
Rhodes University

Department of Computer Science

Mungole Mukupa

Firewall Rule set Optimization

Supervisor: Mr Barry Irwin

Literature Review

Abstract

A Firewall is an intermediate system placed between two networks of
di�erent trust levels. This is mostly between the secure corporate network
and the less secure public Internet. It is intended to keep the corporate
network safe from intruders, hackers and other malicious entry into the
corporate network. This is done by implementing the corporate security
policy for controlling tra�c and managing connections between internal
and external network hosts. The continuous growth of the Internet com-
bined with the increase in the complexity of the attacks, is placing heavy
demands on the �rewall performance. Recent works in this area have
investigated ways of improving �rewall performance based on di�erent
criteria. This research looks at ways of optimizing the rule set to reduce
on the packet matching time by combining tra�c characteristics with rule
matching patterns in a dynamic way to increase throughput by reducing
packet inspection time. This is because only a percentage of the total
rules set in the rule base are matched by a given packet. This is ine�cient
and drastically reduces throughput.

Contents

1 Introduction 2

2 History of Firewalls 3

3 Firewall Categories 3

4 Evolution of Firewalls 4

5 Firewall Types 4

5.1 Packet Filter Firewall . 5
5.1.1 Static Filtering . 5
5.1.2 Dynamic Filtering 5
5.1.3 Stateful Filtering 5

5.2 Circuit Level Firewalls . 5
5.3 Application Layer Firewall 6
5.4 Dynamic Firewalls [Stateful Firewall] 6
5.5 Hybrid Firewall . 7

1

6 Firewall Architecture Review 7

7 Project Target Firewall 8

7.1 IPFW . 8

8 Firewall Rule set 9

9 Firewall Optimization Techniques 11

9.1 Rule set clean up . 11
9.2 Rule set re-ordering . 12
9.3 Rule Grouping . 12
9.4 Rule Frequency re-ordering 12
9.5 Rule Editing . 12
9.6 Go To Function . 13

10 Rule-set Optimizing Tools 13

10.1 Athena FirePAC . 13
10.2 OPTWALL . 14
10.3 Policy Advisor . 14

11 Observations 14

12 Research Focus 15

13 Conclusion 15

References 15

1 Introduction

Internet connectivity is growing with most enterprises shifting to the use of web
based services for service provision [14]. This is seen to be sharpening their
com- competitive edge as it gives them and their customers, rapid access to in-
formation. Firewalls provide a mechanism for protecting these enterprises from
the less secure Internet over which their customers or collaborating partners
transfer packets destined for the corporate network [6,12,18]. Firewalls have
grown to take up more tasks than merely �ltering tra�c to managing band-
width, routing control, packet forwarding e.t.c.[8, 22]. This research focuses on
the Network Layer operation of a �rewall and explores ways of improving its
performance by optimizing the rule set. A corporate network policy is trans-
lated into rules that are de�ned as the rule base or rule set. These rules are
con�gured on the �rewall to provide the security and packet availability while
ensuring that data,system integrity and con�dentiality are maintained [2, 3,12].
Research in the subject of improving �rewall performance continues to be done
by many network researchers some of whose work we will be discussing in this
review. This research looks at combining many aspects of �rewall functionality
in designing a tool that can be integrated in a �rewall to optimize the rule set

2

and give the much sought after increase in throughput. Below is a functional
illustration of a �rewall:

2 History of Firewalls

A �rewall is a form of network perimeter defense designed to help an organization
comply with the rules de�ned in its IT security policy. The name Firewall is
derived from the ancient design of building a wall between two or more buildings
or rooms to stop the spread of re if it broke out [25]. The �rst generation of
�rewalls were made by Cisco Systems Inc's IOS software division around 1985.
They were called Packet Filter �rewalls. Late 80s into the 90s saw the second
generation of �rewalls called Circuit Level Firewall pioneered by Dave Presotto
and Howard Trickey of AT&T Bell laboratories [25 , 26]. They also worked
on the third generation called Application Layer Firewalls and were publicized
in 1991 by Marcus Ranum of AT&T Bell laboratories. Ranum's work became
the �rst commercial product called SEAL by Digital Equipment Corporation.
Check Point Software released the �rst commercial �rewall product based on
the fourth generation architecture in 1994 [7, 19]. The �fth generation �rewall
architecture, the Kernel Proxy architecture was worked on by Scott Wiegel,
chief scientist at Global Internet Software Group Inc in 1996. Cisco Systems 2
Inc released the �rst commercial product, Cisco Centri Firewall, based on this
architecture in 1997 [24].

3 Firewall Categories

Firewalls are categorised according to di�erent approaches based on their func-
tionality and how they relates to a given network. Below are the classes and
examples for each category.

• Processing mode (Packet �ltering, Application gateways, Circuit gate-
ways, MAC layer �rewalls and Hybrids)

• Development era (Based on generations as discussed below)

• Intended deployment structure (Stand alone, self contained, Small Of-
�ce/Home O�ce , SOHO, Commercial grade)

• Architectural implementation (Packet �ltering routers, Screened host �re-
walls, Dual-homed rewalls, and Screened subnet rewalls)

3

Figure 1: Firewall Architecture: Screened Subnet (Taken from [12])

4 Evolution of Firewalls

Firewalls have evolved from being basic packet �ltering devices to the now ob-
taining complex implementations incorporating functions like management of
network bandwidth, enforcing requirements to use a web proxy server, pro-
tecting resources in the organisation, preventing malicious attackers from the
Internet among others [19 , 20]. The growth of networks, the desire by compa-
nies to share their intranets with customers and business partners has brought
challenges and a greater need for network security [16]. The innovations in
�rewall technologies resulted largely from Department of Defense research and
funded projects [25]. These �rewall generations are summed up below as types:

5 Firewall Types

This research is focusing on the processing mode type of �rewalls as they re-
late to Network Layer packet �ltering. We howver give a summary of �rewall
classi�cations here following.

4

5.1 Packet Filter Firewall

These are based on �rst generation �rewall technology. They analyze network
tra�c at the transport layer [19]. They examine each IP network packet to
see if it matches one of the rules de�ned for allowing or denying data �ows.
The decision is based on the information they get from the packet's transport
layer headers and the direction the packet is going into [24]. They are therefore
con�gured to check:

• transport layer type (TCP, ICMP, UDP)

• source port

• destination IP address

• Source IP address

• Network interface the packet arrives on

• destination port

Packet �lters do the above by applying a rule set residing in the TCP/IP kernel
that de�nes what action goes with which rule. They come under three sub
categories:

5.1.1 Static Filtering

These �rewalls require that �ltering rules governing how the �rewall decides
which packets are allowed and which are denied are developed and installed.Hence
the name static [4,15]

5.1.2 Dynamic Filtering

Dynamic �ltering �rewalls allow the �rewall to react to emergent event and
update or create rules to deal with tra�c events dynamically.

5.1.3 Stateful Filtering

This type of �rewalls keep track of each network connection between internal
and external systems using a state table [27]. Filtering decisions are made based
on the kept information about a given connection.

5.2 Circuit Level Firewalls

These are based on second generation �rewall technology [25]. They work based
on the fact that a packet is either a data packet or a connection request belonging
to a connection or circuit between two peer transport layers [24]. These �rewalls
work by:

• checking that each connection setup follows a handshake system for the
transport layer protocol being used.

5

• storing a session identi�er for the connection

• connection state: handshake, established, or closing

• only forwarding packets after the handshake is complete

• maintaining a table of valid connections and removing it once the connec-
tion is terminated

• closing the virtual circuit after transmission

Like packet �lters, circuit level �rewalls work by applying a rule set that is
maintained in the TCP/IP kernel [7 , 26]. They allow all network packets
bound for that connection through the �rewall as stated in the �rewall server's
routing table but do not do further security checks on the packets [24].They
also perform Network Address Translation and perform checks to see if a packet
has been spoofed and whether the data being transported complies with the
protocol de�nition.

5.3 Application Layer Firewall

Also called third generation �rewall. These �rewalls evaluate packets for valid
data at the application layer before allowing a connection.

• examines data in network packets at the application layer

• maintains connection state and sequencing information

• can validate passwords and service requests

• most of them include proxy services for speci�c services such as HTTP
or FTP which provide more checks and generate audit records about the
tra�c they transfer.

Application layer �rewalls generally do not focus on the network packet informa-
tion. This makes the risk higher if the network layer is not performing well [23].
They also employ proxies that require additional passwords or some validation
of some sort.This brings more delays.

5.4 Dynamic Firewalls [Stateful Firewall]

A fourth generation �rewall type allowing modi�cation of the rule base. A
virtual connection is established and the packet is allowed to travel the �rewall
server [19]. These provide support for UDP packets by associating them with a
virtual connection [20]. The connection information is kept for a short period
and the connection is terminated if no response packet is received within that
short time. They are good for not allowing unwanted UDP packets into a
network because the response packet must contain a destination address that
matches the original source address [25].

6

5.5 Hybrid Firewall

Because of the need to do more than packet inspection, �rewalls are being im-
plemented as hybrid systems. These are mostly implemented by adding packet
�ltering to an application gateway. Cisco PIX �rewalls are an example of such
hybrid �rewalls [25].

6 Firewall Architecture Review

The above architectures have their own advantages and disadvantages when
evaluated based on performance and security.Based on performance, Packet
Filers provide the highest performance, then Circuit Level, Dynamic Packet
Filter re walls and Application Layer �rewalls [19,25]. This is a reverse in terms
of security. Application Layer Firewalls make packets go through more protocol
layers inspection and detail [16]. Application Layer Firewall therefore are seen
to be more secure than Dynamic Packet �ltering �rewalls that are viewed more
safer than Circuit Level �rewalls and Packet �ltering �rewalls [26]. Application
Layer �rewalls are more process intensive and hence slower but considered to be
the most secure. A �rewall is just one part of the network security system of a
private network. These �rewalls do not protect the network from viruses, insider
attacks and previously unknown attacks [23]. This is because most �rewall
technology works on a 'catch up' and 'protect from known threats' technology
[24]. Therefore keeping the network secure demands continued updates of the
�rewall rule set and other security policies [20]. The fact that a network is
dynamic and not all rules in the �rewall rule base are matched at all times is
the motivation for this project which is seeking to and ways of optimizing the
rule set to improve throughput at layer 3, Network Layer. Below is a sample
design of the �rewall and demonstrated functionality:

7

Figure 2: Example Firewall Deployment (Adapted from [16])

7 Project Target Firewall

Network performance highly depends on the e�ciency of the �rewall because for
each network packet entering or leaving a network a decision is made whether
to accept or deny it based on the rules de�ned in the rule set [7]. This project
sees Network level �ltering, layer 3, as being a critical point to do the �ltering
optimization at, as the other levels like Application Layer �rewalls depend on
the packet �ltering at the lower level for them to perform e�ectively.
We are therefore targeting to devise and implement a �rewall rule set optimiza-
tion method in a tool for packet �ltering in ipfw �rewall system for FreeBSD
implementation.

7.1 IPFW

The IPFIREWALL (IPFW)is a FreeBSD sponsored �rewall application.It is
authored and maintained by FreeBSD [8]. It uses stateless rules and a 7 legacy

8

rule coding technique to provide simple stateful logic [7, 23]. Ipfw supports both
IPv4 and IPv6. It has seven components that make it powerful as listed below:

• kernel �rewall �lter rule processor and its integrated packet accounting
facility

• the logging facility

• the divert rule which triggers the NAT facility

• advanced special purpose facilities

• the dummynet tra�c shaper facilities

• the fwd rule forward facility and bridge facility

• the bridge and ipstealth facility

8 Firewall Rule set

A rule set is a group of rules programmed to allow or deny packets.The decision
to allow or deny is based on the values contained in the packet. The �rewall
rule set processes both the packets arriving from the public Internet, as well
as the packets originating from the internal network [7, 23]. Every service
based on TC/IPA i.e.: telnet, www, mail, etc. is prede�ned by its protocol i.e
SSH, HTTP, SMTP e.t.c and privileged (listening) port. Packets destined for
a speci�c service, originate from the source address using an unprivileged (high
order) port and target the speci�c service port on the destination address. All
the above parameters (i.e. ports and addresses) are used as traditional selection
criteria to create rules which will pass or block services.[5 , 8 , 25]. When a
packet enters the �rewall it is compared against the �rst rule in the rule set and
progresses one rule at a time moving from top to bottom of the set in ascending
rule number sequence order.When the packet matches the selection parameters
of a rule, the rule's action �eld value is executed and the search of the rule set
terminates for that packet [7, 8, 23]. This is referred to as the �rst match wins
search method. If the packet does not match any of the rules, it is caught by
the default rule which denies all packets and discards them without any reply
back to the originating destination [4 - 24].
Firewall con�guration is a heavy and error prone task [23]. This is because rule
sets grow to thousands of rules and network tra�c trends keep changing [20].
Below is a sample �rewall rule set for IPFW:

#!/bin/sh
####################### defaultruleset#########
�ush out the list before we begin
ipfw -q -f �ush
#rules command pre�x
cmd="ipfw -q add"
skip="skipto 800"
pif="bridge0"

9

###
Allow LAN tra�c
###
$cmd 005 allow all from any to any via em0
##
No restrictions on Loopback interface
##
$cmd 010 allow all from any to any via lo0
###
check if packet is inbound and NAT address if it is
###
$cmd 014 divert natdip from any to any in via $pif
###
Allow packets part of established �ows if added to dynamic rules
##
$cmd 015 check-state
##
Outbound tra�c section
##
$cmd 020 $skip tcp from any to 192.168.46.134 53 out via $pif setup keep-state
#Allow out non-secure www function
$cmd 040 $skip tcp from any to any 80 out via $pif setup keep-state
#Allow out secure www function https over TLS SSL
$cmd 050 $skip tcp from any to any 443 out via $pifsetup keep-state
#Allow out send & get email function
$cmd 060 $skip tcp from any to any 25 out via $pif setup keep-state
$cmd 061 $skip tcp from any to any 110 out via $pif setup keep-state
#Allow out FreeBSD (make install & CVSUP) functions
$cmd 070 $skip tcp from me to any out via $pif setup keep-state uid root
#Allow out ping
$cmd 080 $skip icmp from any to any out via $pif keep-state
#Allow out time
$cmd 090 $skip tcp from any to any 37 out via $pif setup keep-state
#Allow out nntp news (i.e news groups)
$cmd 100 $skip tcp from any to any 119 out via $pif setup keep-state
#Allow out secure FTP, Telnet and SCP using SECURE SHELL
$cmd 110 $skip tcp from any to any 22 out via $pif setup keep-state
#Allow out whois
$cmd 120 $skip tcp from any to any 43 out via $pif setup keep-state
#Allowntp time server
$cmd 130 $skip udp from any to any 123 out via $pif keep-state
###
Inbound tra�c Section: from internet into LAN
###
#Deny all inbound tra�c from non-routable reserved address space
$cmd 300 deny all from 192.168.0.0/16 to any in via $pif #RFC 1918 prvt IP
$cmd 301 deny all from 172.16.0.0/12 to any in via $pif #RFC 1918 prvt IP
$cmd 302 deny all from 10.0.0.0/8 to any in via $pif #RFC 1918 prvt IP
$cmd 303 deny all from 127.0.0.0/8 to any in via $pif #Loopback
$cmd 304 deny all from 0.0.0.0/8 to any in via $pif #Loopback
$cmd 305 deny all from 169.254.0.0/16 to any in via $pif #DHCP auto-con�g
$cmd 306 deny all from 192.0.2.0/24 to any in via $pif #reserved for docs
$cmd 307 deny all from 204.152.64.0/23 to any in via $pif #sun cluster
$cmd 308 deny all from 224.0.0.0/3 to any in via $pif #Class D & E multicast
#Allow ident
$cmd 315 allow tcp from any to any 113 in via $pif
$cmd 316 allow udp from any to any 113 in via $pif

10

#Deny all Netbiosserives 137=name 138-datagram host2nameserve request=81
$cmd 320 deny tcp from any to any 137 in via $pif
$cmd 321 deny tcp from any to any 138 in via $pif
$cmd 322 deny tcp from any to any 139 in via $pif
$cmd 323 deny tcp from any to any 81 in via $pif
#Deny any late arriving packets
$cmd 330 deny all from any to any frag in via $pif
#deny ACK packets that did not match the dynamic rule table
$cmd 332 deny tcp from any to any established in via $pif
#Allow con�guration tra�c for DHCP
$cmd 360 allow udp from 192.168.46.0/24 to any 68 in via $pif keep-state
#Allow in standard www function for APACHE server
$cmd 370 allow tcp from any to me 80 in via $pif setup limit src-addr 2
#Allow in secure FTP, Telnet and SCP from Internet
$cmd 380 allow tcp from any to me 22 in via $pif setup limit src-addr 2
#Allow in non-secure Telent session from internet(unencrypted tra�c)
$cmd 390 allow tcp from any to me 23 in via $pif setup limit src-addr 2
#Skip to location for outbound stateful rules
$cmd 800 divert natdip from any to any out via $pif
$cmd 801 allow ip from any to any
#Default deny rule $cmd 999 deny log all from any to any
############End of rule set ############################

As can be seen from the sample code above, troubleshooting or editing a longer
rule set of up to 1500 rules in depth is not a simple task [16]. Even more,
each packet is checked all these rules to see if it matches for it to be allowed or
denied into a network.We therefore propose optimizing the rule set using many
approaches to limit the size and aid administrators in optimization using the
tool that will be designed in this project.

9 Firewall Optimization Techniques

Increased �rewall complexity breeds more vulnerability and also reduces avail-
ability of network services and applications an enterprise uses [2,8]. The in-
crease in network size, bandwidth, and processing power of networked hosts
continues to increase the demand for optimizing �rewall operations to improve
performance [14]. The following techniques are some of the considerations being
explored in optimizing �rewall performance.

9.1 Rule set clean up

This approach analyzes the rule set to identify inconsistencies and redundancy
in the rule set and removes them. Rules that make no unique contribution to the
�rewall behavior are removed. These are either Redundant or Shadowed rules
[21]. Redundant rules never match packets because there are more preceding
rules matched �rst. Unused rules that have the log option but have no logs
showing that they have matched packets. They are therefore candidates for
removal when optimizing though their removal may a�ect �rewall behavior later
[10]. Remove rules for unused Network groups E.g. if the organization does not
have a mail server, SMTP rules can be taken out of the con�guration [21].This

11

should also be done for unused Network objects. Remove unused service objects
and disable them on machines E.g. ICMP Type. A blend of this depends on
the speci�c organizational network needs and should be tailored well to achieve
better packet �ltering that improves throughput [17].

9.2 Rule set re-ordering

This technique relies on the network statistics logged on the �rewall or written
to a �le in a network database [14]. It lists most used rules in decreasing order
of usage by hit count and percentage hit count. These rules can then be moved
towards the beginning of the rule set to improve performance. Optimize the rule
set by ordering rules based on the rule usage data and rule order dependencies
that does not alter the �rewall behavior [10]. This moves the most used rules
toward the beginning of the rule set until they are very close to the source of
an order dependency. The complexity with this method is the dependencies
problem[9].

9.3 Rule Grouping

It is evident that a major part of the network tra�c matches a small subset of
the �rewall rules[3-21] This therefore calls for selecting these rules and calling
them by groups depending on their usage [6]. This scheme divides the �ltering
policy into two layers of rules, (a) most active rules-those performing the most
packet matching and (b) inactive rules-perform much less matching. Rules are
checked and if two or more rules are found to have the same matching action,
they are merged [21]. This reduces the rule set size and consequently the search
time for the �ltering algorithm because less rules are inspected when a deny or
allow decision is to be made by the �rewall.

9.4 Rule Frequency re-ordering

The number of times a rule is triggered is recorded and used to determine
matching patterns and arrangement of the whole rule set. Ehab Al-Shaer et.al.
[12] propose an adaptive way of dynamically optimizing �rewall rule sets using
actively calculated statistics. This looks at other �ltering categories other than
the traditional IP header. Subrata et.al.[2] and Ehab Al-Shaer et.al [12] pre-
sented a technique that uses Internet tra�c characteristics to optimize re- wall
�ltering policies. They have called this method statistical matching. This plus
other methods is what this research has adopted in coming up with a tool that
will optimize a given rule set to achieve higher throughput [22].

9.5 Rule Editing

Firewalls have thousands of rules and hundreds of IP addresses to take care
of. The typical approach is to scan through all these rules in a linear method
until a match is found for the packet being inspected [8 ,18, 22]. This is the

12

ine�ciency this research is seeking to address by optimizing the rule set. To
optimize therefore, �rst remove the con�guration errors or anomalies in the
implemented rule set [13]. This can be done by aggregating rules, rule checking
against matched packets, rearranging them, and other algorithm speci�c ways
e.g. Pre-calculating values though it uses up memory [5]. This helps remove
these four classed mistakes;

1. Shadowing

2. Redundancy

3. correlation

4. irrelevance

Most techniques used to classify packets use the behavior of �ltering rules with-
out taking into account, tra�c behavior in their optimization algorithms [12].

9.6 Go To Function

Modern Firewalls come with a feature allowing skipping from one rule or rule set
to another rule in a rule set [28]. The go to function is used to switch the search
and match ow from the default one(next rule in the list) to the one speci�ed in
the go to command. In IP Tables it is called jump [8 , 23]. This causes the search
algorithm to skip all rules following until it reaches the speci�ed one called a
target. IPFW has this functionality and is called skipto i.e. skip the following
rules until the one speci�ed after the skipto [7]. This works in a �rewall more
like a break or jump in a normal program. This function or command makes
optimization possible in that, not all rules in a list are evaluated for matching
with a given packet.

10 Rule-set Optimizing Tools

There is work done in the research and design of tools that can be used to
optimize �rewall rule-sets. These tools have taken di�erent design approaches
and incorporate di�erent ways of looking at tra�c in relation to rule-sets and
security policies.

10.1 Athena FirePAC 1

This is a proprietary tool owned by Athena Security Inc. It operates on o�-line
network tra�c to perform �rewall rule set checks on Cisco, Check Point and
Netscreen �rewalls. Its functionality is centered on removing vulnerabilities,
non-compliance and errors in the �rewall con�guration. It is con�gured to
perform comparison functionality to see how packet �ows have been a�ected by
speci�c rule and object changes [21]. Its auditing feature �nds miscon�guration,

1http://www.athenasecurity.net/athena�repac.html

13

redundant rules,overshadowed rules, and unused objects that can be removed
to optimize the rule-set. It does not perform rule removal automatically but
recommends which rules can be removed and rule re-ordering based on audited
tra�c �ows. Therefore, it is more of a monitoring tool and a good one for use
by administrators to proceed with rule-set optimization.

10.2 OPTWALL 2

This is a hierarchical tra�c aware framework for �rewall rule-set optimization
proposed by Mehmud et al [2] of the University of Pittsburgh. OPTWALL
divides a rule-set into multiple rule sets to reduce the packet matching time to a
rule. The proposed tool o�ers adaption schemes that should dynamically change
priority of a rule based on the tra�c. This adaptation is based on a heuristic
solution that takes initial �lter determinations of hit count per rule, hit count
of related rules and a random measure of how often those rules match tra�c.
Those values are then used to calculate the cost of a rule. They have presented
a 35% improvement in operational cost of a heavily loaded �rewall [2]. This
proposed solution has not been produced yet but does show that optimizing a
rule set o�ers a speed up in packet inspection time.

10.3 Policy Advisor 3

This tool was suggested by Ehab Al-Shaer in his research paper [?]. It takes
into consideration, rule set design to recommend optimization techniques. Their
focus was on correctness and usability of �rewall rule-sets using this tool than
the computation complexity and optimization of the algorithm. It inspects a
rule-set for shadowing anomaly, correlation anomaly, redundancy anomaly, and
generalization anomaly. Their anomaly detection algorithm works by applying
relationships to rules in a set and compares the �elds speci�ed for matching
actions to recommend an optimization action. The administrator can then
perform those actions from a graphical interface. This too uses o�ine analysis
to process recommendations on the rule set.

11 Observations

Other methods used explore the subject in a similar way as outlined above
though their naming conversions may be di�erent. Adel El-Atawy et al [3]
propose a technique that uses dynamic statistics collected on �rewall policy
rules and uses these results to construct a set of rules for denying or allowing
tra�c. Most research has presented and acknowledged that this is an NP-
Complete problem [12-21]. They used an algorithm that processes the �rewall
policy o�ine and comes up with optimal solutions. The solution with the least

2http://www.chautari.org/forums/index.php?showtopic=12303
3http://www.mnlab.cs.depaul.edu/projects/SPA/

14

processing cost is dynamically selected based on network tra�c statistics. This
can be likened to [2].
Heuristic based algorithms have been employed in �nding the shortest time of
matching a packet by doing the least search [9]. These are a combination of
most of the techniques discussed above. Disjoint rule set creator for rule 13
set based optimization [2], Direct Acyclical Graphs [9], Filtering Trees[3] among
others, all use one or more of the above techniques as a single implementation or
in a hybrid form. Most of these methods are based on the standard performance
evaluation benchmarks set by the Internet Engineering Task Force in its [1].

12 Research Focus

The motivation for this research is the fact that network tra�c is never static
[8,13,22]. Therefore, keeping a rule set of �xed length in this dynamic environ-
ment creates so much redundancy and inconsistencies. Sometimes it is even dif-
�cult to know which requests for important network services are allowed to pass
through the �rewall because of large rule sets [18,28]. This therefore,impacts on
throughput and drastically reduces �rewall performance, [11]. This is why the
work being done in this research to optimize a rule set for performance gain �ts
in.

13 Conclusion

Firewall rule set optimization means reducing the time spent checking through
a rule set to �nd a rule that matches a packet against the many rules con�g-
ured in a given rule set.This takes many approaches like rule grouping, merging,
skipping, and rule editing among others.Work to �nd better ways of optimizing
a rule set while maintaining the semantics to have the needed security between
the trusted and untrusted network continues. It is evident that not all traf-
�c traversing a network matches all the rules in the rule set. This therefore
increases the processing time unnecessarily and drastically impacts on �rewall
performance with regard to throughput. Rule sets grow to large depths in num-
bers therefore optimizing them is necessary to reduce matching time. Making a
�rewall react dynamically to ever changing tra�c with varying characteristics
is another solution to this problem This has however been described as an NP-
Hard task to accomplish [2 - 11]. This is the basis of the work being done in
this research.

References

[1] 3511, I. R. Firewall performance benchmarking.

[2] Acharyaý, S., Wangü, J., Geü, Z., Znatiý, T. F., and Greenbergü,

A. Tra�c-aware �rewall optimization strategies.

15

[3] Adel El-Atawy, Hazem Hamed, E. A.-S. Adaptive statistical opti-
mization techniques for �rewall packet �ltering.

[4] Adolfo Rodriguez, John Gatrell, J. K. R. P. TCP/IP Tutorial and
Technical Overview. IBM Redbooks, 2001.

[5] And, M. L. Firewall security: Policies, testing and performance evalua-
tion.

[6] Ehlert, S., Zhang, G., and Magedanz, T. Increasing sip �rewall
performance by ruleset size limitation. In PIMRC (2008), pp. 1�6.

[7] FreeBSD. Firewalls. FreeBSD Document Project, 2010, ch. 30, p. 777.

[8] FreeBSD, F. FreeBSD Handbook 2010. FreeBSD Document Project,
2010.

[9] Fulp, E. W. Optimization of network �rewall policies using directed
acyclic graphs.

[10] Gianluca Maiolini, Alessio Nicotra, P. T. A. B. Automated frame-
work for policy optimization in �rewalls and security gateways. Information
Assurance and Security (2009).

[11] Grote, A., Funke, R., and Heiss, H.-U. Performance evaluation of
�rewalls in gigabit-networks. In Proc. 1999 Symposium on Performance
Evaluation of Computer and Telecommunication Systems. Chicago, Society
for Computer Simulation (July 1999).

[12] Hamed, H., and Al-shaer, E. Dynamic rule-ordering optimization for
high-speed �rewall �ltering. In Proceedings of the 2006 ACM Symposium on
Information, computer and communications security (2006), ACM Press,
pp. 332�342.

[13] Hazelhurst, S. A proposal for dynamic access lists for tcp/ip packet
�lering.

[14] Hunt, R., and Verwoerd, T. Reactive �rewalls - a new technique.
Computer Communications, Elsevier, U.K. Vol 26,No 12, (2003).

[15] Karen Scarfone, P. H. Nist: Guidelines on �rewalls and �rewall policy.

[16] Katic, T. Pale, P. Optimization of �rewall rules. Information Technology
Interfaces.

[17] Kolehmainen, A. Optimizing �rewall performance. Seminar on Inter-
networking (2007).

[18] Marmorstein, R. A tool for automated iptables �rewall analysis. In
Freenix Track, USENIX Annual Technical Conference (2005), pp. 71�82.

16

[19] Márton Illés, T. B. The evolution of the �rewall. June 2006.

[20] Paco Hope, Yanek Korff, B. P. Mastering FreeBSD and OpenBSD
Security. O'Reilly, 2005.

[21] Security, A. Firewall cleanup and optimization.

[22] Shimonski R.J, Shinder D.L, D. S. T. Best Damn Firewall Book Period.
Syngress, 2003.

[23] Steve Suehring, R. Z. Linux Firewalls, Third Edition. Sams Publishing,
2005.

[24] Sunshadowz. Types of �rewals. http://www.sunshadowz.com/articles/�rewalls,
May 2010.

[25] Systems, C. Evolution of the �rewall industry. Cisco Press, 2002.

[26] Training, I. Firewalls: Overview.

[27] Whitman, M. Principles of Information Security 2nd Edition. Course
Technology, 2004.

[28] Zhao, L., Shimae, A., and Nagamochi, H. Linear-tree rule structure for
�rewall optimization. In CIIT '07: The Sixth IASTED International Con-
ference on Communications, Internet, and Information Technology (Ana-
heim, CA, USA, 2007), ACTA Press, pp. 67�72.

17

