are represented using integer arrays as seen

in lines 1-4. The open list is represented using a priority queue of node objects. This

3http://www.boost.org/
4http://code.activestate.com/recipes/577457-a-star-shortest-path-algorithm/
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representation is used so that the attributes can be retrieved easily from each node object

and so that the nodes are sorted by highest priority. The nodes in the open list need

to be kept sorted by highest priority because the node with the lowest F value (highest

priority) is chosen next - from where the process is repeated. In order for the priority

queue to be kept sorted with the highest priority, which is the lowest priority value in this

implementation, at the “top” of the queue, the ’<’ operator was overloaded so that when

two nodes were compared, the priority of each node could be compared and the opposite

Boolean result returned.

In this case, all eight cells surrounding the cell currently being evaluated were consid-

ered as neighbours and therefore in the node class’s estimate() method, the Chebyshev

heuristic was chosen as the heuristic of choice. If the number of plausible directions for

movement in the code is changed from eight to four then the Manhattan heuristic, which

has been commented out in line 48, would be preferable. If movement is not restricted

and therefore all eight directions are valid, the cost of moving diagonally is higher than

that of moving in a straight direction. This can be seen in the node class’s nextLevel()

method in line 43 where, if the movement is diagonal, the cost of moving is 14, whereas

the cost is 10 when the movement is straight.

4.5 Searching

As mentioned in Chapter 3, when the marker is lost (mode 3), the process is paused for 5

s before searching for the marker begins. In order to do this, the ctime library was used

to determine when 5 s had elapsed. Until these 5 s have elapsed, the camera is kept facing

in the direction in which it lost the marker and the searching process is not begun. Once

the time elapses, the first stage of the process is executed.

This first stage involves the camera panning from where the marker was last detected, all

the way to the left or right, depending on which direction the marker was last detected

in. The second stage is then panning the camera all the way in the opposite direction. It

is panned by a value of 100 every third iteration of the main loop and therefore the speed

at which the camera pans is proportional to the performance of the system as a whole.

If the system’s performance is poor, frames are either skipped, if the robots hardware

is the cause, or only a few frames are analysed if the camera is at fault. Either way, if

the system’s performance is poor, detection will be difficult if the camera is panning too
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quickly and on the other hand, if the systems performance is good, it is unecessary to pan

the camera slowly. The manner is which this is implemented is therefore ideal.

In the third stage of the process, the robot turns in a 360 degree circle. This is achieved

by using another counter, which is declared globally and thus can be accessed by both

the main loop as well as the robotmove thread. When this third stage begins, the robot

is issued a turn command in the direction of the last marker detection, and every 250

ms, the command is reissued. In the robotmove thread the counter is incremented by one

every 250 ms after the turn command is given. In the main loop the counter is checked

and once it exceeds a value of 37, which is a figure determined through experimentation,

the robot’s motors are no longer issued turn commands. This value of 37 is suitable only

when the robot is on a tiled surface and is turned with a speed of 160 tics. If a different

surface is used or the robot is turned at a different speed, a different value will need to

be determined.

As mentioned in Chapter 3, if the marker has still not been detected, another 5 s de-

lay is imposed, after which the process is repeated.

4.6 Using the System

To start, view and stop the system, the user must have access to the robot’s desktop using

a form of remote login such as VNC from either another machine connected via Ethernet

or Wi-Fi, or from a mobile device such as an Android based tablet PC or smart phone,

provided that the operating system running on the device supports a form of remote

login and is Wi-Fi capable. An Android based mobile device that is Wi-Fi capable is

recommended since VNC applications, such as androidVNC5, are available freely from

the Android Market, and more freedom is achieved when using a wireless mobile device

as opposed to when using a wired, immobile device. To stop execution of the system,

the user presses the escape key. This stops the robot immediately, disconnects from and

closes all the devices such as the web camera, the RS232 port, and the LIDAR, and exits

from the looping threads.

5http://www.freewarelovers.com/android/app/androidvnc
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4.7 Summary

This chapter covered the implementation of the system and included several code listings

to help clarify important sections. The system consists of three loops that run in par-

allel. A brief recap of the main tasks for which each loop is responsible for, is given below:

main() loop: Handles marker detection, the following of the marker when in mode

1, as well as the searching process.

robotmove loop: Responsible for the actual issuing of move commands to the robot

based on decisions made in the other two loops.

readlidar loop: Responsible for constructing the occupancy grid, calculating an op-

timal path to the marker and determining in which direction the robot should move.



Chapter 5

Results and Analysis

5.1 Introduction

In this chapter, experiments measuring the accuracy and the performance of the system

are discussed, the results presented and an analysis of these results given. Variables con-

cerning marker detection, occupancy grid design and the A* search algorithm itself are

then varied and these experiments repeated for the different options. In each of these

experiments, all variables currently not being varied are given their default values. These

values result from the decisions that were originally made. For example, when the amount

of environment that the occupancy grid represents is varied, the cell size of the grid is

kept at 88 mm, the number of cells considered remains 8 and the Chebyshev heuristic is

used. The code used in obtaining the results in this chapter has been left in the final code

as comments.

Decisions made regarding the final system configuration are then listed, some of the

system’s capabilities illustrated and the limitations of the project discussed.

5.2 Marker Detection using ArUco

To increase detection accuracy of the markers or to increase the system’s performance,

various options regarding fiducial marker design as well as the configuration of the system

were experimented with. The following subsections focus on these experiments and their

results. All these experiments were carried out in a well, artificially lit environment.

53
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5.2.1 Marker Size and Camera Resolution

Regarding the design of the fiducial marker, the size of the marker was varied in an

attempt to gain accuracy, by increasing the size, or to reduce the amount of visual dis-

traction, by reducing the size. Accuracy can also be gained by increasing the resolution of

the web camera, or performance increased by decreasing this resolution. Since trade-offs

between accuracy and the amount of visual distraction or performance are important to

the success of the project, these experiments were performed.

Setup and Conduction of Experiment

Three different sized markers were printed out for testing. The side lengths of these

markers measured 130 mm, 160 mm and 200 mm. Regarding camera resolution, three

resolutions, 160x120, 320x240, and 640x480 were tested.

The robot was then set up with its web camera facing slightly upward, as is the case

when the system is in use. The system was then started, with the restriction that no

commands could be sent to the robot’s motors or the web camera, to ensure that the

robot and camera remained stationary, and the mode was manually set to mode 1 - fol-

lowing the marker normally. Therefore, the robot was limited to only detecting markers

directly in front of it. The three markers were then, one at a time, held in front of the

robot, at a height of 1.5 m above the ground. Once they were detected, the markers were

moved further away from the robot’s camera until they were no longer detected robustly.

They were then edged towards the robot to find the maximum distance away from the

robot that the marker was detected perfectly, without being lost in any frames. The

distance along the ground, from the web camera to the marker, was then measured using

a tape measure. Once, distances for all three markers had been recorded, the resolution

of the camera was changed and the process repeated. Note that these distances measured

are slightly less than the actual distance from the robot’s camera to the marker, as the

vertical distance between them has been ignored.

Results and Analysis

A graph showing the results obtained from this procedure is given in Figure 5.1. This

graph clearly shows that by increasing the marker size, the maximum distance at which

the marker can be detected, increases in a reasonably linear manner. Furthermore, it can

be seen that when setting the camera to a resolution of 320x240, as compared to 160x120,

a large increase in accuracy is noted. However, when further increasing the resolution to
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640x480, accuracy increases only marginally. The rate at which the maximum distance

increases as the resolution increases does not seem to be linear, but rather logarithmic.

Figure 5.1: Distance versus marker size for different resolutions

During this experiment, the marker was also held at different orientations, at a distance

slightly less than each marker’s maximum distance. Some of these orientations, held close

to the camera for illustration purposes, are shown in Figure 5.2. Variations in orientation

did not affect detection at all.

Figure 5.2: Detection at different orientations

Only when bright light is present in the environment, such as direct sunlight, does the

orientation of the marker affect its chances of detection.

If the system is set up in a small environment, a smaller marker is often more appro-

priate as detection issues occur when larger markers are close to the camera. These issues
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result owing to ArUco requiring the entire marker to be present in the camera frames and

when a large marker is brought close to the camera, sections of the marker are not viewed.

The opposite applies when the system is used in a large environment, as detection may

need to occur from larger distances and therefore, a larger marker is more suitable.

The decisions arrived at in this project are for environments that are small to medium

sized and therefore a maximum detection distance of around 3 m proved sufficient. This is

mainly owing to the venue that the system was developed in. Detecting at a resolution of

160x120 is therefore not appropriate, as the maximum distance at which markers could be

detected is well less than 3 m. Since a marker with a side length of 160 mm was detectable

at 3 m when using either of the other two resolutions tested, and since greater distances

were not a requirement, this size was chosen for the marker. If larger environments are

used, when using this particular equipment, markers with side lengths greater than 200

mm, although still not too visually distracting, are not recommended as the LIDAR can

only scan up to a range of 5.6 m, and better paths are calculated when the marker is kept

within this range.

5.2.2 Detection Performance

As shown, when the resolution of the camera is increased, detection accuracy increases.

However, when the resolution is increased, the performance of the system decreases. There

are two reasons for this performance decrease. The first is that when using a high resolu-

tion on many inexpensive web cameras, such as the camera used in this system, even with

all automatic lighting disabled, low frame rates are noted. This is without any additional

processing, except merely the running of the camera in programs such as guvcview. The

second reason is that ArUco takes longer to process larger frames, and so fewer frames

from the web camera are processed. Either way, if fewer frames are processed, the usabil-

ity of the system is affected.

Setup and Conduction of Experiment

Firstly, to check the performance of the camera itself, guvcview was used. The desired

resolution was set and the frame rate of the camera was then observed.

Secondly, the performance of the system was tested. This was done by recording the

time taken for the system to process 1000 frames from the camera, at the three different
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resolutions experimented with in the previous section. This was achieved by incrementing

a counter in the system’s main loop from zero to 1000. This time was measured accurately

by making use of the ctime library as follows. When the main loop was first entered, the

system time was recorded, and once the counter had reached 1000, it was recorded again.

Subtracting these two times gives the time taken. From these times, the frames processed

per second for each resolution was calculated by dividing the value of 1000 by the recorded

time.

Results and Analysis

The camera’s performance proved excellent, achieving 30 frames per second, at resolutions

up to 640x480. When the resolution was set higher though, to 960x720, the frames per

seconds dropped to 14.5. Since, increasing the resolution above 640x480 seems unneces-

sary, as discussed earlier, this resolution was not considered further.

The results from testing the system’s performance are given in Table 5.1.

Resolution Time (seconds) Frames Per Second
640x480 90.51 11.05
320x240 33.34 29.99
160x120 33.32 30.01

Table 5.1: Resolution effect on performance

At a resolution of 640x480, only 11.05 frames are processed per second. This large hit to

the performance is due to ArUco’s detect() method taking considerably longer to process

the larger frames. However, at resolutions of 320x240 and 160x120, the system performs

remarkably well, allowing frames to be processed at the camera’s maximum frame rate.

Even though the time taken to process 1000 frames, when lowing the resolution from

320x240 to 160x120, remains the same, there is less strain on the system. The time re-

mains constant because the iteration speed of the system’s main loop is capped at the

maximum rate that frames can be received from the camera. If the system was imple-

mented on a robot with less processing power, a resolution of 160x120 may be crucial to

the performance of the system.

On this robot, when using a resolution of 320x240, frames were processed at their max-

imum speed. Owing to this 171.4% increase in performance from that when using a

resolution of 640x480, and since as discussed in Section 5.2.1, the detection accuracy at

this resolution is only marginally worse than when a resolution of 640x480 is used, this
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resolution was the final choice for use in this project.

Detection from further distances, as well as increased performance could have been achieved

by tracking a brightly coloured, simply shaped object - such as a bright yellow ball, in-

stead of a fiducial marker. Detection distances could be increased because the camera

would need to capture less detail, since no unique patterns like those present on fiducial

markers would need to be detected. Since less detail is required, if the detection distance

were decreased, the resolution of the camera could be lowered further, thus increasing

performance. Performance could be increased further since a less demanding detection

algorithm would be required. An example of such an algorithm is the Camshift1 algorithm.

5.2.3 Automatic Lighting

In all the testing so far, the web camera’s automatic lighting settings were manually

disabled. When enabling the automatic exposure lighting setting, although detection ac-

curacy is not increased when the system is being tested in a well-lit environment, when

the environment is even slightly dark, these settings increase the accuracy significantly.

Unfortunately using this setting comes at a huge performance cost as mentioned in Chap-

ter 3, as the camera’s frame rate is often reduced to single digits, causing the main loop

to iterate slowly, thus causing the robot’s movement to be jerky and the system unusable.

A single experiment, consisting of the same two tests performed in Section 5.2.2, was

carried out to verify whether automatic lighting is plausible when using a low resolu-

tion (160x120). This was done in a reasonably lit environment, since when a darker

environment is used, more automatic lighting is needed, which decreases the camera’s

performance.

Even at this low resolution, the camera’s performance resulted in a frame rate of 14.5

frames per second, noted using guvcview, while the system’s performance was capped at

14.33 frames per second. Owing to this poor performance and the detection accuracy lost

when using a small resolution, using these settings on this particular camera does not

seem plausible.

1Continuously Adaptive Mean Shift: an object tracking method based on colour
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5.3 Occupancy Grid Design

As with the marker design, there were several options concerning the design of the occu-

pancy map. The choice of option affects the optimality of the paths calculated and the

time taken to calculate them. It is important that the paths calculated are as close to

optimal as possible as unnecessary distance traversed is wasteful when considering that

most mobile robots operate on battery power. Owing to the nature in which the A* search

algorithm is used, these paths need to be calculated quickly, otherwise move commands

may be given to the robot when they are no longer appropriate, causing the robot to

behave erratically and possibly make contact with the obstacles.

The following subsections detail the experiments performed, their results and an anal-

ysis of these results.

5.3.1 Area Represented

The first choice regarding the design of the occupancy grid, is how much of the environ-

ment surrounding the robot should be represented. This is easily done by ignoring data

received from the LIDAR that is further away than a specified distance, when building up

the occupancy grid. Consider the example where the goal is placed directly in front of the

robot, at a distance of 5.6 m (the maximum range that the LIDAR can scan). Therefore,

when the LIDAR range is limited, the goal is contained in the cell directly in front of the

robot, but at a distance further than that which the occupancy map can represent. When

the robot begins to move towards the goal, it remains on the outskirts of the grid until

it is closer than the range to which the LIDAR data is limited. Keeping this example

in mind, limiting how much environmental data is represented by the grid, results in the

occupancy grid having fewer cells. If the grid has fewer cells, when the A* algorithm is

used to calculate a path from the robot to the goal, fewer cells need to be considered,

thus boosting performance. This comes at a cost though. Not only might the path that

the robot takes to the goal be unnecessarily longer than the optimal path, but incorrect

decisions regarding which direction the robot should move in to avoid obstacles could be

made, perhaps causing the robot to traverse into a dead-end.

Setup and Conduction of Experiment

For this experiment, the size of the environment that the occupancy map represents was

varied. Three different sized occupancy grids were tested. These grids represent the area
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within 1 m, 3 m and 5.6 m, respectively, from the LIDAR at all angles that the LIDAR is

capable of scanning. These distances are hereafter referred to as the LIDAR’s scan range.

Tests on each grid were performed and the system’s performance measured.

For each run of the experiment, the layout, described earlier in this section, was used.

This layout is shown in Figure 5.3. Since the performance of the system differs according

to different environmental layouts, all runs were performed keeping this layout unchanged.

Figure 5.3: Standard layout used for experiments

As mentioned in the earlier example, the goal was placed 5.6 m away from the robot and

therefore would be located in the cell on the border of the occupancy grid, directly in front

of the robot, for each of the three experiments. Figure 5.3 shows the setup of obstacles

around the robot, where the goal has been placed, and the path that is calculated to the

goal avoiding obstacles, in the case where the occupancy grid represents a scan range of

5.6 m. It is important to note that the obstacles placed to the left and in front of the

robot are within 1 m of the robot. This was intentional, so that similar paths could be

calculated in each experiment. Another point to note is that, the obstacles used through-

out these experiments were reasonably low, not higher than 40 cm. This is because if

obstacles are placed between the robot and the marker, the marker still needs to be in

the camera’s line of sight in order for the goal to be set.

To record the times taken for calculating paths on different sized grids, the robot needed

to be kept stationary and so commands to the robot’s motors were restricted. For each of

the three tests, the time taken for the path, from the robot to the manually placed goal

avoiding obstacles, to be calculated was recorded. This is referred to as test 1. This was

done by recording the current system time just before the pathFind() function shown in

Appendix A.2, was called, and then recording the system time again when the program
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returned from this function. The time taken to calculate the path is therefore the differ-

ence of these two times. The time taken for the entire process - reading from the LIDAR,

building the occupancy grid, updating the map images with obstacle data, calculating the

path using the pathFind() function, updating the grid and images with path information,

and deciding in which direction to move the robot - was also measured. We refer to this

as test 2.

The three occupancy grids were then tested and the two timings recorded for each grid.

These tests were repeated 20 times to achieve more accurate results for each of the occu-

pancy grids, and the average times for the two timings calculated. Note that all perfor-

mance results presented in the next sections are averages of 20 tests.

Results and Analysis

The results obtained from these tests are presented in Table 5.2.

Distance (mm) Total Cells Test 1 Ave (ms) Test 2 Ave (ms)
5588 131x131=17161 145.1 248.8
3036 73x73=5329 33.8 135.9
1012 27x27=729 1.6 102.6

Table 5.2: Scan range effect on performance

Owing to the cell size of 88 mm used in this experiment, the LIDAR scan ranges were

not exactly 1 m, 3 m and 5.6 m, but rather 1012 mm, 3036 mm and 5588 mm, respectively.

Since the amount of area that the grid represents is proportional to the total number

of cells in the grid, these are included in the table. Even though many of the cells in the

grid are never considered owing to the ring and two lines of obstacles placed on the grid,

this should not affect the relationship between the number of cells in the grid and the per-

formance of the two tests. As can be seen in the table, the relationship between the total

number of cells and the time taken for the path to be calculated (test 1) is far from linear,

but rather as the number of cells increase, the performance decreases at a much faster rate.

The times recorded for test 2 are roughly 100 ms more than those recorded for test

1. Since the path calculated in test 1 is also calculated in test 2, the overhead from the

other tasks performed in this test adds just over 100 ms to the overall process, regardless

of the number of cells in the grid. This constant time is due to the LIDAR, which is

capable of scanning 10 times per second, which means that it takes 100 ms to scan once.
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Since the time taken for test 2 is always roughly 100 ms more than that for test 1, this

test was ignored in the remaining experiments.

Although, all the results in Table 5.2 could indicate good performance, these results

denote the performance associated with this particular layout only. In the majority of

scenarios, the time taken for the tasks performed in test 2 to complete, was between 100

and 400 ms when the scan range was set to 5.6 m. However, when more complicated paths

were calculated, the time taken increased to 800 ms using this particular configuration of

variables, causing the system to seem slightly unresponsive, but still usable. When the

scan range was decreased to 3 m, the worst performance noted was around 200 ms for the

completion of the tasks in test 2.

Although the performance is significantly reduced when a larger scan range is used, the

overall paths calculated are closer to being optimal. This is because more of the environ-

ment is considered each time paths are calculated and therefore, more informed routes

are chosen. Under testing, this proved to be the case. In certain scenarios, shorter paths

are chosen when larger scan ranges are used. One can see this by considering the scenario

illustrated in Figures 5.4(a) and 5.4(b). In this scenario the goal has been set to the left

of the robot, 5.6 m distant.

(a) 3 m (b) 5.6 m

Figure 5.4: Exaggerated maps using different scan ranges

In Figure 5.4(a), the scan range has been limited to 3 m. Here an incorrect path to the

goal has been calculated since crucial information regarding the environment has been

ignored. In Figure 5.4(b), the scan range is set to 5.6 m, and therefore more information

regarding the robot’s surroundings is taken into consideration. This extra information

proves useful and allows an optimal path to the goal to be calculated.
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Although the above scenario shows a case where it is preferable to have a larger scan

range, in practice, these scenarios are not common and it is most often unnecessary. This

is because the LIDAR cannot detect obstacles behind obstacles, causing many openings

and blocked off areas further away, to remain undetected. Therefore, in most scenarios,

where the area contains a reasonable number of obstacles, a smaller scan range, most

often gives the same result as a larger one.

5.3.2 Occupancy Grid Resolution

The second decision regarding the occupancy grid’s design, is how fine the resolution of

the grid should be. This is done by varying how much of the environment each cell in

the grid represents. By increasing the resolution of the grid, the number of cells in the

grid increases, similar to varying the LIDAR’s scan range, but the size of the surrounding

environment represented by the grid remains the same, whereas this amount is increased

when increasing the scan range. The process of determining in which cells of the occu-

pancy map a detected obstacle should be placed, was explained in Chapter 3. Figure 5.9

shows the formulas used for this process with a cell size of 88 mm. For different cell sizes,

the values in these formulas need to be changed accordingly.

As the resolution of the occupancy grid is increased, the number of cells in the grid

increase (cell size reduces), thus representing the environment more accurately. This al-

lows for smaller openings to be traversed and tighter corners around obstacles to be taken,

thus reducing the distance to the goal. However, as when increasing the scan range, when

increasing the resolution, performance decreases. When the resolution decreases, the op-

posite occurs - an increase in performance is noted, but the representation of the robot’s

environment is less detailed. Openings in the environment that could be traversed are

often not detected and when traversing around obstacles, extra distance is travelled.

Setup and Conduction of Experiment

For this experiment, the side length (cell size) of each cell in the occupancy grid was set

to represent distances of 88 mm, 148 mm and 440 mm. Note that these sizes are all close

multiples of 440 mm. This is so that extra obstacles can be placed surrounding the actual

obstacles, filling up an area of 440 mm by 440 mm, and eliminating the chance of paths

that are too narrow, from being calculated. When adjusting the cell size, the scan range
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must also be adjusted slightly, and therefore scan ranges of 5588 mm, 5550 mm and 5500

mm for the respective cell sizes, were used. These slight adjustments are negligible in

terms of performance.

To measure how the system performs when the cell size is varied, the first performance

test, measuring the time taken for the pathFind() function to complete, performed in

Section 5.3.1 when varying the scan range, was repeated, but this time with the LIDAR

scan range set back to 5.6 m and the cell size varied. The same environmental layout, as

shown in Figure 5.3 was used. Since the same layout was used and since varying the cell

size affects the number of cells in the occupancy grid, which affects the performance, the

results from these experiments are comparable with those in Section 5.3.1.

Using different cell sizes affects how many extra obstacles are placed around each ac-

tual obstacle. In the case of a cell size of 88 mm, obstacles are placed in all the cells

within two cells from the actual obstacle’s cell, as previously mentioned. When a cell

size of 148 mm is used, obstacles are placed in all the cells one cell away from the actual

obstacle’s cell, and when using a cell size of 440 mm, no extra obstacles need to be placed.

Adjusting the cell size also affects how many cells surrounding the goal cell should be kept

traversable. However, the placement of obstacles surrounding the robot is not affected.

Results and Analysis

Table 5.3 shows the results obtained from this experiment.

Cell Size (mm) Total Cells Test 1 Ave (ms)
88 131x131=17161 145.1
148 79x79=6241 34.4
440 29x29=841 1.6

Table 5.3: Grid resolution effect on performance

Once again, as the number of cells in the grid increases, the performance decreases rapidly.

Since the number of cells in the grid depends on the size of the cell, making adjustments

to the scan range or the cell size has the same impact on performance.

To show the differences in grid accuracy when adjusting the cell size, and therefore the

optimality of the paths calculated, two scenarios are described. In the first scenario, which

is illustrated in Figures 5.5(a), 5.5(b) and 5.5(c), two long obstacles were placed close to

one another, creating an opening that the robot could fit through easily. The goal was
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then set 5.6 m ahead of the robot as before and the path to the goal calculated. This was

done for each of the three cell sizes. In this scenario, all three occupancy grid resolutions

were successful, since the opening between the two obstacles was fairly wide.

(a) 440 mm (b) 148 mm (c) 88 mm

Figure 5.5: Exaggerated maps using different cell sizes - scenario 1

Although all the resolutions were successful in this scenario, when using a cell size of 88

mm, shown in Figure 5.5(c), the opening between the two obstacles was two cells wide,

whereas when a block size of 148 mm or 440 mm was used, there was only one traversable

cell between these obstacles. This shows the advantage of using a finer resolution.

The second scenario is similar to the first, but this time, the two obstacles were moved

slightly closer together, but still leaving plenty of room for the robot to fit through. This

scenario is shown in Figures 5.6(a), 5.6(b) and 5.6(c).

(a) 440 mm (b) 148 mm (c) 88 mm

Figure 5.6: Exaggerated maps using different cell sizes - scenario 2

This time, when using a cell size of 440 mm, the opening was not detected and an alter-
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nate route was calculated. The opening was still detected when using the other, higher

resolution occupancy grids. However, in most scenarios, if openings are reasonably wide,

the same paths are calculated as when using finer resolutions. The reason for this is that

when a higher resolution is used, each obstacle detected is exaggerated to represent an

area of 440 mm by 440 mm of the environment, and therefore the only difference when

using a higher resolution grid is that obstacles are pin pointed onto the map with more

precision than when a lower resolution grid is used.

Since no extra obstacles are placed when using a cell size of 440 mm, when diagonal

movement is allowed, the issue shown in Figure 5.7 can occur. This is the same layout

used in the second scenario discussed above and although the path calculated in this

particular scenario is valid, as a wide enough opening does exist, in other scenarios this

may not be the case. To solve this issue, when a cell size of 440 mm is used, diagonal

movement is prohibited. In the results shown in Table 5.3, diagonal movement was not

prohibited for this case and so the timings shown are therefore comparable with the other

results.

This is, however, not an issue when extra obstacles are placed surrounding the actual

obstacles. In the worst case, when a cell size of 148 mm is used, if two exaggerated ob-

stacles are placed diagonally from one another and a route passing in-between them is

calculated, then the minimum ground distance between these two obstacles is 418.6 mm,

which is more than enough space for the robot to fit through.

Figure 5.7: Invalid path calculated when using a cell size of 440 mm and considering
diagonal movement
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5.4 Path Calculation

In the previous section, the experiments that were performed dealt with the design of

the occupancy grid. This section deals with the design of the A* search algorithm itself.

As with the design of the occupancy grid, when adjusting the search algorithm’s design,

a trade-off exists between the optimality of the paths calculated and the time taken to

calculate them.

The following subsections detail the experiments performed, their results and an anal-

ysis of these results, in order to find the balance between performance and optimality of

the path.

5.4.1 Comparison of A* Implementations

First a decision was made regarding which implementation of the A* search algorithm,

to use. As mentioned in Chapter 4, the A* algorithm was first implemented using the

Boost C++ libraries. This was found to be over-complicated, making it difficult to add or

change functionality, and the performance was inadequate. A second algorithm was then

implemented, this time by coding the algorithm manually without the use of libraries.

Since this implementation was simple in comparison, meaning that functionality could be

added or adjusted easily, and it performed faster, it was chosen over the Boost implemen-

tation.

A similar experiment to that described in Section 5.3.1, using the same layout shown

in Figure 5.3, was performed for each of the A* implementations. Since, with the Boost

implementation, diagonal movement was not allowed and the Euclidian heuristic was used,

and because this could not be changed easily, the chosen A* implementation was adjusted

to match these settings. Table 5.4 shows the results obtained when varying the maximum

scan range for each of the implementations.

Distance (mm) Boost A* (ms) Manual A* (ms)
5588 253.3 5.6
3036 83.1 2.5
1012 26.9 0.6

Table 5.4: Performance comparison between A* implementations
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As can be seen, the performance when using the Boost implementation is considerably

worse, and at best performed 3224% slower than when using the manual implementation.

This performance is even worse than that when diagonal movement is allowed with the

manual A* implementation, as seen in the earlier results given in Table 5.2. These results

also show the performance gained when diagonal movement is not considered. This is

discussed next.

5.4.2 Number of Adjacent Cells Considered and Heuristics

Next, a decision whether to restrict movement to only four directions (horizontal and ver-

tical) or to allow it in all eight directions (diagonals movement allowed) was made. When

diagonal movement is allowed, more cells are considered when calculating the path and

therefore more F values need to be calculated, reducing performance severely. However,

as with all of these design decisions, there is a trade-off. When movement is restricted

to four directions, paths calculated are not optimal and are most often far from being

optimal. As mentioned in Chapter 2, when only horizontal and vertical movement is al-

lowed, the Manhattan heuristic is preferred and when diagonal movement is allowed, the

Chebyshev heuristic is more suited.

Setup and Conduction of Experiment

To benchmark the performance of the system, and to ensure that the results obtained

are comparable with previous results, the same experiment performed in Section 5.3.1,

measuring the time taken for the pathFind() function to complete, using the layout shown

in Figure 5.3, was repeated. This test was carried out for each of the two cases - move-

ment in four directions only, and movement in all eight directions. When testing, the

appropriate heuristic in each case was used. The Euclidian heuristic was also tested in

the case of movement in four directions to see how this heuristic affected the optimality

of the paths calculated and the performance of these calculations.

Results and Analysis

When movement is limited to four directions using the Manhattan heuristic, paths cal-

culated are not consistent. Each time a new path is calculated, while keeping the robot,

goal and all the obstacles stationary, a different route to the marker is determined. On

investigation, the reason for this was found to be due to the larger value that this heuristic

calculates. When using the Euclidean or Chebyshev heuristics, or even by halving the
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value that the Manhattan heuristic calculates, smaller values are realized and the paths

calculated are more consistent. This is another reason why the Euclidean heuristic was

included in the experiment.

Although using the Euclidean heuristic decreases the variation between the paths cal-

culated considerably, when only considering movement in four directions, independent of

the heuristic used, consecutive paths still differ quite drastically. Figure 5.8 shows an

example of this, where initially a path to the right of the obstacle is calculated, and a few

milliseconds later, while the robot, goal and all the obstacles are kept stationary, another

path to the left of the obstacle is calculated.

Figure 5.8: Paths deviate when movement is restricted to four directions

This sort of behaviour affects the usability of the system, as in practice, in this sce-

nario, the robot turns to the right after the first path is calculated and then to the right

after the calculation of the second path. This behaviour repeats, and no progress is made.

This is rarely an issue when considering diagonal movement and using the Chebyshev

heuristic. In this configuration, paths hardly ever deviate from previously calculated

paths provided that the map data and the goal are kept stationary.

The results from the performance tests performed are presented in Table 5.5.

Cells Considered Heuristic Test 1 Ave (ms)
8 Chebyshev Distance 145.1
4 Manhattan Distance 19.2
4 Euclidean Distance 5.7

Table 5.5: Effect on performance based on the number of cells considered
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As expected, by limiting movement to four directions, performance increases dramatically.

However, the 236.8% performance increase noted when changing from the Manhattan to

the Euclidian heuristic was unexpected. This increase seems to be due to the smaller H

value calculated when using the Euclidean heuristic, as well as the Chebyshev heuristic

for that matter. The Manhattan heuristic results in a larger H value for each considered

cell, and therefore, also a larger F value for each cell. Owing to the many mathematical

calculations and comparisons that occur in the A* implementation, these larger values

hinder the performance of the algorithm. Since the performance is decreased and, as

mentioned earlier, the paths calculated deviate excessively when using the Manhattan

heuristic, this heuristic was not used in further experiments. Owing to its increased per-

formance and more consistent path calculations, the Euclidean heuristic was used instead

when movement was restricted to four directions.

Concerning the optimality of the paths calculated, shorter, and less jagged routes are

determined when diagonal movement is allowed, compared to when it is prohibited. The

scenario illustrated in Figure 5.9 shows an example of this.

(a) Four cells (b) Eight cells

Figure 5.9: Different paths calculated when four and eight cells are considered

Not only is extra mileage added to the routes calculated, but in certain scenarios, openings

detected cannot be passed though. This occurs in scenarios where the openings are fairly

small, and at angles to the robot, and so a diagonal path needs to be calculated.

5.5 Final Decisions and Limitations

Final Decisions
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After experimentation, decisions regarding the various variables discussed were made.

Note that these variables should be set according to the environment that the system

is used in and therefore the configuration decided on may not be suitable in different

settings. The final configuration for the robot is as follows:

• A marker size of 160 mm by 160 mm was used

• The camera resolution was set to 320x240 and all automatic lighting was disabled

• The occupancy grid was set to represent a limited range of 3 m from the LIDAR

• Each cell in the occupancy grid was set to represent 148 mm by 148 mm of the

environment

• Diagonal movement was allowed and therefore, the Chebyshev heuristic was used

Remarkable performance was noted when using the above configuration, while still allow-

ing optimal, or close to optimal paths to be determined.

As previously mentioned, the detection distance when using a marker with a side length

of 160 mm along with a camera resolution of 320x240, was sufficient for the small to

medium sized environments in which the system was used. Since this resolution was

sufficient and automatic lighting was disabled, huge performance increases were noted.

With this configuration, tracking and following the marker, in mode 1, were successful

and robust, provided a well-lit environment was used.

Reducing the scan range from 5.6 m to 3 m rarely affected the optimality of the path

calculated, as mentioned earlier, owing to the LIDAR being unable to detect obstacles

that are behind other obstacles, and therefore most often, the extra information obtained

when using a scan range of 5.6 m is wasted. However, by reducing this scan range, per-

formance was hugely increased. This choice was also impacted by the marker size and

camera resolution selected, as this allows robust detection of the marker at distances up

to roughly 3 m. Since it was rare that the paths calculated when using a cell size of 88

mm, as opposed to when using a cell size of 148 mm, differed, and since the performance

gained when using a cell size of 148 mm was large, a cell size of 148 mm was selected.

Owing to the extra mileage added to the routes calculated, and especially owing to the

deviation between consecutive routes, movement restricted to only the horizontal and ver-

tical directions was decided against. Since movement could occur in all eight directions,
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the Chebyshev heuristic was used.

System in Action

A video of the robot, set with this final configuration can be found on the accompanying

CD. This video shows the system at work and demonstrates the robot in each of the three

different modes. To demonstrate the robot avoiding obstacles in mode 2, the robot was

set up in the layout shown in Figure 5.10(a).

(a) Initial setup of demonstration (b) Robot traversing the layout

Figure 5.10: Example layout for demonstration

As seen in this figure, the marker was intially held in front of the robot. As the robot

moved along its calculated route towards the marker, the marker was moved away from

the robot, keeping the distance between the robot and the marker between 2.5 and 3 m.

The route that the robot traversed was through the opening between the two obstacles

in the first set, as shown in Figure 5.10(b) and then around the left of the final set of

obstacles. Figure 5.11 shows a screenshot of the system captured while the robot was

traversing this layout.

Figure 5.11: System in action
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Project Limitations

Various setbacks were encountered throughout this project. The largest of these was the

inaccuracy of the robot’s odometer readings and this was the reason for many of the

changes made to the project. As a result of this inaccuracy, it was not possible to create

an occupancy grid of the area, but rather the map was rebuilt from scratch each time the

environment was scanned. This meant that the robot could not traverse through certain

obstacle layouts. Figure 5.12 illustrates some of these unsuccessful layouts.

(a) (b)

Figure 5.12: Unsuccessful layouts

The layout in Figure 5.12(a), illustrates an example where the robot initially calculates

a path to the marker, but then when it turns to the left to follow this calculated path, it

cannot keep track of the marker any longer. This is due to the web camera being unable

to pan to such a wide angle. Even if it could, as soon as the robot traversed near to the

area marked 1 on the figure, the LIDAR would not be able to detect the section of the

obstacle, labelled 2, that was originally obstructing its route to the marker. Therefore,

the robot would turn back again. To solve this issue, previous map information is needed

and therefore a map needs to be created and continuously updated as more information

is found. Owing to the inaccurate odometer readings, this was not possible.

The layout in Figure 5.12(b), shows an example where the initial path calculated is incor-

rect. This path is chosen as the LIDAR only detects the parts of the obstacles highlighted

in yellow and therefore, with only this information, the path seems valid. This is a limita-

tion of the equipment. However, when the robot traverses this incorrect path to position

1, marked on the figure, the previously undetected obstacles are detected by the LIDAR.

Since this is a dead-end, the robot needs to turn back. If this were to happen, the obstacle
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information, marked 2 on the figure, would be lost and the robot would therefore turn

around again to face its original direction. Turning around is therefore prohibited by the

placement of the ring and the two lines of obstacles on the occupancy grid, and therefore

in this situation it would not be possible for a path to the goal to be calculated.

5.6 Summary

The results presented in this chapter indicate that by reducing the accuracy of the sys-

tem marginally, huge performance increases can be achieved. For this reason, even when

using a powerful robot such as Wifibot, it proved useful to lower these settings slightly,

as the marker detection distance proved sufficient and the paths chosen, in most sce-

narios, remained optimal. By doing so, the performance, and therefore the usability, of

the system was improved significantly. If the system was implemented on a robot with

lower specifications, these variables could be set with lower values. Although accuracy

regarding marker detection and/or the paths calculated would be reduced, a well chosen

configuration of these settings should allow for sufficient accuracy.



Chapter 6

Conclusions

6.1 Project Summary

The objective of this project was the creation of a system that allows for the navigation of

a mobile robot in open or busy environments using a fiducial marker. This system needs to

perform efficiently since the system is targeted at mobile robots, many of which have low

processing power. An investigation into the tools available for marker detection and the

search algorithms appropriate for this project’s goals was conducted. This investigation

also included previous research done in these areas. After decisions regarding the options

discussed in the literature survey had been made, the proposed system was designed and

implemented. The system’s accuracy and performance were then evaluated, after which

its capabilities were discussed.

6.2 Revisiting the Objectives

The first research objective concerning the system created was the accurate detection of

markers using a standard web camera. This objective has been met as shown by the

results presented in Chapter 5. These results also indicate the success of the second ob-

jective, to use this marker to allow a mobile robot to navigate autonomously independent

of its surroundings. Although not all layouts were traversable owing to the setbacks en-

countered, in most practical scenarios, navigation was possible. The last objective was

ensuring that the system performs efficiently so that it is usable on less powerful mobile
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robots. Although the nature in which the A* search algorithm is used is not efficient,

the benchmarks performed in Chapter 5 indicate that the system can be configured to

perform adequately, without significantly affecting accuracy. This final objective was

therefore also met.

In Chapter 2, a further objective was mentioned: that the search algorithm chosen should

be capable of functioning whether the environment was known, partially known or com-

pletely unknown. Unfortunately, owing to the inaccuracy of the robot’s odometer and

therefore the nature in which the search algorithm was used, the benefits of known or

partially known environments could not be utilized. Thus, all environments were effec-

tively treated as unknown environments. Although the system can be given a map of the

area, once the robot moves, it cannot localize itself on the map.

6.3 Future Work

There are several extensions that can be made to the existing system and owing to time

constraints, have been left as future work. These are as follows:

Solving the inaccurate odometry: This could be achieved by using the system on a

robot with an accurate odometer, but this may prove costly. Another solution is to add

either two trailing wheel encoders, or a single trailing wheel encoder and a digital com-

pass, to the Wifibot robot. Either of these options could provide the robot with accurate

odometry as well as information regarding direction. Another, more interesting solution,

would be to attach at least two optical mouse sensors, at least one on each side of the

robot. Provided that the surface used is smooth, this would allow for the distance trav-

elled as well as the direction of travel to be determined. After this issue has been solved,

the search algorithm, perhaps now changed from A* to Moving Target D* Lite, could

be implemented in the manner that it was intended, thus resulting in a large increase

in performance. A wandering algorithm could also then be implemented in the manner

mentioned in Chapter 3.

360 Degree marker detection: The marker could be detected at any angle from the

robot if a camera with a 360 degree panning capability is used. This may prove costly,

and so a cheaper solution would be to use multiple standard web cameras in the manner

mentioned in Chapter 3.
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Appendix A

Code Listings

A.1 Methods Used in Issuing Move Commands

1 int setRS232Motor33f ( int hUSB, short speed1 , short speed2 , unsigned char

speedFlag ) {
2 unsigned int n ;

3 unsigned char sbuf [ 2 0 ] ;

4 int r e s s = 0 ;

5

6 sbuf [ 0 ] = 255 ;

7 sbuf [ 1 ] = 0x07 ;

8 sbuf [ 2 ] = (unsigned char ) speed1 ;

9 sbuf [ 3 ] = (unsigned char ) ( speed1 >> 8) ;

10 sbuf [ 4 ] = (unsigned char ) speed2 ;

11 sbuf [ 5 ] = (unsigned char ) ( speed2 >> 8) ;

12 sbuf [ 6 ] = speedFlag ;

13

14 short mycrcsend = crc16 ( sbuf + 1 , 6) ;

15

16 sbuf [ 7 ] = (unsigned char ) mycrcsend ;

17 sbuf [ 8 ] = (unsigned char ) ( mycrcsend >> 8) ;

18

19 r e s s = wr i t e r s232 (hUSB, sbuf , 9 , &n) ;

20 return r e s s ;

21 }
22

23 short crc16 (unsigned char ∗ bu f f e r , unsigned char max) {
24 unsigned int c r c = 0xFFFF;

25 unsigned int polynome = 0xA001 ;
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26 unsigned int cptocte t , cptb i t , pa r i t y ;

27

28 for ( cp t o c t e t = 0 ; cp t o c t e t < max ; cp t o c t e t++) {
29 c r c ˆ= ∗( b u f f e r + cpt oc t e t ) ;

30

31 for ( c p t b i t = 0 ; c p t b i t <= 7 ; c p t b i t++) {
32 par i t y = crc ;

33 c r c >>= 1 ;

34 i f ( pa r i t y % 2 == 1)

35 c r c ˆ= polynome ;

36 }
37 }
38

39 return ( c r c ) ;

40 }
41

42 // wr i t e to the rs232 port

43 int wr i t e r s 232 ( int hUSB, unsigned char ∗ bu f f e r , unsigned int

nNumberOfBytesToWrite , unsigned int ∗ lpNumberOfBytesWritten ) {
44 i f ( ! hUSB)

45 return 0 ;

46

47 ∗ lpNumberOfBytesWritten = 0 ;

48 for ( int kk = 0 ; kk < nNumberOfBytesToWrite ; kk++)

49 ∗ lpNumberOfBytesWritten += wr i t e (hUSB, b u f f e r + kk , 1) ;

50

51 return (∗ lpNumberOfBytesWritten >= 0) ;

52 }

A.2 A* Implementation

1 stat ic int occupancy map [ n ] [m] ;

2 stat ic int c losed nodes map [ n ] [m] ; //map o f c l o s e d ( t r i ed−out ) nodes

3 stat ic int open nodes map [ n ] [m] ; //map o f open ( not−yet−t r i e d ) nodes

4 stat ic int dir map [ n ] [m] ; //map o f d i r e c t i o n s

5 const int d i r = 8 ; //number o f p o s s i b l e d i r e c t i o n s to go at any p o s i t i o n

6 stat ic int dx [ d i r ] = {1 , 1 , 0 , −1, −1, −1, 0 , 1} ; // {1 , 0 , −1, 0} i f d i r=4

7 stat ic int dy [ d i r ] = {0 , 1 , 1 , 1 , 0 , −1, −1, −1}; // {0 , 1 , 0 , −1} i f d i r=4

8

9 class node {
10 int xPos , yPos ; // cur rent p o s i t i o n

11 int l e v e l ; // t o t a l d i s t anc e a l r eady t r a v e l l e d to reach node
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12 int p r i o r i t y ; // p r i o r i t y=l e v e l+remaining d i s t anc e es t imate ; sma l l e r

p r i o r i t y i s h igher

13

14 public :

15 node ( int xp , int yp , int d , int p) {
16 xPos = xp ;

17 yPos = yp ;

18 l e v e l = d ;

19 p r i o r i t y = p ;

20 }
21

22 int getxPos ( ) const {
23 return xPos ;

24 }
25

26 int getyPos ( ) const {
27 return yPos ;

28 }
29

30 int getLeve l ( ) const {
31 return l e v e l ;

32 }
33

34 int g e t P r i o r i t y ( ) const {
35 return p r i o r i t y ;

36 }
37

38 void updatePr io r i ty ( const int & xDest , const int & yDest ) {
39 p r i o r i t y = l e v e l + est imate ( xDest , yDest ) ∗ 10 ; //a∗
40 }
41

42 void nextLeve l ( const int & i ) { // i i s the d i r e c t i o n

43 l e v e l += ( d i r == 8 ? ( i % 2 == 0 ? 10 : 14) : 10) ; // b e t t e r p r i o r i t y

to going s t r a i g h t than d i a g o n a l l y

44 }
45

46 // e s t imat i on func t i on f o r remaining d i s t anc e to goa l

47 const int & est imate ( const int & xDest , const int & yDest ) const {
48 // return ( abs ( xDest − xPos ) + abs ( yDest − yPos ) ) ; //manhattan

d i s t anc e h e u r i s t i c

49 return (max( abs ( xDest − xPos ) , abs ( yDest − yPos ) ) ) ; // chebyshev

d i s t anc e h e u r i s t i c

50 }
51 } ;
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52

53 s t r i n g pathFind ( const int & xStart , const int & yStart , const int & xFinish

, const int & yFin i sh ) {
54

55 //two p r i o r i t y queues so that one can be used as a temp

56 // these p r i o r i t y queues conta in the l i s t o f open ( not−yet−t r i e d ) nodes

57 stat ic pr i o r i t y queue<node> pq [ 2 ] ;

58 stat ic int pqi = 0 ; // p r i o r i t y queue index

59 stat ic node∗ n0 ;

60 stat ic node∗ m0;

61 stat ic int i , j , x , y , xdx , ydy ;

62 stat ic char c ;

63

64 // r e s e t the node maps . . .

65

66 // c r e a t e the s t a r t node and push in to the l i s t o f open nodes

67 n0 = new node ( xStart , yStart , 0 , 0) ;

68 n0 −> updatePr io r i ty ( xFinish , yFin i sh ) ;

69 pq [ pqi ] . push (∗n0 ) ;

70 open nodes map [ x ] [ y ] = n0 −> g e t P r i o r i t y ( ) ; //mark on the open map

71

72 //a∗ search

73 while ( ! pq [ pqi ] . empty ( ) ) {
74

75 // get the node with h i ghe s t p r i o r i t y from open l i s t

76 n0 = new node ( pq [ pqi ] . top ( ) . getxPos ( ) , pq [ pqi ] . top ( ) . getyPos ( ) , pq [

pqi ] . top ( ) . ge tLeve l ( ) , pq [ pqi ] . top ( ) . g e t P r i o r i t y ( ) ) ;

77 x = n0 −> getxPos ( ) ;

78 y = n0 −> getyPos ( ) ;

79

80 pq [ pqi ] . pop ( ) ; // remove the node from the open l i s t

81 open nodes map [ x ] [ y ] = 0 ;

82 c losed nodes map [ x ] [ y ] = 1 ; //mark i t on the c l o s e d nodes map

83

84 // stop sea r ch ing when goa l s t a t e i s reached

85 // generate path from f i n i s h to s t a r t by f o l l o w i n g d i r e c t i o n s

86 i f ( ( x == xFin i sh ) && ( y == yFin i sh ) ) {
87 s t r i n g path = ”” ;

88 while ( ! ( ( x == xStart ) && ( y == yStart ) ) ) {
89 j = dir map [ x ] [ y ] ; // po in t e r to parent

90 c = ’ 0 ’ + ( j + d i r /2) % d i r ;

91 path = c + path ;

92 x += dx [ j ] ;

93 y += dy [ j ] ;



A.2. A* IMPLEMENTATION 85

94 }
95

96 // perform some garbage c o l l e c t i o n . . .

97

98 return path ;

99 }
100

101 // generate moves ( c h i l d nodes ) in a l l p o s s i b l e d i r e c t i o n s

102 for ( i = 0 ; i <d i r ; i++) {
103 xdx = x + dx [ i ] ;

104 ydy = y + dy [ i ] ;

105

106 // check that nodes coord inate i s va l id , no o b s t a c l e e x i s t s

the re and node i s not in c l o s e d l i s t

107 i f ( ! ( xdx < 0 | | xdx > n − 1 | | ydy < 0 | | ydy > m − 1 | |
occupancy map [ xdx ] [ ydy ] == 1 | | c losed nodes map [ xdx ] [ ydy ]

== 1) ) {
108 m0 = new node ( xdx , ydy , n0 −> getLeve l ( ) , n0 −> g e t P r i o r i t y

( ) ) ; // generate a c h i l d node

109 m0 −> nextLeve l ( i ) ;

110 m0 −> updatePr io r i ty ( xFinish , yFin i sh ) ;

111

112 // i f not in the open l i s t then add i t

113 i f ( open nodes map [ xdx ] [ ydy ] == 0) {
114 open nodes map [ xdx ] [ ydy ] = m0 −> g e t P r i o r i t y ( ) ;

115 pq [ pqi ] . push (∗m0) ;

116 dir map [ xdx ] [ ydy ] = ( i + d i r /2) % d i r ; //mark i t s

parent node d i r e c t i o n

117 }
118

119 // i f a l r eady in open l i s t but has h igher p r i o r i t y

120 // update p r i o r i t y and parent i n f o

121 else i f ( open nodes map [ xdx ] [ ydy ] > m0 −> g e t P r i o r i t y ( ) ) {
122 open nodes map [ xdx ] [ ydy ] = m0 −> g e t P r i o r i t y ( ) ;

123 dir map [ xdx ] [ ydy ] = ( i + d i r /2) % d i r ;

124

125 // r e p l a c e node by emptying one queue in to the other ,

126 // i gno r i ng node to be r ep laced . . .

127

128 pq [ pqi ] . push (∗m0) ; //add b e t t e r node in s t ead

129 }
130 else

131 delete m0; // garbage c o l l e c t i o n

132 }
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133 }
134 delete n0 ; // garbage c o l l e c t i o n

135 }
136 return ”” ; //no route found

137 }


