

FIREWALL RULE SET OPTIMIZATION

Author Name: Mungole Mukupa

Supervisor : Mr Barry Irwin

Date : 25th October 2010

Security and Networks Research Group

Department of Computer Science

Rhodes University

Introduction

- Firewalls have been and continue to be used to implement logical security between these networks of different trust levels.
- Network speeds have improved significantly and calls for better packet filtering.
- This research focused on Network layer firewalling.

- Sequential Inspection: Firewalls inspect packets against a set of rules sequentially until a match is found.
- Matching Patterns: Not all rules are matched each time a packet is inspected through the rule set.
- Nature of traffic: network traffic is dynamic and often flows are not predictable.
- Network Speed: Increased network speeds are overwhelming firewalls hence the need for faster filtering decisions by firewalls to avoid waste of device and network resources.

• To investigate filtering performance improvement gained through optimizing a firewall rule set size.

 Come up with a tool that can aid network administrators in rule set optimization.

Experiment Design

The test was performed in virtual environment using VmWare software and the firewall host is running in **Bridged** mode. IP 192.168.46.134 was configured on the bridge co allow remote access from Linux for graphical use.

Firewall

- FreeBSD firewall was used for tests in this research because of:
 - o Flexible rule set logic
 - o First match wins
 - o Packet accounting
 - o Bridge mode
 - o Open source
 - o IPv6 support
- Ported to other operating systems
 Mac OS
 - o DragonFly
 - o Windows

Results Capture

Nipfw-graph _□×	N ipfw-graph .□ X All Deny Allow	x ipfw-graph _□ x
unital ^{en} ideranaete	priel Veinern	prid h
urrent 4708 bps max 10.460 kbps Quit	current 4656 bps max 10.460 kbps Quit	current 4708 bps max 10.460 kbps Quit

- IPFW-Graph tool was used to capture filtering actions on both rule sets.
 - Gives graphic output of packet matching in real-time.
 - Deny rules shown in red colour.
 - Allow rules shown in green colour.
 - Combines both in the all view.

Traffic Traversal

- Multi protocol pcap files were sent through the firewall host running in bridged mode – use two interfaces in different networks (Public and Private to simulate the ideal case).
- Test specific packets were injected into the firewall especially the ones for testing illegal traffic handling after optimizing.
 - o # nemesis icmp S 209.179.21.76 D 192.168.46.134 i 0 c 0
 - The command above tests the firewall's deny action on icmp.

Rule Sets

- o Default rule set
 - o started with a rule set of 37 rules...
 - Passed traffic from different pcap through the firewall and collected matching statistics.
 - Not all rules matched packets inspected: counter =0.
 - Some rules did not match packets often.

Log file

Counters

😣 🗐 🔲 mungole@ubuntu: ~

File Edit View Search Terminal Help

8:00 Ctrl-K H for help /var/log/security Row 146 Col 1 IW Sep 21 01:16:45 kernel: ipfw: 999 Deny ICMPv6:133.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:16:45 kernel: ipfw: 999 Deny UDP 192.168.46.142:5353 224.0.0.251:535 Sep 21 01:16:45 kernel: ipfw: 999 Deny UDP 192.168.46.142:5353 224.0.0.251:535 Sep 21 01:16:45 kernel: ipfw: 999 Deny UDP 192.168.46.142:5353 224.0.0.251:535 Sep 21 01:16:45 kernel: ipfw: 999 Deny UDP 192.168.46.1:60384 224.0.0.251:5353 Sep 21 01:16:45 kernel: ipfw: 999 Deny UDP 192.168.46.1:60384 224.0.0.251:5353 Sep 21 01:16:45 kernel: ipfw: 999 Deny UDP 192.168.46.1:60384 224.0.0.251:5353 Sep 21 01:16:46 kernel: ipfw: 999 Deny ICMPv6:143.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:16:46 kernel: ipfw: 999 Deny ICMPv6:143.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:16:46 kernel: ipfw: 999 Deny ICMPv6:143.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:16:46 kernel: ipfw: 999 Deny UDP 192.168.46.142:5353 224.0.0.251:535 Sep 21 01:16:46 kernel: ipfw: 999 Deny UDP 192.168.46.142:5353 224.0.0.251:535 Sep 21 01:16:46 kernel: ipfw: 999 Deny UDP 192.168.46.142:5353 224.0.0.251:535 Sep 21 01:16:46 kernel: ipfw: 999 Deny UDP 192.168.46.1:60384 224.0.0.251:5353 Sep 21 01:16:46 kernel: ipfw: 999 Deny UDP 192.168.46.1:60384 224.0.0.251:5353 Sep 21 01:16:46 kernel: ipfw: 999 Deny UDP 192.168.46.1:60384 224.0.0.251:5353 Sep 21 01:16:46 kernel: ipfw: 999 Deny P:2 192.168.46.142 224.0.0.22 in via em Sep 21 01:16:46 kernel: ipfw: 999 Deny P:2 192.168.46.142 224.0.0.22 in via br Sep 21 01:16:46 kernel: ipfw: 999 Deny P:2 192.168.46.142 224.0.0.22 in via em Sep 21 01:16:49 kernel: ipfw: 999 Deny ICMPv6:133.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:16:49 kernel: ipfw: 999 Deny ICMPv6:133.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:16:49 kernel: ipfw: 999 Deny ICMPv6:133.0 [fe80::20c:29ff:fe26:405a] Sep 21 01:17:40 kernel: ipfw: 999 Deny P:2 192.168.46.1 224.0.0.22 in via em0

×e	🖲 mu	ngole@ubu	ntu: ~
File	Edit Vi	iew Search	Terminal Help
00020	0	0	deny ip from any to any in frag
00025	0	0	check-state
00030	0	0	allow tcp from any to any established
00035	77	5310	allow ip from any to any out keep-state
00039	12	592	allow icmp from any to any
00045	0	0	allow tcp from any to any dst-port 21 in setup keep-state
00046	0	0	allow udp from any to any dst-port 21 in setup keep-state
00050	331573	283338752	allow tcp from any to any dst-port 22 in setup keep-state
00060	0	0	allow udp from any to any dst-port 53 in setup keep-state
00061	0	0	allow tcp from any to any dst-port 53 in setup keep-state
00065	0	0	allow tcp from any to any dst-port 80 in setup keep-state
00070	0	0	allow tcp from any to any dst-port 443 in setup keep-stat
	1 72	35	e en elle southes diversite e en elle solle so
)0075 2	0	0	allow tcp from any to any dst-port 110 in setup keep-stat
00080 e	0	0	allow tcp from any to any dst-port 143 in setup keep-stat
)0090 te	0	0	allow tcp from any to any dst-port 2222 in setup keep-sta
)0100 (een-	0 state	0	allow tcp from any to any dst-port 49152-65535 out setup
0999	1057	122713	deny log ip from any to any
5535	0	0	denv ip from anv to anv
	8 - Jul 9		

Optimization

- Reducing the rule set size was performed based on the collected statistics.
- From the initial 37 rules, an optimized set of 13 rules was created.
- How continued revision of rule set after several tests using pcap files.
 - o Moved frequently matched rules forward
 - o Removed non matching rules
 - Introduced 'skip to' to skip infrequently matched rules that could match traffic later.
 - o Disabled rules for services not available
 - o Removing overshadowed rules
 - o Avoiding redundancy
 - Reintroducing rules for some denied packets based on their log count and how necessary they are deemed.

Performance Tests

Not standardized – firewall tests depend on what aspect is being measured

This research concerned itself with throughput based on rule set size and picked the following metrics as discussion points:

- Connection establishment: measured how fast the firewall created connections per packets inspected considering the number of rules
- **Forwarding rate** : compared the bits per second transmitted on both rule sets by measuring how long it took for a full pcap file to be inspected.
- **Connection teardown:** paired with connection establishment, the faster the tear down, the less rules a packet is inspected through to find a match.
- **Legal traffic**: checked if optimization denied allowed traffic or stopped certain services allowed from communicating by looking though log file entries.
- **Illegal traffic**: checked if optimization allowed false positives. Tools were used to inject packets denied by a given rule.

oThese values combined, were used to determine a gain in filtering speed : THROUGHPUT

Results

Tests done on 1500 bytes pcap file on both rule sets.

Protocol composition of pcap file used

File Capture	View Help						
IIStartPause	Stop Pref	🐻 Prot.					
Protocols NETBIOS-N		IGMP.MOAS	T.NET				
DOMAIN		🛞 🖨 🗊 EtherAg	oe: Proto	ocols	_		
MICROSOF	192.	Columns					
SMB		Protocol 🔻	Port	Inst Traffic	Accum Traffic	Last Heard	Packe
NETBIOS-S	192.166.103.1	BOOTPS	67	0 bps	13.205 Kbytes	15" ago	39
incroites s		DOMAIN	53	0 bps	13.870 Kbytes	18" ago	163
BOOTPS	<01><02> MSI	IGMP		0 bps	448 bytes	41" ago	8
IGMP		MDNS	5353	0 bps	3.422 Kbytes	31" ago	18
MDNS		MICROSOFT-DS	445	0 bps	19.613 Kbytes	42" ago	128
	192	NETBIOS-NS	137	0 bps	10.307 Kbytes	30" ago	105
UDP-UNKN		NETBIOS-SSN	139	0 bps	4.293 Kbytes	30" ago	54
WWW		SMB	-	0 bps	32.014 Kbytes	30" ago	202
		UDP-UNKNOWN	-	0 bps	112 bytes	54" ago	2
eading data from	m /home/mun	WWW	80	0 bps	132 bytes	49" ago	2

OptAid: Tool Design

OptAid Tool Design

- Considered offline processing and suggesting optimization actions to the administrator.
- Design questions still to be answered before OptAid can be implemented:
 - Statistics aggregation vs. dynamic nature of traffic.
 - o Defining triggering counter thresholds for ever changing traffic?
 - How often should statistics be sent to the database?
 - Do we discard rules completely?
 - How much overhead does all this introduce?
- Another consideration was to create a sub-rule-set dynamically. Issues faced and being investigated still are:
 - Processing complications with respect to picking rules for oncoming traffic.
 - o How to work out and tell what flows to adapt for.
 - o Issues with rule numbering when re-sequencing.
 - How to apply the sub-rule set to traffic.

Conclusion

- Based on the evidence obtained from the tests conducted in this research, it can be concluded that:
 - There is a gain in firewall filtering performance by reducing the rule set. Less rules a checked through sequentially and a match is found faster.
 - The dynamic nature of traffic offers challenges in adapting rule sets to packet flows. This is why it has generally been described as NP-Hard.
 - Care must be taken not to open the network to illegal traffic or denying legitimate traffic by locking the system out when optimizing.
 - Packet filtering is a crucial component of network security and thus needs better methods to avoid wasting of device and network resources.
 - Better filtering methods and approaches are necessary to make firewalls match up to the improved transmission technologies and network speeds.

Future Work

- Investigate more on rule set optimization technology changes every second.
- Implement OptAid tool having understood and demonstrated matching patterns.
- Investigate further, performance implications with regard to dynamic sub rule set creation from the larger set.
- Add dynamic rule set adaptation to OptAid once performance issues are addressed.

Thank you for your attendance

