
The Remote Wireless Multipoint Control
of Digital Mixing Consoles.

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Brent Shaw

Grahamstown, South Africa

1 November 2013

Abstract

This thesis aims to discuss various aspects of audio control systems. Through the course

of this thesis, discrete field topics of study are brought together to contribute to the

understanding of what is required to develop a comprehensive audio control system. An

investigation will also be conducted into the viability of a distributed wireless control

system for digital mixing consoles.

Contents

1 Introduction 1

1.1 Statement of Problem . 2

1.2 Goal of Research . 4

2 Digital Mixing Consoles 5

2.1 Advantages of digital mixing . 6

2.2 Yamaha 01v96 . 6

2.2.1 Features . 7

2.2.2 Control . 8

2.2.3 Remote Control . 8

3 Remote control applications for mixing consoles 10

3.1 Matrix Mixer . 11

3.2 TouchOSC . 13

3.3 Yamaha . 14

3.4 Allen & Heath . 16

3.5 Conclusion . 17

4 Musical Device Control Protocols 18

4.1 Musical Instrument Digital Interface . 18

4.1.1 History . 18

4.1.2 Hardware . 19

4.1.3 Messaging Protocol . 19

4.1.4 Controlling with MIDI . 20

4.1.5 Limitations and the future of MIDI 21

4.2 Open Sound Control . 23

4.2.1 History . 23

4.2.2 Specification . 23

1

CONTENTS 2

4.2.3 Comparison with MIDI . 24

5 MIDINet: A distributed approach to MIDI control 25

5.0.4 History . 25

5.0.5 Concept . 26

5.0.6 MIDINet protocol . 27

5.0.7 Implementation . 27

5.0.8 System Start-up and Operation . 32

5.0.9 Limitation of the MIDINet system 34

6 Cross-platform MIDINet: Design and Implementation 35

6.1 Languages and libraries . 35

6.1.1 Language of choice: C++ . 35

6.1.2 JUCE . 36

6.2 Development Environments . 36

6.2.1 Visual Studio . 36

6.2.2 XCode . 37

6.3 An alternative to the MaxMidi library . 38

6.3.1 MIDI capabilities of JUCE . 38

6.3.2 Development of JMIDI: A JUCE based alternative to MaxMidi . . 42

6.3.3 JMidiIn: Input device control . 42

6.3.4 JMidiOut: Output device control 44

6.4 System Design . 45

6.4.1 User Interface . 45

6.4.2 Global modifications . 46

6.4.3 Networking . 48

6.4.4 DatagramSocket Testing . 50

6.5 System development . 52

6.5.1 Stage 1 . 52

6.5.2 Stage 2 . 52

6.5.3 Stage 3 . 53

7 Possible future improvements 54

7.1 Smaller MIDINet units . 54

8 Conclusion 56

List of Figures

2.1 The Yamaha 01v96. 7

3.1 Example of matrix based connection management. 11

3.2 Example layout of a TouchOSC control window. Image from www.hexler.net

. 13

3.3 Yamaha Studio Manager desktop application for the 01x. Image from

www.yamahaproaudio.com . 14

3.4 Yamaha Stage Mix iPad application for the LS9 digital mixing console.

Image from www.yamaha.com . 15

3.5 Allen & Heath’s iLive iPad mixing application. Image from www.allen-

heath.com . 16

4.1 Example setup of MIDI connections on a MIDI device. 19

4.2 The structure of an OSC message. 24

5.1 Example set-up for a small MIDINet system. 26

5.2 MIDINet Identification Dialogue. 28

5.3 MIDINet Connection Management Dialogue. 28

6.1 Screenshot of Connection Management window. 41

6.2 Screenshot of Naming window. 50

6.3 Screenshot of Naming window. 51

3

List of Tables

4.1 Table showing various types of channel voice messages. Adapted from

”MIDI Programmer’s Handbook” (DeFuria & Scacciaferro, 1990). 20

5.1 Table of ReceiveMIDINet message headers and related callbacks 29

4

Acknowledgements

I would like to thank the NRF and Rhodes University for the financial support that

allowed me to complete this research. Finally I would like to acknowledge the financial

and technical support of Telkom, Tellabs, Stortech, Genband, Easttel, Bright Ideas 39

and THRIP through the Telkom Centre of Excellence in the Department of Computer

Science at Rhodes University.

Chapter 1

Introduction

Technological advancements in the digital era have resulted in a widespread move toward

the digital processing of information. This move is reflected in the audio industry, resulting

in professional audio equipment becoming more compact, functional and affordable. This

movement towards digital hardware has had a major impact on the music industry with

the creation of the digital mixing console. These consoles feature a range of different

functions such as digital gain control (for microphone preamplifiers), level control, flexible

internal audio routing and powerful Digital Signal Processing (DSP) that can be used for

effects (such as reverb or delay) or for sound enhancement (audio equalisation or feedback

control). These mixing consoles are used in a variety of environments, from live music

venues (such as bars or concert halls) to restaurants, recording studios, conference venues

and even hotels, making the digital mixing console indispensable to the professional, and

amateur, production of audio.

Although smaller than their analogue counterparts, these consoles are still fairly large

and often weigh in excess of 20kg, usually having dozens of audio input and output lines

connected to the console. For this reason these desks tend to be installed out of the way,

in secure locations. These locations may be in back rooms or control rooms, where direct

sight or earshot of the stage or podium is lost resulting in the rise of accessibility issues.

Furthermore, the mixing console may be placed in a sub-optimal position for listening

which leads to acoustic difficulties, forcing the engineer to leave the desk in order to gain

better perspective on the acoustic performance.

Typically, audio engineers are required to be in close proximity to the mixing console

in order to adjust parameters such as gain or level as required. If a venue has only a

single engineer, then the engineer may be required to walk many times between the desk

1

1.1. STATEMENT OF PROBLEM 2

and the stage or podium in order to change settings or correct any issues that may arise.

This also has the implication that to provide adequate control, each desk would require an

engineer, although each engineer may not constantly be occupied by making alterations or

adjustments, but merely present in order to ensure total control. This is ultimately time

consuming for an engineer and has a low efficiency as engineers could better allocate their

time to multiple tasks. Maintaining efficient control of the console(s) while remaining

mobile is therefore a problem that occurs in many audio engineering environments.

Many digital mixing consoles currently available have a MIDI (Musical Instrument Digital

Interface) port on board, through which MIDI messages can be passed to provide control

for many of the parameters on the desk itself. This allows for the mixing console to

be controlled through the use of separate MIDI control surfaces or through software

on a computer equipped with a MIDI interface. Unfortunately the MIDI specification,

although fairly comprehensive, does have its own drawbacks; one of which is a maximum

cable length of 15 meters.

This makes remote control possible but still rather limited as the controller is then required

to be in close proximity to the desk. Some manufacturers of digital mixing consoles (such

as Allen & Heath) have built in their own control systems (not based on MIDI) which in

some cases can even provide wireless control from tablet devices such as the Apple iPad

(the standard in the audio industry). These systems provide comprehensive control, but

are limited to particular devices, often only working within their brand, and in some cases

only available for specific consoles.

1.1 Statement of Problem

There is no universal or generic system1 for controlling these desks remotely. From the

above discussion, it appears clear that there is a need for a system that can provide

remote control for digital mixing consoles, while not limiting its control to individual

brands or desks. For such a system to be truly useful, a mobile interface for control

would be of benefit to the industry and would increase the usability and efficiency of the

system. Finally the ability of the system to provide remote control for multiple digital

mixing consoles from multiple control devices would be of great use in larger venues and

1Generic control system: A system capable of providing control for digital mixing consoles, regardless
of make or model. The system must be capable of accounting for differing parameters and functions held
by various digital consoles. At a high level, the system takes user input (through a user interface) and
provides the console with parameter control and change messages (via a standard control protocol)

1.1. STATEMENT OF PROBLEM 3

multiroom setups as it would address the problem of inefficiency experienced by sound

engineers, as discussed earlier.

1.2. GOAL OF RESEARCH 4

1.2 Goal of Research

Digital mixing consoles are becoming increasingly popular and this study will investigate

current trends in mixing consoles, as well as examining how these consoles function and

how their various features can be accessed and controlled.

The thesis provides a broad review of two audio device control protocols. The Musical

Instrument Device Interface (MIDI) has been a popular control protocol for a range

of audio devices in past years and its use as a control protocol needs to be examined.

Another control protocol that is becoming increasingly popular is Open Sound Control

(OSC). These protocols will be reviewed and compared to gain insight into currently

available mixer control systems.

As one of the primary goals of this thesis is to provide a new implementation of the

MIDINet system, a full analysis and review of the existing MIDINet system will be pro-

vided. The purpose behind the system’s original inception will be investigated and a

complete account of how MIDINet functions will be given.

The project aimed to produce a design and implementation for a distributed control

system capable of controlling multiple digital mixing consoles. The system is based on

the MIDINet system described by Mosala’s MSc thesis (Mosala, 1995). The system is

currently only capable of running on standard hardware machines, loaded with Microsoft

Windows XP, 7 or 8 platforms.

For the control system to be mobile it would best be deployed on wireless tablet computers.

Apple’s iPad is the industry standard for audio control applications and so a MIDINet

implementation capable of running on this device would be of great use to the industry,

thereby achieving the goal of this research.

This thesis examines the various methods by which audio mixing desks can currently

be controlled. It investigates currently available systems that allow mixing consoles to

be controlled remotely (both through desktop applications as well as via wireless tablet

computers). It also investigates existing control protocols and how they are used in digital

mixer control.

This thesis assumes a basic knowledge of mixing consoles. Any terms or concepts outside

of the most basic are described and detailed through the course of the paper.

Chapter 2

Digital Mixing Consoles

A mixing console is a piece of hardware used in the audio engineering industry for sum-

ming, processing and routing audio. Analogue desks vary in design, size and features,

from beginner desks that feature only one or two channels, to small public address (PA)

desks, to large split console desks found in recording studios. (Izhaki, 2013)

Digital mixing console are in many ways similar to analogue mixing consoles, as they

perform the same functions and can be of similar size, but the difference while possibly

not immediately evident, is substantial. Digital consoles convert audio from its original

analogue signal to a digital signal as the audio enters the desk. From this point on, the

sound remains in digital form while within the confines of the mixing console. (Izhaki,

2013, Ballou, 2008)

All the functions of an analogue mixing console such as summing, processing and routing

are available on digital console as well. The only difference is that the audio is being

digitally modified in order to mimic the analogue console. The debate regarding the

quality differences between digital and analogue mediums is an argument that cannot be

easily settled, if settled at all. (Izhaki, 2013)

But audio quality aside, digital mixing consoles feature remarkable flexibility. These

consoles possess a number of pots and faders which are thought to control various aspects

of the mixer. These faders and pots can be linked to parameters, thereby allowing them

to control specific, chosen parameters. In comparison, the faders and pots found on an

analogue mixing console are not directly connected to modules and thus do not directly

control anything. The capability of digital mixing consoles to control anything is due to

the increasing amount of processing power that can be built directly into digital mixers.

5

2.1. ADVANTAGES OF DIGITAL MIXING 6

(Ballou, 2008)

2.1 Advantages of digital mixing

Digital mixers have a distinct advantage over their analogue counterparts when it comes

to flexibility and features. In an analogue mixing console, signals could only be routed

to a finite number of destinations. With digital mixing however, inputs can be internally

routed to anywhere within the console. The same goes for processes in digital consoles

such as equalisation, compression or gating. There is almost no limit to the combination

of processes and routings that can be achieved when using digital mixing console.

Another advancement that digital mixing consoles have made popular is that of motorized

faders. This allows for levels to be saved so that they can be restored at any point. This

feature also allows for digital mixing consoles to feature more channels than physical

inputs on the desk itself. The consoles can have virtual channels such as group, effect and

reference channels that can be controlled using the same faders and pots used to control

the channels fed by the microphone or line inputs.

The desks can also have digital inputs and outputs that can be used to add extra channels

(signals in or out) to the desk. Alesis Digital Audio Tape (ADAT) is an optical audio

specification that allows for 8 channels of digital audio to be transmitted over a single

optical core. This allows engineers to add extra inputs and microphone preamplifiers to

compact digital consoles.

2.2 Yamaha 01v96

For the purposes of this research the Yamaha 01v96 digital mixing console, seen in Figure

2.1, has been selected for investigation into mixing console control system. The decision

to use this console is based on the availability of the Yamaha 01v96 to the project. This

will allow for an investigation into the methods by which this console can be controlled.

(Yamaha, n.d.b)

2.2. YAMAHA 01V96 7

Figure 2.1: The Yamaha 01v96.

2.2.1 Features

The Yamaha 01v96 features both analogue and digital audio inputs. The console has a

built in MIDI interface which can be used for saving settings as well as sending control

messages.

A feature that the Yamaha range of digital consoles possesses which aids in expandability

and future proofing is an expansion card slot. Yamaha has developed a number of expan-

sion cards that can be used for adding additional features to their consoles. (Yamaha,

n.d.b)

2.2. YAMAHA 01V96 8

2.2.2 Control

Digital mixing consoles differ from analogue mixers in the way by which they are con-

trolled. None of the controls on the console are directly attached to any modules such

as levels, panners or equalisers, but are rather linked to parameters. The parameters are

then used internally to provide settings to the console’s DSP unit. (Yamaha, n.d.b)

Since these parameters are all digital and can be adjusted through the console interface,

fewer physical controls need be placed on the console. A single rotary encoder on the

console may be used to control a number of different parameters. The console’s display

can provide feedback as to the current state of parameters held by the console. (Yamaha,

n.d.b)

Owing to the ability of the digital console to provide control for differing parameters using

limit control, the mixing console provides a single set of rotary encodes that can be used

to control the equalisers, gates, compressors and other functions to every channel of the

desk. A set of controls for each channel is not necessary therefore allowing the console

to remain considerably more compact than an analogue mixer with the same capabilities.

(Yamaha, n.d.b)

The Yamaha 01v96 provides 16 linear motorised faders. The console itself has a total

of 32 audio input channels and number of remote and master channels that require level

control as well. As only 16 faders are provided, Yamaha has implemented a system that

allows the other channel to be controlled through selecting of different layers. (Yamaha,

n.d.b)

2.2.3 Remote Control

With such a wide range of parameters and features, the Yamaha 01v96 is a powerful

console. Yamaha has equipped the console with a MIDI interface which allows the desk

to send and receive MIDI messages. This allows the desk to be used to control external

consoles and devices via MIDI as well as allowing other devices equipped with MIDI to

control the mixer remotely.

Yamaha has also provided a set of MIDI messages that can be used to control the inter-

nal parameters. The messages can also be used to return parameter updates to external

devices when parameters on the mixer are modified through the mixer’s physical con-

trols.

2.2. YAMAHA 01V96 9

Yamaha has developed a desktop control application that can be used to provide remote

control of the console through the use of a computer MIDI interface. This and other

control applications are discussed further in Chapter 3.

Chapter 3

Remote control applications for

mixing consoles

There are many remote control applications available which provide varying amounts of

control, ranging from proprietary systems to open source projects. However, despite the

range of applications available, there are tends to be a number of similarities between

systems such as their interfaces, how they send control messages and how they interface

physically with the hardware.

No control applications manage to provide a level of usability and control that sets them

far enough apart from other systems to become an industry standard. This chapter will

look at a few control applications that are currently available and how they compare to

each other.

The applications mentioned below are only a few of the control applications available and

their styles of control represent only a few of the schools of thought in terms of digital

mixer control.

The comparison should aid in the formulation of a clearer understanding of what a control

application for digital mixing consoles should entail, and whether the current range of

control applications is moving toward any particular standards.

10

3.1. MATRIX MIXER 11

3.1 Matrix Mixer

A novel concept for mixing console control and routing is embodied in the Matrix Mixer

developed by Philip Foulkes. (Foulkes, 2006) The thought behind the concept was that

routing by setting sources and destinations on a mixing console could be simplified by

viewing the possible connections as a grid.

Figure 3.1: Example of matrix based connection management.

Figure 3.1 shows the user interface for Matrix Mixer, which provides a simple overview

of connections, linking inputs (listed along the left hand side) to outputs (along the top

on the matrix). By selecting an intersection point between an input and an output,

a connection can be made. For control of parameters associated with a single input or

output, the channel can be selected and a channel parameter page is displayed. Parameters

such as level, equalisation settings and panning can be altered from this view. (Foulkes,

2006)

Philip Foulkes’s Matrix Mixer application was originally designed to work with the Yamaha

01X mixing console, but its generic design allows it to be used on a variety of mixing

3.1. MATRIX MIXER 12

consoles. Mixing consoles are represented using Extensible Markup Language (XML),

allowing for the application to take on the form and parameters of any desk. (Foulkes,

2006) This makes the representation of mixing consoles, both old and new, rather simple,

making it possible to integrate this application with a wider range of products.

Connection using a proprietary format would lead to the application being less generic,

and so the MIDI standard was implemented for the control messaging. The desk and

application are synchronised (so that both are in the same state and all parameters match).

MIDI also allows for control messages (from parameter changes on screen) to be both sent

to the desk from the desktop application and sent from the desk (as parameters on the

desk are changed) to the application. These control messages are transmitted via a MIDI

interface connected to the computer. No touch implementation is currently available.

(Foulkes, 2006)

3.2. TOUCHOSC 13

3.2 TouchOSC

TouchOSC, shown in Figure 3.2, is a multitouch enabled application available for Android

and iOS devices, developed by Hexler(Hexler, n.d.). The application has a number of

different control layouts that come standard with the installation.

The application provides users with faders, buttons, pads and rotary pots, each set to

send a predefined OSC message. The developer has also provided a designer application

that allows users and developers to create their own control surfaces for which they can

define their own messages. Owing to OSC’s open and undefined messaging format, it is

important that controls are set up to send OSC messages which the server or application

on the receiving side can interpret and act upon.

Figure 3.2: Example layout of a TouchOSC control window. Image from www.hexler.net
.

Jabarudian Industries, creators of the Missing Link1, have provided a control layout that

is compatible with the Yamaha 01v96. When used in conjunction with the Missing Link,

the OSC messages are capable of giving TouchOSC basic control over the mixing console’s

commonly used functions.

1The Missing Link is a hardware device that features a MIDI interface (both imput and output port)
and a wireless module. It is capable of receiving OSC over a wireless and producing MIDI messages, and
vice versa.

3.3. YAMAHA 14

3.3 Yamaha

Yamaha Pro Audio Inc. developed their own control application, Studio Manager, which is

currently available in its second version offering support for a variety of Yamaha products.

Figure 3.3 shows the Yamaha Studio Manager software, which allows users to exert control

over compatible Yamaha products connected to the controlling computer. Devices such

as the Yamaha 02R96, 01V96 and 01X (Yamaha, n.d.c) are all compatible with software,

allowing a user to adjust parameters, route signals and change levels on these devices

remotely. (Yamaha, n.d.a)

Figure 3.3: Yamaha Studio Manager desktop application for the 01x. Image from
www.yamahaproaudio.com .

In the case of the 01V96 and 01X, Yamaha has implemented four layers, allowing these

desks to support more mixing and channels than they have physical controls for. This is

an issue as engineers would need to switch layers in order to adjust the level on a channel

that is not part of the current layer. With the Yamaha control software, viewing more

than one layer at a time is not a problem, and thus the software can provide further

control over the device. (Yamaha, n.d.a)

Yamaha have also released an application called StageMix that can provide control for

their CL, M7CL and LS9 mixing consoles. The application is designed for the Apple

iPad and aims to give the user remote control of the above mentioned mixing consoles.

The application requires a wireless connection to an access point connected to the mixing

3.3. YAMAHA 15

console, but allows the user to move freely within the confines of the wireless network and

control the mixing console via the tablet.(Yamaha, n.d.a)

Figure 3.4: Yamaha Stage Mix iPad application for the LS9 digital mixing console. Image
from www.yamaha.com .

Figure 3.4 shows the interface for the StageMix application for iPad. The touch screen

interface provides the engineer with a more natural and familiar form of control as the

interface provides control that resemble those of most mixing consoles.

3.4. ALLEN & HEATH 16

3.4 Allen & Heath

Allen & Heath Ltd., like Yamaha, provide applications for the control of their own brand

mixing consoles. Allen & Heath provide both desktop and tablet based applications for

their iLive range of digital mixing consoles (Allen&Heath, n.d.b). iLive Editor is a control

application aimed at desktop and laptop computers and is available both for PC and Apple

Mac (Allen&Heath, n.d.c). The computer application communicates with the iLive mixer

using a standard Ethernet cable. Wireless control can be achieved by connecting the iLive

mixer to a wireless access point. Allen & Heath have a version of the application available

for the Apple iPad called iLive MixPad, which uses WiFi to connect to mixing consoles

which are attached to a WiFi access point. The iPad application provides touch control

for parameters, giving the user a more intuitive and ”closer to the real thing” experience.

These applications provide a wide range of control, but are limited to controlling only

Allen & Heath iLive Series mixing consoles. (Allen&Heath, n.d.d)

A similar application to the iLiveMix application for Apple iPad, GLD Remote, is available

for Allen & Heath’s GLD Series of mixing consoles. GLD Remote is aimed at providing

total wireless control and allows for a single iPad to control many GLD mixers. It also

allows for multiple iPads to control a single desk, separating control for various sections

of the desk to different iPads. (Allen&Heath, n.d.a)

Figure 3.5: Allen & Heath’s iLive iPad mixing application. Image from www.allen-
heath.com .

3.5. CONCLUSION 17

3.5 Conclusion

It is clear that there is no industry standard digital mixer control surface. While desktop

control applications can provide extensive control over a digital mixer, the desktop com-

puter is simply not a practical solution if mobility is to be considered in any way. Desktop

computer applications also often tend to be less intuitive than touch screen based systems

due to the use of alternative input devices such as a keyboard and mouse.

Touch screens provide a sense of familiarity as engineers use their fingers to control faders

and gain pots on touch screen systems in much the same way they use professional mixing

consoles. This familiar feel greatly contributes to the ease and efficiency of using touch

screen devices as control systems.

How mixing consoles communicate with control application seems to be another area

where the industry cannot agree. Various Ethernet implementations, MIDI and OSC

have been used as communications media between the mixing console and the control

application.

Mobile touch screen devices such as tablets would form a good platform for a control

application to be built around, as they provide high resolution multi touch displays,

power efficient, high performance processors and wireless networking. This would enable

the tablet to host a comprehensive control application capable of sending control messages

over WiFi.

Chapter 4

Musical Device Control Protocols

4.1 Musical Instrument Digital Interface

4.1.1 History

The advent of synthesizers revolutionized the music industry in the 1960’s and 1970’s

with musicians being capable of producing a wide range of new sound. But an early issue

that arose with synthesizers was that many could play only one note at a time. This had

obvious limitations and manufacturers attempted to rectify this by implementing control

voltage systems that allowed for a keyboard to control a synthesizer. This allowed for

more than one note to be played at a time, but resulted in synthesizers becoming covered

in control cables and setups becoming increasingly complicated. (Rothstein, 1995)

Dave Smith and Chet Wood, engineers working with Sequential Circuits, began work on

a new protocol that would allow for the interoperability of synthesizers across different

manufacturers. In 1981 they proposed their USI (Universal Synthesizer Interface) protocol

to the Audio Engineering Society (Huber, 2012). Manufacturers and members of the audio

engineering community began working on a standard for synthesizer control, and in 1983

the MIDI 1.0 Specification was released (Hosken, 2010).

The Musical Instrument Digital Interface (MIDI) standard was widely accepted with

many new technologies at the time being released with MIDI compatibility. Today MIDI

is still widely used and has been incorporated into synthesizers, discrete keyboards, effects

units, guitars, mixing consoles, lighting consoles and is a key component in computer music

production (Huber, 2012, Hosken, 2010, Jacobs & Georghiades, 1991).

18

4.1. MUSICAL INSTRUMENT DIGITAL INTERFACE 19

4.1.2 Hardware

Most MIDI devices offer a selection of three MIDI ports, input, output and through.

The through (often written ”thru” as showing in Figure 4.1) is optional and allows for

the daisy-chaining1 of MIDI devices. Typically, The MIDI standard uses 5 pin DIN

connections, but not all 5 pins are operational: only pins 2, 4 and 5 are used. (Jacobs &

Georghiades, 1991)

Figure 4.1: Example setup of MIDI connections on a MIDI device.

The MIDI specification requires that the interface operates at 31.25 kbaud in an asyn-

chronous manner. The interface’s receiver is required to be opto-isolated and an output

is not allowed to feed more than one input. (Huber, 2012) Single in... Why? Resistance

and signal conciderations

4.1.3 Messaging Protocol

MIDI communicates using a series of bytes, either being status bytes or data bytes. A

message is constituted by an initial status bytes followed by one or more optional data

bytes. There are two types of messages, namely channel messages and system messages.

(DeFuria & Scacciaferro, 1990)

Channel Messages

MIDI devices operate on a selected MIDI channel, and so send control messages pertaining

specifically to that channel. These messages are referred to as channel messages, which

can further categorised as channel voice messages and channel mode messages. (DeFuria

& Scacciaferro, 1990)

The former, voice messages, can be used to transmit note messages, program messages and

expressive messages. Note messages are generated when a key on a keyboard controller

1Where each device provides a connection to be made to the next device in a sequence. Information
received by a device that is repeated out to the next device in the ’chain’.

4.1. MUSICAL INSTRUMENT DIGITAL INTERFACE 20

is pressed; this is referred to as a ”note-on” messages. When the depressed key is lifted,

a ”note-off” message is sent. (Kirk & Hunt, 1999)

Table 4.1 shows how the voice messages (including note-on and note-off) are structured.

The necessity for a both ”on” and ”off” messages is owing to the fact that if the system was

required to wait for the user to complete playing a note before transmission, considerable

delay would be incurred. (Rothstein, 1995) When a key is pressed, the ”note-on” message

is sent with information such as which key was pressed (key number) and how hard

(velocity). (Hosken, 2010)

Status Byte Hex Decimal Data Byte 1 Data Byte 2

Note off 80 - 8F 128 - 143 Note number Release velocity

Note on 90 - 9F 144 - 159 Note number Attack velocity

Poly key pressure A0 - AF 160 - 175 Note number Pressure value

Control change B0 - BF 176 - 191 Controller ID Controller value

Program change C0 - CF 192 - 207 Pressure value -

Channel pressure D0 - DF 208 - 223 Pressure value -

Pitch wheel change E0 - EF 224 - 239 Pitch bend (LSB) Pitch bend (MSB)

Table 4.1: Table showing various types of channel voice messages. Adapted from ”MIDI
Programmer’s Handbook” (DeFuria & Scacciaferro, 1990).

System Messages

In contrast to channel messages (which are channel specific), MIDI systems messages are

broadcast to all MIDI devices. One feature of system messages is the ability to send

device-specific messages known as ”Exclusive Messages”. System messages can also be

used to communicate ”Time” messages allowing for devices to be synchronised, as well as

”Common” messages used for tuning and setup. (Kirk & Hunt, 1999)

4.1.4 Controlling with MIDI

MIDI, although not initially designed for such use, can be implemented for use in con-

trolling other devices in the recording or production studio. Devices such as effects units

and mixing desks can be controlled using MIDI keyboard controllers or other control sur-

faces. One distinct advantage gained through using MIDI controlled mixing consoles is

that of automation. Automation allows levels to fade over a period of time without the

4.1. MUSICAL INSTRUMENT DIGITAL INTERFACE 21

engineer having to slowly pull down on a fader. The ability to program the change of

parameter so that the user need not constantly change it, be it a level, panning or an

equalisation parameter, can not only make mixing a multitrack recording a lot simpler,

but can also allow for engineers to attempt newer and more intricate mixing techniques.

(Huber, 2012)

This can all be achieved by using a MIDI sequencer to store MIDI messages and have them

played back during mixdown. The incorporation of MIDI into computers and applications

has resulted in the creation of a simple method of providing control for mixing consoles

and effects processors. Users can change parameters on an on screen application and

have the changes reflected on the device being controlled. These changes can be recorded,

modified and re-used by employing software based sequencers. (Huber, 2012)

4.1.5 Limitations and the future of MIDI

Since the MIDI specification has never been revised since its release, MIDI has a few

limitations to its operation and its capabilities. MIDI cables are limited (in the standard)

to being up to 15 meters long, to avoid the risk that attenuation might result in signal loss.

(Jacobs & Georghiades, 1991) This, although seeming fairly inconsequential, remains an

issue as large synthesisers, despite being capable of being distanced from their keyboard

controller, are restricted by this maximum length of cable. Although there are systems

available that can extend this distance, and some systems that even make it possible to

send MIDI point to point wirelessly, this is still a restriction of MIDI.

Another issue with MIDI is its speed. MIDI operates serially, transferring bits one after

another at what is considered a slow speed: 31.25 kbaud. This can lead to the problem

of ”MIDI lag”. Where many complex MIDI messages and many channels are being used,

MIDI messages can begin to lag owing to the slow speed of transmission. This speed limit

makes MIDI less reliable in high demand areas such as recording and production studios.

The same lag can be experienced when many MIDI devices are daisy-chained together.

(DeFuria & Scacciaferro, 1990)

Furthermore, MIDI is limited to only 16 channels. For a single device, in general, 16

channels is a fair limit, with most synthesisers only being capable of generating a limited

number of voices. Unfortunately, with most setups sporting multiple MIDI devices, 16

channels is too restricting.(Kirk & Hunt, 1999)

may only be due to the protocol’s age. MIDI would definitely benefit from an increase

4.1. MUSICAL INSTRUMENT DIGITAL INTERFACE 22

in speed and with modern architecture this would not pose much of an issue. The issue

with attempting to move MIDI forward would seem to lie in its widespread acceptance.

So many devices already incorporate MIDI, an update to MIDI would need to remain

backward compatible with existing MIDI devices.

MIDI has never been revised, and thus many of these limitations might only be due to

the protocol’s age. MIDI would definitely benefit from an increase in speed and with

modern architecture this would not pose much difficulty. The issue with attempting to

move MIDI forward would seem to lie in its widespread acceptance. Because so many

devices already incorporate MIDI, an update to MIDI would need to remain backward

compatible with existing MIDI devices.

4.2. OPEN SOUND CONTROL 23

4.2 Open Sound Control

4.2.1 History

Open Sound Control or OSC was developed by Adrian Freed and Mathew Wright as

a ”protocol for communication among computers, sound synthesizers, and other multi-

media devices that is optimized for modern networking technology” (Wright & Freed,

1997).

The OSC protocol was designed independently of its method of transport. The protocol is

therefore able to be used on standard network technology such as TCP and UDP, running

over Ethernet or 802.11 wireless networks. (Wright, 2005)

The OSC protocol has been used to simply encapsulate other protocols (including MIDI

messages) for transport over networks, but has also be employed for use in lighting control,

Digital Audio Workstation (DAW) control as well as home do it yourself projects. (Wright,

2005) some examples or something.

OSC is becoming increasingly popular in the audio engineering industry due to it being

an open protocol. This allows manufacturers to widely and freely implement and use OSC

in products, and encourages developers to implement OSC in their applications.

4.2.2 Specification

The protocol defines a data transport format that can be used to send control messages

over networks. OSC does not define a set of standard messages for devices to use, but

rather encourages manufacturers to create and use their own message sets: Schemas.

Schemas refer to the configurations that define the structure of a device. Therefore the

address space is application specific. There are no standard schemas at the moment

and manufacturers need to define the structure of their device in order to use the OSC

messaging standard. (Wright, 2002)

4.2. OPEN SOUND CONTROL 24

Figure 4.2: The structure of an OSC message.

parsed.

Figure 4.2 shows the layout of an OSC message that would be sent to the OSC server

in order to adjust the gain on a mixer to ”5”. The figure also shows how the natural

tree structure of the message assists in the representation of the device the schema is

describing. (Eales, 2012, Wright, 2002)

4.2.3 Comparison with MIDI

The designers of OSC state that it is superior to MIDI in several ways. The MIDI

standard was never intended for use over LANs, let alone the Internet. OSC provides

larger address space for messages, allowing for more complex and specific control messages.

Modern synthesizers can sometimes exceed the MIDI specification in terms of channels

and parameters, areas where OSC is not limited. (Eales, 2012)

As OSC is software based and requires a set of messages and function callbacks to be

defined, it lends itself to easier integration into applications in comparison with physical

hardware. This does not mean that it cannot be used to provide hardware control though,

but rather that the hardware would require some form of system integrated into it that

can manage OSC before the protocol can be used. control protocols

Chapter 5

MIDINet: A distributed approach to

MIDI control

5.0.4 History

MIDI was originally designed as a means of communication for keyboards and synthesizers,

and its simple implementation has led to high uptake by manufacturers. Although the

protocol was initially used for the remote control of synthesisers and sound generation

devices, it quickly found uses in other areas, such as control for MIDI patchbays, effects

units and mixing consoles. As manufacturers started to adopt MIDI and build MIDI

interfaces into various devices, it became possible to control a large number of devices in

a studio using MIDI control surfaces. (Mosala, 1995)

Studio equipment is expensive and is often bulky, resulting in studio resources having

to be tied to a single location. MIDI provides a method of controlling these resources

remotely, as well as the ability to control many devices from a single MIDI controller.

Rhodes University created a network to provide control for these devices: the Rhodes

Computer Music Network (RHOCMN). The network’s purpose was to provide an efficient

and cost-effective method of sharing music resources. (Mosala, 1995)

Since the inception of the MIDINet system it has been fully implemented Richard Foss(Foss,

n.d.) in C++ using MFC.

25

26

5.0.5 Concept

Since many devices have MIDI connections and it is possible to provide a computer with

a MIDI interface, a computer running control software is capable of providing control

for these audio devices. A chief drawback to the current MIDI specification is that the

cable lengths are limited to 15m. The MIDINet system was created to overcome these

limitations by providing a distributed transport system through the encapsulation of MIDI

messages in packets so they can be sent over a Local Area Network (LAN). (Mosala,

1995)

”The MIDINet system allows the user to look at the collection of his MIDI

devices as a single, unified system.” (Mosala, 1995)

MIDI devices can be connected to a computer running the MIDINet system, enabling

them to control devices connected to other computers on the LAN running the MIDINet

system. Each computer is equipped with a network interface controller (NIC) and a

MIDI interface card; these computers are referred to as MIDINet units. MIDINet units

are interconnected using a standard Ethernet network. (Mosala, 1995)

Figure 5.1: Example set-up for a small MIDINet system.

It is possible for computers running the MIDINet system and computers being employed

for other purposes to co-exist on the same local area network. This is due to the manner

in which the MIDINet system communicates with other machines on the network. When

the MIDINet application is started, the host machine sends a join request, adding the

machine internet protocol (IP) address to a multi-cast group. The system uses this group

for set-up and configuration messages. Messages are sent to the multi-cast group so that

only machines running the MIDINet application receive these messages.

27

5.0.6 MIDINet protocol

The MIDINet system was developed with its own multilayer protocol. Based on the OSI

reference model, the MIDINet protocol consists of 3 layers: The application layer, the

MIDINet layer, and the Transport layer. (Mosala, 1995)

MIDINet layer model

The Application layer is the top layer, and is the layer with which the user interacts. This

layer provides methods of adding and removing connections from the system.

The middle layer is the MIDINet layer, which is responsible for the routing of messages

from the application layer to the transport layer.

The transport layer is the lowest layer and is tasked with controlling inter MIDINet unit

messaging across the network.

MIDINet messages

MIDINet messages consist of two segments: A code segment and a data segment. The

code segment of the message consists of 3 bytes while the data segment’s size can vary

up to 1497. It is important to note that ”the data part can be as large as the minimum

length allowed by an Ethernet packet” (Mosala, 1995).

5.0.7 Implementation

User interface

The MIDINet application consists of two windows: A window naming the MIDINet unit,

and a window managing connections. When the user starts the application they are

presented with a window in which a name can be provided for the MIDINet unit. Figure

5.2 shows the naming window, which is made up of a field for entering text, and a button

that allows the application to proceed with the set-up.

28

Figure 5.2: MIDINet Identification Dialogue.

Once the name for the MIDNet unit has been confirmed, the user is then presented with

a window which is used for managing connections between the various MIDINet systems

on the network. Figure 5.3 shows the connection management window, which has the

main sections which are used for selecting ports and connecting them.

Figure 5.3: MIDINet Connection Management Dialogue.

In Figure 5.3 a list box component can be seen on the upper left hand side where the input

ports are listed. The list box is populated with all input ports discovered on the MIDINet

system, from both the local and remote MIDINet units. Ports are displayed with the

name of the MIDINet unit, followed by the description of the port (MIDI interface). The

list box on the upper right of the window functions in much the same manner, but instead

with the output ports being displayed. Each line of the list boxes is selectable, allowing for

the ID of both the MIDINet unit and port to be used when creating a connection.

Lastly, the lower half of the window contains a list box where all current connections are

29

MIDINetMsg[0] HEX Callback
WHO IS THERE 0x01 IamHere(Sender);
I AM HERE 0x02 ConfigRequest(Sender);
CONFIG REQ 0x03 ProvideConfig(Sender);
MNUNIT 0x04 NewRMNUnit();
DELETEMNUNIT 0x0A DeleteMNUnit();
INPORT 0x04 NewRInPort();
DELETEINPORT 0x0D DeleteRInPort();
OUTPORT 0x05 NewROutPort();();
DELETEOUTPORT 0x0E DeleteROutPort();
CONNECT 0x07 NewConnection();
DISCONNECT 0x09 Disconnect();
SYSEXMSG 0x0B RouteMIDI();
ENDCONFIG 0x0C none

Table 5.1: Table of ReceiveMIDINet message headers and related callbacks

displayed. The connections are displayed by a MIDNet unit’s input port followed by a

MIDINet unit’s output port. Each of the connections in this list box can be selected so that

existing connections can be removed when they are no longer required or necessary.

Network class

The networking class provides a set of methods for initialising the network, handling

messages and calling various functions from other classes.

The class makes use of a BlockingSocket library which provides the functions for creating

sockets, binding to ports, listening to ports and other socket-related operations. The

library uses Microsoft’s WinSock library to communicate with the network drivers.

When the network class is instantiated, the network is set up and the process is started.

The ConfiguredState variable is set to START 1, which indicates that in the system’s

current state it is not ready to operate. The networking class then sets up the socket

connection for messages by binding to the MULTIPORT 2 and the host’s IP address. The

machine’s IP address is then added to the MIDINet multi-cast group.

The ReceiveMIDINet function is responsible for responding appropriately to all received

MIDNet messages. Table 5.1 shows a summary of how the MIDINet system responds to

received MIDINet messages.

1START is is a preprocessor definition in the MIDINet header file referring to port 2051.
2MULTIPORT is is a preprocessor definition in the MIDINet header file.

30

The network class also maintains the list of remote MIDINet units.

MIDINetUnit class

The MNUnit class is used to form a base class that provides storage of information

pertaining to a single MIDINet unit. When instantiated, the class will provide two private

data items: A string containing the unit’s name and an unsigned integer containing the

unit’s ID.

The structure provides basic accessors for the data in the form of SetName and SetID

functions as well as GetName and GetID. The class is simple and it is required to be

generic so that the LocalMIDINetUnits and RemoteMIDINetUnits can inherit their base’s

members from this class.

LocalMIDINetUnit class

The LocalMIDINetUnit class inherits its base’s member from the MIDINetUnit class but

also holds its own data items, such as lists, of both the LocalInputPorts and LocalOut-

putPort held by this MIDINetUnit.

The class contains a CreatePorts function which handles the opening, closing and trans-

mitting of all input MIDI devices on the host machine. These devices are then created as

new LocalInputPort objects, opened and added to a list of the MIDINetUnits LocalInput-

Ports. The equivalent procedure is then carried out for all MIDI output devices attached

to the machine.

RemoteMIDINetUnit class

The RemoteMIDINetUnit class contains a number of functions that are required for stor-

ing the details of another MIDINetUnit. The class includes functions for adding and

attaching both RemoteInputPorts and RemoteOutputPorts as well removing them from

the MIDINetUnit.

In a similar manner to the LocalMIDINetUnit’s class, its remote counterpart stores two

lists containing the input and output ports associated with the unit. Few handling func-

tions are contained within the class as most work is done by the LocalMIDINetUnit before

transmitting the unit to other units on the network.

31

Port class

The Port class provides a basic container for a Port, storing only the port’s Name (as a

string) and ID (as an unsigned integer). The class provides Get and Set accessors for the

port’s data items in much the same way the MIDINetUnit class does.

The Port class forms the base of the more specialised LocalInputPort, LocalOutputPort,

RemoteInputPort and RemoteOutputPort classes and thus is a more generic class pro-

viding on the more basic port Name and ID functions.

LocalInputPort

The LocalInputClass provides port identification through use of the Port class but re-

quires an external library in order to communicate with the lower level MIDI devices

associated with these ports. MaxMidiIn is a part of the greater MaxMidi library which

provides all the necessary functions for opening, closing, starting, stopping and handling

the MIDI messages received by a MIDI input port. The class also holds a data member

for identifying the MIDINet unit to which the LocalInputPort belongs.

Packaging of MIDI messages into MIDINetMessages is done by the classes ProcessMidi-

Data function. The function is passed a MIDI message which it initially sends to local

ports using the classes SendToLocals call. The function then reads the status byte of the

MIDI message in order to determine whether the message is a standard MIDI message,

or whether it is a SysEx message. In the call of a MIDI message, the MIDINet message’s

initial byte is set to MIDIMSG so that when received by the network, the correct call-

back is triggered. Should the message have been a SysEx message, a similar procedure

is applied, but the initial byte is instead set to SYSEXMSG. These messages are then

transmitted by the network.

The class also provides a number of functions to GetLocalOuts as well as GetRemoteOuts,

functions which add each port to a list. Other functions for Connecting and Disconnecting

from output ports (both local and remote) are used to add specific output ports to the

relevant lists.

LocalOutputPort

The LocalOutPort class inherits from MaxMidiOut (a part of the MaxMidi library) and

the port class for storing the port name and ID. MaxMidiOut provides all the functions

32

needed to open and close MIDI output devices, as well as output a MIDI message to a

port.

The class itself has only a single data member, a pointer for storing the location of the

related LocalMIDINet unit so that the port may be associated with a specific MIDINet

unit. Apart from the class’s constructors and destructor and excluding any inherited

member functions, the class has only a single function for returning the ID of the associated

MIDINet unit.

RemoteInputPort

The RemoteInputPort class inherits the standard port access methods from the Port

class. In many ways the RemoteInputPort class is similar the LocalInputPort class,

providing much the same function for Getting outputs, Connecting and Disconnecting

from ports.

Unlike the LocalInputPort, the RemoteInputPort does not require any functions for pro-

cessing MIDI messages, since an instance of the class actually just represents a LocalIn-

putPort attached to the MIDINet unit hosting the specified port. MIDI message handling

will be done on the part of the LocalInputPort.

RemoteOutputPort

RemoteOutputPorts use only the Port class as the base class from which they inherit the

bulk of their data members and functions. The constructor is used to set the ID and

Name of the Port as well as which RemoteMIDINetUnit it belongs to.

Once again few functions are needed as the RemoteOutputPort is really just an identifier

for the LocalOutputPort (which takes care of all the processing) found attached to the

correct MIDINetUnit elsewhere on the network.

5.0.8 System Start-up and Operation

To comprehensively understand the way a system functions, its start-up and operational

procedures must be examined. Gaining insight into the way a system operates will allow

for the identification of any shortcomings. These observations will aid in the rectification

of these flaws, thereby improving the system.

33

Start-up procedure

When a user starts the MIDINet application, a new LocalMIDINetUnit is created. This

MIDINetUnit will represent the host machine. When the LocalMIDINet class is instanti-

ated, MIDI input and output devices attached to the host are scanned and the respective

local input and output port objects are created and stored.

The application then creates a new network object which immediately sets itself up for

socket communication by binding to its own IP address and the chosen multicast port.

The class also opens a port for sending UPD packets to a multi-cast address and then

requests to join the multicast group. The networking class then starts the MIDINet set-up

by sending a ”Who’s there” message to the multicast group. The group then forwards

the message to all of its members.

Next, the application creates the Connection Display window followed by the creation of

the Identification window. The user then chooses a name for the MIDINetUnit, entering

it in the Identification Window’s text input box. The application then fetches the name

from the Identification Window and checks the network to ascertain if the name already

exists. If the name is unique then the application sets the name of the LocalMIDINetUnit

and retrieves the unit’s unique ID.

Should there be other machines running the MIDINet application on the network that

have already gone through the set-up procedure, on receiving the ”Who’s there” message

the other application(s) would reply with an ”Im here” message, thus initiating the remote

MIDINet unit’s port discovery.

Discovery

When a new MIDINet unit is set-up on a network, in order for the unit to learn about

other units on the network, the application sends out (via multicast) a ”Who’s there”

message. If there is another MIDINet unit on the same network and it is already config-

ured, it will respond with an ”I’m here” message. The LocalMIDINet unit subsequently

responds with ”Configuration Request”. Upon receiving the Configuration Request, the

RemteMIDINetUnit begins transmitting its information. After getting its LocalMNUnit

object, it transmits the object to the requesting machine. The same procedure is then

followed for the unit’s InputPorts, OutputPorts, Connections and if present, other known

RemoteMIDINet units.

34

Operation

When a MIDI message is sent from a MIDI device to a computers MIDI interface, it is

handles by the MaxMidi library. The library’s OnMidiData function fetches the MIDI

messge from the device and handles it internally. MIDINet’s LocalInputPort inherits fun-

tions contained within the MaxMidiIn library, and overrides it’s ProcessMidiData function

for getting MIDI messages, which it then repackages as a MIDINet message. The new

MIDINet message is then sent to LocalOutputPorts before being transmitted to the net-

work.

When a MIDINet message is received from the network, the networking class then checks

the RemoteMIDINet unit for the port. The MIDINet message is then sent to the LocalOut-

putPort which handles the message. This is done using MaxMidi’s MaxMidiOut library

to output the message from the device using the Put function.

5.0.9 Limitation of the MIDINet system

The MIDINet system was originally implemented in Visual C++, making extensive use of

Microsoft’s Foundation Class (MFC). While this MFC implementation is not necessarily

problematic, it can only be deployed on machines running Microsoft’s Windows platform

which results in a severe limitation of the application’s target base.

The system was also designed to run on a wired LAN (100mb/s Ethernet network) and had

not been intended for wireless networks. This can limit the use of the network as the ability

of the system to run over wireless networks would enable the use of laptops and smaller

devices such as tablets to run the system. MIDINet messages are sent using the User

Datagram Protocol (UDP) which provides a faster communication, yet is connectionless

and provides no assurances as to delivery. While UDP is not necessarily a limitation, its

use in industry is declining and research into other protocols for MIDINet’s communication

should be conducted in the interests of an efficient, updated system.

Lastly, the MIDINet system’s user interface was designed using Microsoft’s forms, which

provide a simple and usable application interface. The limitation to this is that the ap-

plication was developed for desktop computers, therefore proving difficult to use on touch

screen computers. As the screen size decreases, interaction with the system’s interface

becomes more troublesome and the application usability decreases.

Chapter 6

Cross-platform MIDINet: Design

and Implementation

6.1 Languages and libraries

6.1.1 Language of choice: C++

The original version of MIDINet that this implementation is based on was initially devel-

oped using Visual C++. C++ offers the ability to deal with memory more directly over

higher level languages. This is of great value to any application or system that may need

to use pointers.

Visual C++ is Microsoft’s variant of the language and comes with a range of Microsoft’s

many built in datatypes and libraries. The language is comprehensive and was a perfect

choice for the original MIDINet system as the target systems were Microsoft Windows

machines. The primary downfall of Visual C++ is that it cannot be compiled for other

operating systems. Because the target device for this project is the Apple iPad, Visual

C++ would need to be substituted with another compatible language.

Apple’s proprietary language is Objective-C. Apple’s Integrated Development Environ-

ment (IDE) is XCode, which is capable of creating and compiling both C as well as C++

projects. For this reason C++ was selected as the language in which the new MIDINet

implementation would be developed.

35

6.2. DEVELOPMENT ENVIRONMENTS 36

6.1.2 JUCE

This project aimed to place the MIDINet system on wireless tablet computers, specifically

the Apple iPad. But to port the system to Objective-C would mean that the system would

once again be constrained to a specific platform. Instead, a cross-platform implementation

has been developed using a toolkit known as JUCE.

JUCE (Jules’s Utility Class Extension) (Storer, n.d.b) is a collection of libraries that was

designed to make development simpler when creating cross-platform projects. JUCE pro-

vides an application called the Introjucer through which both C++ and header files can

be created. The Introjucer then allows the developer to choose which JUCE libraries to

include and then choose the target platforms to create projects for. In this way developers

can write one set of code, and then have that code exported into Microsoft Visual Stu-

dio, XCode, CodeBlocks, Linux (through the creation of a Makefile) as well as Android

projects.

This allows for these projects to be created and for a single set of source code to be used.

JUCE also allows for Graphical User Interfaces (GUIs) to be created (from within the

Introjucer) which use JUCE’s own libraries, making it possible to create a consistent user

interface across various platforms.

Another consideration when choosing JUCE is that the original implementation of MIDINet

made use of Microsoft’s own standard libraries. With the standard C++ language not

including all the functions and data types that are needed for MIDINet, these would need

to be replaced with other libraries. JUCE offers many libraries, including networking,

audio and graphics, which are required for this cross-platform implementation.

6.2 Development Environments

6.2.1 Visual Studio

Visual Studio is Microsoft’s integrated development environment (IDE). The IDE allows

for the creation and management of projects developed using a variety of languages. The

IDE provides Microsoft’s own libraries and Microsoft’s Foundation Class which aids in

developing custom classes.

Visual Studio was used extensively in the development of the original MIDINet system

6.2. DEVELOPMENT ENVIRONMENTS 37

as as such has been used in the design and implementation of the cross-platform version

of the application.

All testing of cross-platform application deployment targets aimed at the Microsoft system

have been compiled and tested using Visual Studio.

6.2.2 XCode

XCode is Apple’s IDE which can be used to the development of C, C++ and Objective-C

applications. The IDE allows for the creation of project for both Apple’s OS X and iOS

operating systems. OS X application can be compiled and run natively on Apple OS X

machines.

Applications targeted at iOS devices can be run using Apple’s iOS simulator. The simu-

lator allows for application to be tested and run on OS X machines without the need for

the target device, either an iPad or iPhone. The simulator also allows for applications

designed for mobile devices to be tested without the need for an Apple iOS developer

licence. The simulator does have some drawbacks though, namely the lack of actual

interfaces.

As the simulator is run on an OS X machine, applications can not be tested as they would

on a physical device. This project deals with MIDI devices and interfaces, and discovering

these in the simulator can be troublesome should applications be designed to use physical

interfaces. Virtual MIDI interfaces can be used within the simulator by either opening

ports within the application or by using a second application in the simulator at the same

time.

For testing of applications targeted for deployment on the iPad or iPhone, testing should

be done using the target device. This requires iOS developer licence as application can

not be deployed to a device unless they have been signed.

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 38

6.3 An alternative to the MaxMidi library

In the original MIDINet implementation, handling of MIDI ports was achieved through

the use of an external library called MaxMidi. The MaxMidi is a C library that allows

for the discovery, access and control of MIDI ports available to a system. The MaxMidi

library provides a general class for handling MIDI tasks, as well as classes for both MIDI

input ports and Output ports.

The library, while providing a comprehensive array of MIDI device functions, is only

available for use in the Microsoft systems environment. The MIDINet implementation

being originally designed for such systems functioned adequately with the MaxMidi library

and did not require any other external libraries to enable MIDI functionality. For a cross-

platform implementation, an alternative to MaxMidi needed to be found.

6.3.1 MIDI capabilities of JUCE

JUCE is an extensive and comprehensive collection of libraries, and among its libraries

geared towards audio are a several MIDI classes(Storer, n.d.a). JUCE provides classes for

the the storage of MIDI messages, the management of MIDI devices and even the parsing

of MIDI files.

MidiInput

MidiInput is a class that JUCE provides to enable the identification, creation, opening

and handling of MIDI inputs. The class provides member functions that cater for all

aspects of MIDI input port handling.

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 39

1 stat ic Str ingArray f indDev i c e s (const bool f o r Input)

{
3 const ItemCount num = for Input ? MIDIGetNumberOfSources ()

: MIDIGetNumberOfDestinations () ;

5 Str ingArray s ;

7 for (ItemCount i = 0 ; i < num; ++i)

{
9 MIDIEndpointRef des t = fo r Input ? MIDIGetSource (i)

: MIDIGetDestination (i) ;

11 St r ing name ;

13 i f (des t != 0) name = getConnectedEndpointName (des t) ;

15 i f (name . isEmpty ()) name = ”<e r ror>” ;

17 s . add (name) ;

}
19

return s ;

21 }

Listing 6.1: findDevices: iOS callback for MidiInput’s getDevices.

Before a MIDI device can be opened or used for receiving messages, input devices need to

be discovered and enumerated. JUCE accomplishes this by providing a getInputDevices

function which returns a StringArray1 containing the names of all the MIDI devices that

were found. These devices can later be referred to using their index.

In order to use a MIDI input, the input needs to be opened. This can be achieved using

the openDevice function which is passed the MIDI device’s index, and a callback. The

purpose of the callback is to provide instruction on how the input should respond to

received MIDI messages.

The MidiInput class also provides methods for starting and stopping the MIDI device

from receiving.The class also provides fairly standard functions such as the member for

returning the name of the device.

MIDI input devices can also be created, although the feature is not available on Microsoft

systems.

1A data structure provide by JUCE, which stores an array of JUCE strings, and contains various
functions for managing the data structure

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 40

MidiOutput

The MidiOutput class allows for the connection and handling of output devices. In a

similar fashion to the MidiInput class, the MidiOutput class provides a getOutputDevices

function for listing the available output devices. The class also provides an openDevice

method, which as expected required the index of the device, but this MidiOutput variant

does not require a callback to be provided when opening a device.

MidiMessage

this could simply be replaced with JUCE’s MIDIMessage data type. The two types differ

only slightly in their implementation (as can be seen below).

MIDINet had originally used the LPMIDIEVENT type for the storage of MIDI messages.

This type is defined in the MaxMidi header file, as a pointer to a MidiEvent. MidiEvent

is another of Microsoft’s custom data types and therefore needed replacing in order to

become cross-platform.

1 typedef struct

{
3 DWORD dwDeltaTime ;

DWORD dwStreamID ;

5 DWORD dwEvent ;

DWORD dwParms [] ;

7 } MIDIEVENT;

Listing 6.2: Structure of the MIDIEVENT type.

Although not identical in structure, the MidiMessage class provides aa similar format

to the above mentioned types. All other MIDI reelated work is done by implementing

JUCE’s oown MIDI functions and so no issues were encountered using the class as a

replaccement.

MIDIView: Test application for JUCE’s MIDI library

In order to test that JUCE’s MIDI functions would provide adequate control over MIDI

devices, a test application was developed. The application was developed to be cross-

platform so that the JUCE functions could be tested on various platforms for compati-

bility.

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 41

Figure 6.1: Screenshot of Connection Management window.

Figure 6.1 shows the application’s user interface. There is a list box on the left of the

window which will display all the MIDI input ports discovered on the device. The right

of the window has a list box for displaying the MIDI outputs. Each list box has a refresh

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 42

button which, when pressed, causes the JUCE MidiInput or MidiOutput class to call the

respective getDevices function.

The application was tested on Windows 8, Ubuntu Linux, OS X Lion and iOS 6. MIDI-

View performed as expected, displaying all MIDI devices available to the target device.

The application has proved that JUCE’s MIDI library provides enough control over MIDI

devices to be used in the cross-platform implementation of MIDINet.

6.3.2 Development of JMIDI: A JUCE based alternative to MaxMidi

The MaxMidi library consists of three main components, namely the MaxMidi header file,

a MidiInput class and a MidiOutput class. As expected, the MaxMidiIn and MaxMidiOut

classes handle all functions relating to Midi device inputs and outputs. The MaxMidi

header itself mostly contains defines that are needed for the creation of MIDI messages

and used in the MaxMidiIn and MaxMidiOut libraries.

Although all calls in the original MIDINet system that used members inherited from the

MaxMidi could be replaced with function calls the JUCE library, this would require the

modification on many lines of code over many different classes in the MIDINet system.

The option to rather create a library that closely matches the MaxMidi library meant

that a minimal number of changes would need to be made to the MIDINet system to

implement JUCE’s MIDI functions.

The new library to be created was named JMIDI2 and aims to replace the platform specific

MaxMidi library. The JMIDI library uses JUCE’s basic audio(Storer, n.d.a) modules to

provide cross-platform utility functions for controlling MIDI devices. The new library

is designed to simply be a cross-platform, JUCE based implementation of the MaxMidi

library, and therefore the new library attempts to have as similar functions as possible

in order to increase the compatibility with applications that already use the MaxMidi

library.

6.3.3 JMidiIn: Input device control

The JMidiIn class provides a basic container for a MIDI input device and related functions

used for controlling the device.

2JMIDI gets its name from the functions it performs in managing MIDI input and output devices and
from JUCE, since the access control to MIDI devices is done through the use of the JUCE library.

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 43

The class has only two data members, namely a pointer to a MidiInput and a String that

is used to store the device’s name.

BOOL Open(UINT deviceNum)

The Open function is used to open a MIDI input device using the devices index. The

function sets up the handler for incoming MIDI messages, storing received messages in a

data member held within the JMidiIn class.

To ensure that the port was opened correctly, mDevice (the JUCE MidiInput object) is

checked to verify that the pointer is not null. If mDevice contains a null pointer then

the opening of the device has failed and the function returns false to indicate the failure.

If the device opened successfully and the pointer is not null, the device index is used to

retrieve the name of the device and store it in a JUCE String data member in the JMidiIn

class.

void Close(void)

Simple function that sets mDevice to a null pointer to assign it.

void Start(void)

The Start function used JUCE’s MIDIInput class to start mDevice receiving MIDI mes-

sages. The device will continue to read any incoming MIDI messages until it is stopped.

void Stop(void)

The Stop function stops mDevice listening to MIDI message.

String getDescription(void)

The getDescription function can called to return the name of the MIDI device opened by

mDevice. This name is set by the device and can not be changed.

6.3. AN ALTERNATIVE TO THE MAXMIDI LIBRARY 44

6.3.4 JMidiOut: Output device control

The JMidiOut class can be used to provide a container for MIDI output device attached

to system.

Same as the JMidiIn class, JMidiOut has only two data members: a pointer to a MidiInput

and a String storing the devices name.

BOOL Open(UINT deviceNum)

The Open function in JMidiOut operated in the same manner as the function in JMidiIn.

When passed the index of a MIDI output device, the function sets the mDevice pointer

to that device.

Should the pointer be a null pointer, the function will return false to signify that the

opening of the device has failed.

void Close(void)

The mDevice pointer is unassigned in order to close the class.

bool Put(MidiMessage midiEvent)

The put function is used for sending MidiMessage event to the MIDI output device.

6.4. SYSTEM DESIGN 45

6.4 System Design

6.4.1 User Interface

In the interest of a solid cross-platform implementation of the system, the Introjucer

was used to create a GUI for the application. The JUCE graphics library allows for

developers to create user interfaces that are visually appealing, without losing their func-

tionality.

The Introjucer allows developers to set a canvas size and whether it is to be of a static size

or dynamically resizeable. Components can then be placed on the canvas and moved, re-

sized and have all their attributes modified. A full complement of components is available,

including TextBoxes, Buttons, Sliders, Rotary Pots and it even allows for custom created

JUCE components to be placed within other components with ease. The Introjucer can

also generate callbacks for the various components used to create the interface.

The MIDINet system has only two graphical interface windows: The start-up window

(where the MIDINet unit’s name is selected), and the connection management window

(where input and output ports are connected and current connections are displayed. These

two windows did not require any specific redesign graphically, and so were laid out in the

same format as the original system. The only real modification to the GUI was that

the newer interface no longer consisted of two windows, but rather of a single window

to which the two components (NamingComponent and the ConnectionComponent) were

added. This was done as devices such as the iPad and other Android and iOS devices do

not specifically use windows, but rather tend towards having single screen interfaces that

modify contents as the application requires.

The NamingWindow is a simple design, only comprising of a single label, textbox and

button. The window was designed with only a single callback for the button click. On

the button click, the function was called to create a MIDINet Unit, with only the text

contents of the text box in this window being required.

The second window to be created was the ConnectionManagementWindow. This window

comprises three main sections. A list of available MIDI inputs is displayed in the textbox

located on the left of this window, with a list of MIDI outputs being displayed in a textbox

on the right of the window. The window also holds a textbox containing the list of active

connections for the MIDINet system. The window only has two buttons which are used

to create and delete connections. Callbacks for click events on these buttons are the only

6.4. SYSTEM DESIGN 46

two callbacks that are required.

The Introjucer automatically generated a start-up class for the project. This class is

used to make the necessary calls to create the NamingWindow and set up the MIDINet

network.

6.4.2 Global modifications

The majority of design changes made to MIDINet are due to the lack of compatible C

standard libraries. It became necessary to change Microsoft’s own variant on the string

data type, CString, to a more common type. JUCE’s libraries provide a String data

type that is uncomplicated and provides a collection of sensible functions to accompany

it. JUCE’s String implementation also provides superior compatibility with other JUCE

libraries and their functions. For this reason JUCE’s String class was chosen for use over

the standard C++ string type.

Visual C++ included functions for the creation of message boxes that are used to provide

feedback and error information to the user. These messages boxes were originally created

using Microsoft’s AfxMessageBox function, which is part of the AfxStd library. With

this being a Microsoft library (dependant on Microsoft’s GUI libraries) it would not be

available to be used in standard C++ and would not work on platforms such as Android,

iOS, OS X, or Linux.

The AfxMessageBox function calls were replaced with JUCE’s own message box imple-

mentation.

1 stat ic void JUCE CALLTYPE AlertWindow : : showMessageBoxAsync

(

3 AlertIconType iconType ,

const St r ing & t i t l e ,

5 const St r ing & message ,

const St r ing & buttonText = St r ing : : empty ,

7 Component ∗ associatedComponent = nu l lp t r ,

ModalComponentManager : : Cal lback ∗ c a l l b a c k = n u l l p t r

9)

Listing 6.3: JUCE Alert Box function and parameter types

Another type difference that needed to be rectified was that of the lists used by the

MIDINet system to store items such as MIDI input and output ports, Remote MIDINet

units and connections. These objects were originally stored in Microsoft’s CTypedPtrList

6.4. SYSTEM DESIGN 47

lists which form part of the AfxStd library. In the cross-platform implementation, the list

types have been changed from CTypedPtrList types to C standard list types.

The problem with this modification is that unlike the CTypedPtrList type which inherits

from CObList (a generic object list provides by Microsoft), standard lists in C and C++

do not have built in indexing and iterator functions for traversing the data structure. This

meant that every function that uses a list needed to have an iterator that could access

the different nodes.

1 RemoteInputPort∗ RemoteMIDINetUnit : : FindInputPort (UINT PortNo)

{
3 RemoteInputPort∗ ThisRemoteInputPort ;

s td : : l i s t <RemoteInputPort ∗> : : i t e r a t o r i t ;

5 for (i t = ThisRemoteInputPort . begin () ; i t != ThisRemoteInputPort . end () ; i t

++)

{
7 UINT PortNumber = ∗ i t−>GetNumber () ;

c s t r i n g PortName = ∗ i t−>GetName () ;

9 i f (∗ i t−>GetNumber () == PortNo)

return ∗ i t ;

11 }
return (RemoteInputPort ∗)NULL;

13 }

Listing 6.4: Example of a funtion where CTypedPtrList is replaced

Many small type changes needed to be made such as moving from Microsoft’s UINT for-

mat to a 32-bit unsigned integer. This would not have been a complicated modification,

but as the whole MIDINet system only uses one UINT format, a define in the CrossPlat-

fromDefinitions.h file meant that no text needed be changed. At compile time the UINT

value tokens are replaced with the 32-bit unsigned integer’s data type.

The CrossPlatformDefinitions.h file is populated with constants that appear throughout

the source files. The header file has also been used to create shorter keywords for regularly

used functions.

6.4. SYSTEM DESIGN 48

1 #define BOOL int

3 #undef FALSE

#undef TRUE

5 #undef NULL

7 #define FALSE 0

#define TRUE 1

9 #define NULL 0

11 #define UINT unsigned int

#define BYTE unsigned char

Listing 6.5: Defines to ensure datatypes are correct for all platforms

6.4.3 Networking

The networking class in the MIDINet system is a large body of code, consisting of nearly

1000 lines of code and some dozen functions. As the class was initially only intended to

be used on Windows based systems, it relies heavily on Microsoft specific functions and

libraries. The WinSock2 library is Microsoft’s primary socket communications library and

needed to be replaced with a cross-platform alternative. JUCE provides a few networking

libraries of its own, including Streaming Sockets, Datagram Sockets and Interprocess

Connection Sockets.

The original MIDINet system used UDP datagrams to transmit data over the network.

The system, on start-up, instructed the host machine to bind a specific socket to a Multi-

cast address and then issued a multicast join so that the host’s IP address could be added

to the multicast group.

JUCE, although providing a set of networking related classes, does not however support

multicast groups. This meant that the system would not be able to join a host to a group.

Sending a message to a multicast group is trivial as the destination IP need only be set

to the multicast address, but the inability of the library to provide a method of joining

IP addresses to the multicast group indicated that a new design decision needed to be

made.

Either a new library that supported multicast would need to be included, or an alternative

to multicast would need to be found, either by unicasting iteratively to multiple addresses

6.4. SYSTEM DESIGN 49

or by broadcasting to a specific subnet.

As JUCE libraries were already being used in the project, the choice was made to con-

tinue using JUCE’s own networking libraries, rather than import alternative networking

libraries. The JUCE libraries are cross-platform and so lend themselves to a simple im-

plementation.

The User Datagram Protocol (UDP) is connectionless and is not concerned with ensuring

that messages arrive. This implies that UPD is better suited to real time applications

than TCP (Transmission Control Protocol) which requires for connections to be made

before sending any data.

Datagram Sockets in JUCE are used to send UDP socket messages over the network.

The Datagram protocol provide a simple method for binding to ports and setting up

sockets.

The networking class was modified to use the JUCE Datagram sockets, only requiring

one change to the system. The JUCE Datagram class does not provide any method for

determining the IP address or hostname of the sender. This created a small issue with

the message handling since when a ”Who’s there” message is received, the system had no

way to determine where to direct the corresponding ”I’m here” to.

To compensate for the lack of an adequate receive or read function, a class was created to

allow for the sender’s IP address and data to be included in the payload of the datagram.

The MIDINetPacket class consists of two private variables, the first containing the sender’s

address (sendAddr) of the JUCE IPAddress type and the second containing a character

(char) array in which the MIDINet messages are stored.

This enables the receiving system to direct messages to the correct MIDINet unit. The

sending system however needs to be capable of providing its own IP address to be placed in

the MIDINetPacket. The task of determining the correct IP Address of the host machine

proves to be slightly complicated when considering a cross-platform implementation.

JUCE’s IPAddress class provides a method for listing all IPAddresses connected to the

localhost. The first IPAddress, should the system be enabled to use internal loopback,

will be ”127.0.0.1”. The second IP address is then the primary IP address, or should

loopback not be enabled on a system, the primary IP would be first in the list. This

was the case in all tests performed on the target machines during the course of the the

project. A new function has been added to the MIDINet networking class that returns

the IP address of the primary NIC on the host machine.

6.4. SYSTEM DESIGN 50

6.4.4 DatagramSocket Testing

To ensure that the DatagramSocket class from JUCE would perform as expected, a simple

pair of application were developed: DS Send and DS Receive. As their names suggest the

applications were specifically designed to test the sending and receiving processes. These

were developed as cross-platform application so that the test could be run on various

systems.

DS Send

The sending application seen in Figure 6.2 allows the user to enter an IP address and a

port that the UDP messages will be sent to. JUCE’s DatagramSocket application then

connects to IP address and port specified. When the send button is pressed, the message

sent using DatagramSocket’s write function.

Figure 6.2: Screenshot of Naming window.

DS Receive

Figure 6.3 show the receiving application. A text box is provided for the user to input a

port to be listen to on the local host. When the connect button is pressed the application

creates a DatagramSocket. On the create of the DatagramSocket, the port passed to the

constructor is automatically bound to. JUCE class also provices a function for binding

should one be needed. One the port has been bound to, all messages sent to the port are

displayed in the text box of the application.

6.4. SYSTEM DESIGN 51

Figure 6.3: Screenshot of Naming window.

6.5. SYSTEM DEVELOPMENT 52

6.5 System development

The re-development of the MIDINet system was done by first testing the system in dif-

fering scenarios. Each scenario was set up to provide proof that the system could be

modified in order to ultimately become a mobile control system for sending and receiving

MIDI messages over a wireless network.

6.5.1 Stage 1

The first step taken was to set up a system for controlling the Yamaha 01v96 from a

desktop computer. Although no actual development was needed in order to do this, this

was an important step in verifying that the desk could be controlled remotely. A machine

running Microsoft Windows 8 was set up with the Matrix Mixer application and equipped

with an E-MU MIDI USB interface. The MIDI output from the interface was connected

to the mixing console’s MIDI input to allow the computer to send MIDI messages to the

desk.

Using MIDI-Ox, it was possible to see MIDI messages being created by the Matrix Mixer

and sent out to the desk. The Yamaha desk receives the MIDI messages and updates its

local parameters appropriately. The desk is a good test subject for remote control as its

motorised faders react to changes made on the computer by moving the physical fader up

or down.

The test was successful, proving that it was possible to control the digital mixing console

via MIDI from a desktop application. Level, panning, routing and most standard desk

features were tested and all were fully controllable remotely. There were issues sending

messages back to the Matrix Mixer application from the desk as the Matrix Mixer seemed

to be constantly sending update messages to the desk, even while no parameters on the

desktop application were being changed.

6.5.2 Stage 2

The second system that was created used the standard MIDINet system, compiled for

Microsoft Windows. The machines used were running Windows XP and 7. The network

architecture was that of a standard wired ethernet network.

6.5. SYSTEM DEVELOPMENT 53

The set-up was tested by running an instance of MIDINet on each machine. The first ma-

chine was loaded with Windows XP and had LoopB1 installed and running on it. LoopBe1

is an application that allows for the internal looping and routing of MIDI messages. The

Matrix Mixer application was opened to provide MIDI messages to loop through to the

MIDINet instance.

The second machine on the network was set up with Microsoft Windows 7. The machine

was also equipped with an E-MU USB MIDI interface that allowed for MIDI messages to

be sent in and out of the machine. Once again the USB MIDI interface on this machine

was connected the the MIDI ports on the Yamaha 01v96. An instance of MIDINet was

started on this machine too.

A connection was made using the MIDINet dialogue allowing the messages from the

internal loop on the first machine to be connected to the MIDI out on the second. This

meant that messages created whilst adjusting parameters on the Matrix Mixer were sent

to the 01v96 over the MIDINet network. Changes to faders on the Matrix Mixer could be

seen as the motorised faders of the 01v96 moved as the parameters were adjusted.

This proves that the MIDINet system, coupled with a control application such as the

Matrix mixer is capable of providing control to mixing desks via the USB MIDI inter-

face.

6.5.3 Stage 3

For this test a wireless network was created so that testing could be done in a secure

and monitored environment. The network consisted of a wireless access point and target

machines that were to be the MIDINet hosts. For each host, a set-up similar to stage

2 was implemented, where the first machine was running Microsoft Windows XP and

MIDINet, with the Matrix Mixer as the control application.

The second machine was equipped with an E-MU MIDI USB interface for connection

to the Yamaha 01v96. The machine was running Windows 7 and MIDINet and MIDI

monitoring was done on the machine using MIDI-Ox.

monitored. With the current Windows implementation of MIDINet, messages are pushed

out to a multicast address and so the toll on the network is low as packets are limited to

a small domain.

Chapter 7

Possible future improvements

The MIDINet system can be a powerful tool when it comes to the control of digital mixing

consoles and other studio devices. The movement of this system to a cross-platform

implementation allows for the MIDINet application to be deployed on a larger range of

devices. Running the application on devices such as tablets allows for the system to be

used in a variety of new scenarios, which could benefit from further development of the

system and research into other system related areas.

7.1 Smaller MIDINet units

The use of MIDINet to control digital mixing consoles requires a computer be located

around 15m from the console itself, due to the MIDI specification regarding maximum

cable length. While this may not be a problem in scenarios where the console is in an

area that has adequate space for a computer, the need for a computer is a limitation on

the system. Smaller devices such as laptops can be used in scenarios where space is less

available, however they are still a significant overhead when their price is considered.

Newer computing devices such as the ARM powered Raspberry Pi offer a solution to this.

The Raspberry Pi is a small scale (credit card-sized) computer that that can run on a

Linux distribution. While the Raspberry Pi is not a very powerful device, running a small

1GHz ARM CPU, it comes equipped with a network interface, USB ports and requires

only a 5v (500mA) power supply. The Raspberry Pi also comes equipped with 26 general

purpose input and output (GPIO) pins which can be used for interfacing with hardware.

This makes the device compact, highly power efficient and capable of being integrated

54

7.1. SMALLER MIDINET UNITS 55

with equipped with a WiFi module and MIDI (either through the use of a USB MIDI

interface, or through the development of a MIDI extension to the GPIO headers.

The Raspberry Pi is also a low cost device, costing only£28 for the version equipped with

a NIC and £20 for one without, at the time this paper was written. The cost compared

to a fully sized computer or laptop would make it a good candidate for the deployment

of the MIDINet system. In the interest of a low cost, small form factor alternative to a

computer, MIDINet units attached to console and other devices need not incorporate a

display, as connections can be created from any other MIDINet device on the network.

Only a small 16 LCD display capable of displaying the name or IP address of the MIDINet

unit may be required in order for the device to be identifiable.

Other alternatives to the Raspberry Pi would include microcontroller based hardware such

an the Missing Link. The Missing Link is already equipped with a WiFi module, USB

and MIDI but lacks any form of display. Despite this, it too would be a good candidate

for the MIDINet system. As the Missing Link does not run any operating system, the

system would need to be redesigned for use on microcontrollers.

Other devices could also be designed and built to better support the MIDINet system,

making this an area that could certainly benefit from further research.

Chapter 8

Conclusion

At the outset of this project, one of the goals was to assess the currently available digital

mixing consoles and control applications for these consoles. This information was then

used to attempt to understand in which direction the industry is moving in terms of

digital consoles, control applications and control protocols.

Manufacturers in the audio industry have produced a range of highly flexible digital mixing

consoles that come already integrated with many features. While it is clear that many of

these consoles can be controlled remotely, there is no specific standard or protocol that

has been accepted by the industry and manufacturers as an industry standard. This has

led to many of these consoles using different methods to exert control over the internal

parameters.

Although MIDI may be an ageing protocol, it is still widely used in the audio industry. Its

use in digital mixing consoles, synthesizers and digital effects units makes distinguishes

it as a good choice as a standard for control. The limitations of MIDI lie mostly in the

slightly outdated specification: low speed, small address space and restricted cable length.

A renewal of the MIDI specification would allow for a wider range of control messages

with finer parameter control.

The second major goal of this project was to determine the viability of MIDINet as a

wireless cross-platform system capable of controlling multiple digital mixing console from

multiple control devices. Research needed to be conducted into how the system operated

in its current implementation as well as into its ability to be used for controlling digital

mixing consoles.

The MIDINet application, although originally designed to provide a distributed approach

56

57

to MIDI, has been found to be capable of providing remote access to more than just

musical synthesis devices. When implemented with the Matrix Mixer, the system has

been shown to be capable of providing remote control over the Yamaha 01v96 digital

mixing console. The system was also tested over a wireless network to ensure that a

wireless improvement would be possible.

For the MIDINet systems to be viable for deployment over various target devices, integral

parts of the system were required to be proven capable of cross-platform deployment.

The MIDINet system relies on the ability of the application to be capable of interfacing

with MIDI devices attached to a system. JUCE’s libraries were used as they provide a

cross-platform method of accessing MIDI input and output devices on a system. The

testing of this on an iPad using the cross-platform MIDIView application indicated that

the application could not only access MIDI devices, but also be deployed on a number of

systems.

A key component to the MIDINet system is its networking class. For the system to become

cross-platform, the networking class was modified to use JUCE’s DatagramSockets class

for sending UDP messages. The development of the DS Send and DS Receive application

shows the ability of JUCE’s networking library in providing a method of sending UDP

messages. The cross-platform applications also prove the ability of sending datagrams to

applications running on various target operating systems.

This project indicates that it is possible to create a cross-platform MIDINet system that

is capable of controlling multiple digital mixing consoles and that the application can be

deployed on a wide-range of devices. It is therefore possible to create a generic, cross-

platform MIDINet system with the aim of increasing the mobility and efficiency of sound

engineers through the remote control of digital mixing desks.

References

Allen&Heath. GLD Remote. Online. Available from: http://www.allen-heath.com.

Accessed on 27 May 2013.

Allen&Heath. iLive Digital Mixing System. Online. Available from: http://www.

allen-heath.com. Accessed 20 May 2013.

Allen&Heath. iLive Editor. Online. Available from: http://www.allen-heath.com.

Access on 28 October 2013.

Allen&Heath. iLive MixPad. Online. Available from: http://www.allen-heath.com.

Accessed on 27 May 2013.

Ballou, G. 2008. Handbook for Sound Engineers. Handbook for Sound Engineers. Focal.

DeFuria, Steve, & Scacciaferro, Joe. 1990. MIDI Programmer’s Handbook. Foster City,

CA, USA: IDG Books Worldwide, Inc.

Eales, Andrew; Foss, Richard. 2012 (10). Service Discovery Using Open Sound Control.

In: Audio Engineering Society Convention 133.

Foss, R. Object Oriented Design Part 3: MIDINet complete design and implementation.

Rhodes University Computer Science III course notes.

Foulkes, Philip James. 2006. A Grid Patch-Bay for Audio Mixers.

Hexler. TouchOSC. Online. Available from: http://hexler.net/software/touchosc.

Accessed on 25 June 2013.

Hosken, D. 2010. An Introduction to Music Technology. Taylor & Francis.

Huber, David Miles. 2012. The MIDI manual: a practical guide to MIDI in the project

studio. Focal Press.

Izhaki, R. 2013. Mixing Audio: Concepts, Practices and Tools. Taylor & Francis.

58

REFERENCES 59

Jacobs, Gabriel, & Georghiades, Panicos. 1991. Music and new technology: the MIDI

connection. Sigma Pr.

Kirk, Ross, & Hunt, Andy. 1999. Digital sound processing for music and multimedia.

Focal Pr.

Mosala, Thabo Jerry. 1995. Routing MIDI messages in a shared music studio environment.

Rothstein, Joseph. 1995. MIDI: A comprehensive introduction. Vol. 7. AR Editions, Inc.

Storer, J. JUCE API. Online. Available from: http://www.juce.com/api/classes.

html. Accessed on 20 October 2013.

Storer, Julian. JUCE. Online. Available from: http://juce.com/. Accessed on 15

October 2013.

Wright, Matthew. 2002. Open Sound Control 1.0 Specification.

Wright, Matthew. 2005. Open Sound Control: an enabling technology for musical net-

working. Organised Sound, 10(2005/12/01), 193–200.

Wright, Matthew, & Freed, Adrian. 1997. Open Sound Control: A New Protocol for

Communicating with Sound Synthesizers. Pages 101–104 of: International Computer

Music Conference. Thessaloniki, Hellas: International Computer Music Association.

Yamaha. LS9 Stage Mix User Guide. http://download.yamaha.com/file/55009. Available

from: www.yamahaproaudio.com. Accessed on 27 May 2013.

Yamaha. Yamaha 01v96 Digital Mixing Console owners manual. Online. Available

from: http://www2.yamaha.co.jp/manual/pdf/pa/english/mixers/01V96E1.pdf.

Accessed on 15 September 2013.

Yamaha. Yamaha Mixing Consoles. Online. Available from: http://www.

yamahaproaudio.com/global/en/products/mixers/. Access 26 October 2013.

