
Firewall Rule Set Optimization

Submitted in partial ful�lment

for the requirements of the degree of

Bachelor of Science (Honours) in Computer Science

at Rhodes University

Innocent Makungo Mukupa

Grahamstown, South Africa

November 8, 2010

Abstract

A �rewall is an intermediate system placed between two networks of di�erent trust levels,

mostly between the secure corporate network and the less secure public Internet. It is

intended to keep the corporate network safe from intruders, hackers and other malicious

entry into the corporate network. A �rewall performs packet �ltering by applying rules

de�ned in a rule set that is con�gured on the �rewall. This packet inspection against the

rules is done sequentially to �nd a rules that match the packet for the �rewall to apply

an action of either allow or deny. Most �rewalls exit the inspection process once a match

is found, but the fact that the inspection is a sequential process negatively impacts on

�ltering performance.It is evident that not all rules in a given rule set on a �rewall match

a packet inspected.Therefore evaluating all the rules until a match is found introduces

performance degradation.Network transmission speeds have increased tremendously.This

increase coupled with increased complexity of the attacks, requires better packet �ltering

algorithms to maximize throughput and the bene�t of modern �rewall hardware devices.

Recent works in this area have investigated ways of improving �rewall performance based

on di�erent criteria.This research investigated ways of combining tra�c characteristics

with rule matching patterns to reduce the number of rules in a rule set. The researcher

came up with approaches and used them to come up with an optimal rule set of less rules

that reduces the inspection time.

ACM Computing Classi�cation System Classi�cation

Thesis classi�cation under the ACM Computing Classi�cation System (1998 version, valid

through 2010):

C.2.0 [General]: Security and protection

C.4 [Performance of Systems]: Measurement techniques

D.0 [General]

General Terms: Security, Performance

Acknowledgements

To the most high God, Jah , king of kings and maker of heaven and earth who gave me

life and blessed me with so much, praise be to thee!

I am very grateful to my supervisor, Mr Barry Irwin, whose involvement in this work

and experience in the �eld of Information Security I have been privileged to learn a lot

from, Barry thank you very much for your guidance. Thank you to the members of the

Security and Networks Research Group (SNRG) at Rhodes University for their sharing

and teaching spirit.

I am grateful to my parents, Mr Katandula W Mukupa and Mrs Elizabeth Chewe Mukupa

for their love and support. Mum your teachings and instructions have shaped me into

this man I am today. To my father, who always told me to work hard towards what I

believed in and seek excellence, thank you very much. Thanks to all my brothers and

sisters who have been so supportive to me through out. I love you all.

I am thanking my brother Prudential Chongo Mukupa who never hesitated to put my

life and growth in his hands. Your lessons, love and �nancial commitment to my progress

and pursuance of my independence has been heavenly.

It takes a certain type of man or woman to teach another something that will make them

better. Living in this world is a challenge in itself and I have been able to grow and

breakthrough those challenges thanks to the teachings of men and women labouring for

the advancement of God's kingdom; Bishop Roy Wallace and other pastors of the Gospel

Outreach Church in Hochland Park, Windhoek, Namibia. My humble thanks to Rev.

Helmut Reutter, Pastors Je� Musonda, Dickson Phiri, Mbinda Wina and other ministers

of God's word at the Gospel Outreach Fellowship Centre in Lusaka Zambia for their life

equipping gospel teachings that have taught me a lot and shaped me this far.

I wish to extend my thanks to River of Life Church in Grahamstown and Pastors John

and Debbie Sloane in particular for their encouragement and spiritual feeding without

which my life in Grahamstown would have been empty.

What would one be without friends? I wish to thank the Nawas, Elleanor and Watae

for the encouragement and care showed to me during my study period. Mwape Mo

ii

Chileshe, you keep a positive heart going when you crack jokes in moments of re�ec-

tion. My friends Ian Namulya Mung'omba, Malama Chishala, Sydney Shibeene, Chilufya

Ndalameta, Benard Kayinga, Alfred Banda, Jasmine Orlam, Biko Adams, Alton Zirimah,

K.T.L Pohamba, Miss Nuule Vasti, Nimrod Njamba, Lahya, Vido C Vicentius and all of

you guys that I have become family with, thank you for your prayers, good wishes and

help that made the load of life easy for me to carry.

To Mpande Chizhyuka and Mabvuto Mumba, your running around for me made it possible

to get to Rhodes. You cared and settled me well in Grahamstown. Your reward is from

God you served by doing that for one of his children. Thank you so much for being there

for me.

I wish to acknowledge the support of the following cooperating partners of the department

of computer science at Rhodes University; Telkom SA, Comverse SA, Stortech, Tellabs,

Easttel, Bright Ideas Projects 39 and THRIP through the Telkom Centre of Excellence

at Rhodes University. Their material provision made this work possible and as such I

am highly indebted to them for providing this learning environment in which I have been

able to utilize my potential as a student.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Goals . 2

1.3 Thesis Layout . 3

2 Related Work 5

2.1 Network Overview . 5

2.2 Security . 6

2.3 Packets and Protocols . 6

2.4 Firewalls . 8

2.4.1 History of Firewalls . 8

2.4.2 Firewall Security . 10

2.4.3 Firewall Categories . 11

2.5 Firewall Types . 12

2.5.1 Packet Filter Firewall . 12

2.5.2 Circuit Level Firewalls . 13

2.5.3 Application Layer Firewall . 13

iii

CONTENTS iv

2.5.4 Dynamic Firewalls (Stateful Firewall) 14

2.5.5 Hybrid Firewall . 14

2.6 Security Policy . 14

2.7 Firewall Filtering Complications . 15

2.7.1 Protocols . 15

2.7.2 IP Fragmentation . 15

2.7.3 IP Source Filtering . 16

2.7.4 Filtering Criteria . 16

2.8 Summary . 17

2.9 Rule-set Optimization Techniques . 18

2.9.1 Rule set clean up . 18

2.9.2 Rule set re-ordering . 18

2.9.3 Rule Grouping . 19

2.9.4 Rule Frequency re-ordering . 19

2.9.5 Rule Editing . 19

2.9.6 Go To Function . 20

2.9.7 Dynamic Filtering . 20

2.9.8 Dynamic Rule-Ordering . 20

2.9.9 Early Packet rejection . 21

2.10 Rule-set Optimizing Tools . 21

2.10.1 Athena FirePAC . 21

2.10.2 OPTWALL . 22

2.10.3 Policy Advisor . 22

2.11 Observations . 23

2.12 Summary . 23

CONTENTS v

3 Project Methodology 25

3.1 IPFW FreeBSD Firewall . 25

3.2 Firewall Rule set . 27

3.2.1 Packet Inspection . 28

3.2.2 Rule Manipulation . 28

3.2.3 Rule Set Types . 28

3.2.4 Used Rule-set . 29

3.2.5 Rule Syntax . 29

3.2.6 Rule Numbering . 30

3.2.7 Ports . 30

3.3 Test Environment . 31

3.3.1 Environment Setup . 31

3.3.2 VMWare . 32

3.3.3 Virtual Machines Con�guration . 32

3.3.4 Tools . 34

3.4 Tra�c Traversal . 35

3.4.1 Captured Packets (.pcap) . 35

3.4.2 Tra�c Activity Logging . 36

3.4.3 Tra�c Statistics . 37

3.4.4 Packet Inspection . 38

3.4.5 Rule Action . 38

3.4.6 Statistics Extraction . 38

3.5 Optimization . 39

CONTENTS vi

3.6 Optimization Approaches . 39

3.6.1 Removing Redundant Rules . 40

3.6.2 Merging rules . 40

3.6.3 Disabling rules . 40

3.6.4 Changing Rule Priority . 40

3.6.5 Removing Overshadowed Rules . 40

3.6.6 Using Skipto function . 41

3.6.7 Rule Re-sequencing . 41

3.7 Summary . 41

4 OptAid :Rule set Optimizer 42

4.1 Design . 42

4.2 Implementation . 43

4.3 Issues Faced . 44

4.4 Summary . 46

5 Performance Benchmarking Tests 47

5.1 Performance Tests . 48

5.1.1 Setup Parameters . 48

5.1.2 Procedure . 48

5.2 Measured Metrics . 49

5.2.1 Connection establishment . 49

5.2.2 Forwarding Rate . 49

5.2.3 Connections per second . 49

CONTENTS vii

5.2.4 IP Throughput . 50

5.2.5 Connection Tear-down . 50

5.2.6 Legal Tra�c . 50

5.2.7 Illegal Tra�c . 50

5.3 Summary . 51

6 Performance Test Results 52

6.1 Results . 52

6.1.1 Default rule-set (Blue) . 55

6.1.2 Optimized Rule-set (Red) . 55

6.2 Results Discussion . 55

6.2.1 Connection establishment . 55

6.2.2 Forwarding Rate . 56

6.2.3 Connections per second . 56

6.2.4 IP Throughput . 56

6.2.5 Connection Tear-down . 56

6.2.6 Legal Tra�c . 57

6.2.7 Illegal Tra�c . 57

6.3 Summary . 57

7 Conclusion 58

7.1 Summary . 58

7.2 Problem statement and Goals Revisited . 59

7.3 Conclusion . 61

7.4 Future Work and Extensions . 61

CONTENTS viii

References 63

A Default Rule set 67

B Optimized Rule Set 71

C Packet Counter results 74

D Rule Syntax and use 76

E CD Contents 78

List of Figures

2.1 Packet Layer Relationship (Adapted from [3]) 16

3.1 Sample Filtering Policy . 27

3.2 Test Environment . 32

3.3 Tra�c Traversal . 36

4.1 OptAid Tool Design . 44

6.1 Ipfw-graph Reporting Format . 53

6.2 Protocol Composition . 54

6.3 Performance Results . 54

i

Chapter 1

Introduction

A �rewall is a logical security component deployed between networks of di�erent trust

levels. This is mostly between the public Internet of no trust and the internal network for

a given business. Firewalls are also deployed within private trusted networks to segment

networks and control resource sharing internally [34]. A speci�c case in point would be

using a �rewall to control subnets withing an organisation to avoid data contamination,

privilege elevation, and access to certain data [15]. The primary function of a �rewall is

to block unauthorised tra�c while permitting authorised tra�c going in either direction.

There are various types of �rewalls deployed depending on the role required in the net-

work. There is increased need for packet �ltering with the growth of the Internet and the

proliferation of Internet based services. This has extended the types to �rewall categories

based on functionality such as web application �rewalls, proxy �rewalls, host based �re-

walls, circuit level, dynamic and hybrid �rewalls [7]. Hybrid types are a combination of

two or more implementations to improve on functionality.

A �rewall performs packet �ltering by applying a set of rules to a packet sequentially until

a rule matching the packet is found in the rule set. Firewalls that perform deep packet

inspection like application �rewalls, go on inspecting even after the �rst match is found

[27]. Firewall rule-set can have con�guration �aws; at times di�erent administrators write

rules ending up with a set of generic rules de�ned that match packets that other rules are

also set to match [7, 33]. These con�guration changes due to adjustments in the security

policy, do make it di�cult to know which requests for important network services are

allowed to pass through the �rewall because of large rule sets [34]. Therefore, the need

for rule set optimization is a critical one.

1

1.1. PROBLEM STATEMENT 2

Finding ways of reducing this inspection time to increase a �rewall's throughput has

been investigated and continues to be given attention by the research community. Packet

�ltering as an aspect of network computing security has generally been described as

an NP-Hard problem [19]. This is because of the many challenges posed by protocol

complexities, �ltering choices, addressing challenges like IP spoo�ng.etc [7]. There are

other challenges like rule dependencies which are con�guration based and pose dangers

of opening the system to intended illegal tra�c or locking out the system from needed

services and tra�c.

1.1 Problem Statement

It is evident that not all rules in a �rewall rule set match every packet inspected. It has also

been widely observed that network tra�c is never static and its dynamic nature requires

continued adaptation of rules in a rule-set to match up to tra�c demands. Rule-sets

grow to large numbers in depth and maybe written by di�erent network administrators.

This gives rise to rule over-shadowing problems among other inconsistencies in the �rewall

con�guration.

Firewalls perform �ltering by inspecting a packet against a set of rules written from the

security policy. This inspection is sequentially done for both inbound and outbound

packets. Rule-sets grow to long depths in terms of the number of rules in the rule-

set depending on the security requirements of the network. Sequential packet inspection

against the full rule-set until a match is found is resource intensive and negatively impacts

on the �ltering capability because unnecessary checking is done on rules that will not

match the packet.

1.2 Research Goals

This work was motivated by the evidence that not all rules in a rule-set match a packet and

also that tra�c is never static. The increase in network speeds poses increased challenges

on �ltering performance of a �rewall. There has been improvements in protocols designed

for IP networks, also transport techniques keep improving and changing. The objectives

of this research therefore were:

1.3. THESIS LAYOUT 3

• to investigate �rewall �ltering capacity improvement from reducing the rule set size.

• to develop a tool that will aid network administrators in optimizing rule sets.

1.3 Thesis Layout

The remainder of this document is arranged as follows:

Chapter 2 : Discusses network theory as it relates to �rewalling. A discussion on

security, packets and protocols and their characteristics that help and complicate �rewall

performance is presented here. An overview of �rewalls; what they are, how they �lter

tra�c, types of �rewalls and implementation technologies employed are given in this sec-

tion. Then a detailed review of previous works done with regard to rule-set optimization

focusing on the approaches and tra�c aspects considered is given.This is to help build a

good background of �rewalls,rule sets and how packets interact with the �rewall. A look

and analysis of the techniques used in previous works and tools developed or proposed

for rule set optimization is detailed here. This section ends by looking at security poli-

cies; how they are used to develop rule-sets and some complications experienced in packet

�ltering.

Chapter 3 : The researcher here discusses the project methodology used to conduct

the research. This details the experimental setup; the �rewall package used, the rule-sets

creation and rule-set types used to perform the �ltering. A way of manipulating rules

and rule-sets; detailing rule syntax, numbering and use of ports in �ltering is given in this

section.This researcher explains in detail, the project environment from the operating

systems used, tools, network con�guration to tra�c movement and how optimization was

performed. Methods used to collect tra�c statistics are given here and explained in the

optimization basis section to give more insight into how packet inspection works.

Chapter 4 : Presents the design of the rule-set optimizer. This details the design

considerations and implementation approach. This researcher explains the problems en-

countered with designing and implementing the tool. Finally, proposed extensions that

can be done to proceed with the tool design and implementation in future are given at

the close of this section.

Chapter 5 : Explains the tests done to measure performance comparisons on the

default and optimized rule-set.The section starts by explaining the idea behind performing

1.3. THESIS LAYOUT 4

the tests done and then goes into the setup parameters used to conduct the tests. The

metrics measured to determine performance di�erences are given, and an in-depth look

at how these metrics relate to �rewall throughput is presented here.

Chapter 6: This chapter presents the results of the measured metrics. These are based

on the default or naive rule-set and the optimized rule-set. Analysis of the results and

observed variations are discussed in this chapter. The review of the results is in relation

to the hypothesis presented in the set out objective.

Chapter 7 Concludes the work done in this research and sums up the research �ndings

with respect to the goals. It outlines the ways used in approaching the problem statement

ending with a general overview of why rule-set optimization is critical considering the

dynamic nature of tra�c.

Chapter 2

Related Work

This chapter covers some previous work done in the �eld of �rewalls with regard to rule-

set optimization. A look at various novel works and approaches to limiting rule set size

was done as reported here. Also the current and previous works on optimization tools

are reviewed and their approaches analyzed and presented here. An overview of network

principles and security in general as it relates to the research is presented to start the

section. This consolidates the knowledge of �rewalls and their place in the network.

2.1 Network Overview

The idea of creating computer networks is to share resources, exchange data, share hard-

ware, collaborate on tasks, and distribute services and applications over geographical

locations or within buildings. The devices on the network are referred to as nodes, analo-

gous to knots in �shing nets. These nodes can be connected by various types of media.Any

node on a network is identi�ed by a an Internet protocol,IP, address [3]. The IP address

is a numeric value that can also be represented in text form.

These networks are built in di�erent arrangements called topologies ranging from bus (all

nodes are connected along a single cable), star (all nodes connect to a central node), ring

topology and mesh. These topologies are used to implement networks such as Local Area

Networks (LAN), Wide Area Networks (WAN) and Metropolitan Area Networks (MAN)

[39].

5

2.2. SECURITY 6

2.2 Security

Security in computing environments involves the daily tasks of making sure the services a

network o�ers are available always. This requires that the infrastructure that hosts these

services the network provides is available and secure all the time. These are tasks like

power management, User management, Backups, Privilege management, IP Accounting

among others [7]. This security is divided into Physical and Logical security.

• Physical Security : the di�erent ways of restricting access to the network environ-

ment and resources physically by lock and key, security guards, dogs, closed circuit

television, CCTV, and other methods used to stop physical access.

• Logical security : implementing logical ways of restricting resource use and manip-

ulation using Intrusion Detection Systems, IDS, Firewalls, biometric identi�cation,

Authorization Authentication and Accounting, (AAA) and access control through

limiting privileges among others [36]. Authorization determines whether a given

entity is allowed to perform a given activity.Authentication checks if the device or

user requesting a resource is who it is by providing corresponding credentials such

as a password [42]. Accounting keeps track of the use of network resources by users.

In �rewall systems, a user can be a process or service trying to access an address

that it is not allowed to. In this case AAA helped keep logs for accounting, check

the requesting host address for authentication and authorization.

2.3 Packets and Protocols

The underlying objects �rewalls deal with are packets for di�erent protocols. For network

transport to send any information across it has to be broken down into small pieces, each

of which is sent separately.These pieces of data are called Packets and all data transfer

across IP networks is done in the form of packets. The breaking down of these pieces

allows many systems to share the network, each sending the packets in turn [3]. This

network sharing is critical in packet �ltering, it requires �rewall con�guration to ensure

legitimate packets are not lost by denying them entry.

Packets are built in a layered structure, with each layer representing a protocol used for

a particular connection wrapped around the packet. A packet has two parts: body and

2.3. PACKETS AND PROTOCOLS 7

header [7]. The header contains protocol information relevant to that layer and the body

carries the data for the protocol. This wrapping around of header information continues

down the TCP/IP stack with each layer preserving the header and body of the previous

layer in what is termed as encapsulation [42].

This packetization of data with each layer having the headers preserved is what makes

�ltering possible. It allows packets to be inspected by protocol type, address or service

they are destined for. Ethernet packets for example, consists of the Ethernet header and

Ethernet body. Ethernet address is also known as the Media Access Control (MAC)

address [34]. You will generally not perform packet �ltering based on information in the

Ethernet header though it gives the following information:

• What kind of packet this is: packet name by transport protocol; Appletalk, Novell

or some other kind. In this research it is an IP packet

• Ethernet address of the source node that put the packet onto this particular Ethernet

network segment: this is the address of the machine the packet originated from if

it is attached to this segment; if not, it is the address of the last router in the path

from the source machine to the destination.

• Ethernet address of the packet's destination on the given Ethernet network segment:

this could be the address of the destination machine if it is on this segment; or the

next router in the path from here to the destination machine.

Ethernet packets encapsulate IP packets as their data body [13]. This is passed up the

stack and at the network layer; the IP packet is opened to see the addresses. This research

in rule set optimization focused on network layer �ltering considering IP packets and the

services associated with that. This is because at the IP layer, the IP Packet header

contains interesting information pertaining to packet �ltering:

• IP source address

• IP destination address

• IP protocol type

• IP options �eld

2.4. FIREWALLS 8

These values above are used in conjunction with Transmission Control Protocol informa-

tion that is used to pair with Internet Protocol values. For communication to occur for

example, a port on the source IP host must connect to a port on the destination host

[38]. As such the following TCP header values were identi�ed as being critical to packet

�ltering.

• TCP source port: this number speci�es what client or process a packet is originating

from on the source host.

• TCP destination port: this speci�es the client or process a packet is going to on a

destination host.

• TCP �ags �eld: contains various �ags that are used to show special kinds of packets

especially during the process of setting up and tearing down TCP connection.

A general understanding about networking has been presented here to put into perspec-

tive, �rewall decisions when �ltering tra�c. Rules are often explicitly written to block

or allow tra�c from speci�c IP addresses and network numbers. Also if forwarding is

con�gured on the �rewall, IP addresses are used to identify recipient nodes that might

perform further packet inspection.

2.4 Firewalls

A �rewall is a form of logical security implementation deployed to �lter tra�c between

networks whose trust levels are di�erent or within a network to �lter packets between

subnets. These devices have evolved from the initial design concept that started this

technology as discussed here under.

2.4.1 History of Firewalls

The name Firewall is derived from the ancient design of building a wall between two or

more buildings or rooms to stop the spread of �re if it broke out [38].The �rst generation

of �rewalls were made by Cisco Systems Inc.'s IOS software division around 1985. They

2.4. FIREWALLS 9

were called Packet Filter �rewalls. Late 80s into the 90s saw the second generation of

�rewalls called Circuit Level Firewall pioneered by Dave Presotto and Howard Trickey of

AT&T Bell laboratories [38, 39]. They also worked on the third generation called Ap-

plication Layer Firewalls and were publicized in 1991 by Marcus Ranum of AT&T Bell

laboratories. Ranum's work became the �rst commercial product called SEAL by Digi-

tal Equipment Corporation. Check Point Software released the �rst commercial �rewall

product based on the fourth generation architecture in 1994 [30, 14]. The �fth generation

�rewall architecture, the Kernel Proxy architecture was worked on by Scott Wiegel, chief

scientist at Global Internet Software Group Inc. in 1996. Cisco Systems Inc released the

�rst commercial product, Cisco Centri Firewall, based on this architecture in 1997 [37].

Firewalls have since evolved through generations to the current stage that not only �l-

ters packets.Modern implementations incorporating functions like management of network

bandwidth, enforcing requirements to use a web proxy server, protecting resources in the

organisation, preventing malicious attackers from the Internet among others [30, 31]. The

growth of networks, the desire by companies to share their intranets with customers and

business partners has brought challenges and a greater need for network security [25].The

innovations in �rewall technologies resulted from Department of Defense research and

funding projects [38].These advances and improvements have come by through research

by di�erent pioneering companies and individuals among them Cisco Systems Inc., AT &

T Bell, and Digital Equipment Corporation as pointed out already.

Irrespective of the type of �rewall being used, �rewalls provide several services some of

which are discussed below:

• Tra�c shaping: This is a strategy to optimize performance and manage tra�c

on a network. This is done to make sure a network does not become overloaded.

This takes tra�c transport into consideration and is implemented on a �rewall by

techniques such as giving data packets di�erent priority levels as they go through

the �rewall.

• Network di�erentiation: A �rewall creates a boundary between networks by creating

a clear distinction between them. This can be within the same company environment

to divide departments

• Content �ltering: Proxy level �rewalls are normally con�gured to manage and con-

trol tra�c by inspecting URL and page content. Proxy oriented �rewalls can identify

and block content that is seen suspicious.

2.4. FIREWALLS 10

• Network Address Translation (NAT): As a security feature and IP reservation mech-

anism. NAT makes a �rewall at the border gateway secure the internal addressing

from attacks as their addresses are not routed outside. This also reduces costs of

acquiring public addresses from ISPs

• Bandwidth management: Some applications can be allocated more bandwidth than

others. FreeBSD ipfw �rewall for example has ALTQ a QoS mechanism allowing

prioritizing �ows.

• Auditing : Firewall logs are a good source of security planning and reviews. Object

access and failures can be logged to a �le and retrieved for audit purposes. FreeBSD

ipfw and other �rewalls o�er this feature that captures the IP address of a source

host, the ports or service they were targeting on the resident network.

• Packet Redirection: A �rewall may be required to send tra�c to another port or

another host. These situations arise in environments that require sending certain

tra�c to servers for further processing.

The digital convergence and the desire for businesses to communicate, collaborate and

share work using IP networks has brought more challenges in terms of information security

[24]. This has given a further demand on the speed a network should avail to such services

and applications. At the core of this speedy delivery of tra�c to and from a network is an

Intrusion Detection System, IDS. One IDS key component is a �rewall which this research

is focusing on.

2.4.2 Firewall Security

The �rewall security focus of this research was network layer packet �ltering using a rule

set written based on a security policy. A �awed �rewall con�guration for example could

leave the system open to attacks like Denial of Service, DoS, attacks [12]. Several issues

need to be considered when dealing with packet �ltering. Internet connectivity is growing

with most enterprises shifting to the use of web based services for service provision [22].

This is seen to be sharpening their competitive edge as it gives them and their customers,

rapid access to information.

2.4. FIREWALLS 11

Firewalls provide a mechanism for protecting these enterprises from the less secure Inter-

net over which their customers or collaborating partners transfer packets destined for the

corporate network [12, 19, 29]. They are deployed as �rst lines of defense at the network

perimeter .Firewalls have grown to take up more tasks than merely �ltering tra�c to man-

aging bandwidth, routing control, packet forwarding etc [15, 34]. This research focused on

the Network Layer operation of a �rewall and explored ways of improving its performance

by optimizing the rule set. A corporate network policy is translated into rules that are

de�ned as the rule base or rule set. These rules are con�gured on the �rewall to provide

the security and packet availability. The idea from a security point is ensuring that data,

system integrity and con�dentiality are maintained [2, 20, 19].

There has been a drastic growth of connected nodes on the Internet and in private networks

[26]. This exponential digital growth in the last decade has not only improved network

technologies but brought more complex security threats and demands on packet �lters

[8]. Research in the subject of improving �rewall performance continues to be done by

many network researchers some of whose work was evaluated and learned from to get a

view of what has been done.This section presents various approaches and techniques of

�rewall rule set optimization. The chapter closes by looking at some tools and approaches

proposed to aid rule-set optimization.

2.4.3 Firewall Categories

Firewalls are categories according to di�erent approaches as their functionality and need

relates to a given network. Below are the classes and examples for each category.

• Processing mode (Packet �ltering, Application gateways, Circuit gateways, MAC

layer �rewalls and Hybrids)

• Development era (generations according to time).

• Intended deployment structure (Stand alone, self contained, Small O�ce/Home

O�ce SOHO, Commercial grade)

• Architectural implementation (Packet �ltering routers, Screened host �rewalls, Dual-

homed �rewalls, and Screened subnet �rewalls)

2.5. FIREWALL TYPES 12

2.5 Firewall Types

This categorizes �rewalls according to how they perform packet �ltering. It considers

levels of deployment and key functionality involved.

2.5.1 Packet Filter Firewall

These are based on �rst generation �rewall technology. They analyze network tra�c at the

transport layer [30]. They examine each IP network packet to see if it matches one of the

rules de�ned for allowing or denying data �ows. The decision is based on the information

they get from the packet's transport layer headers and the direction the packet is going

into [37].They are therefore con�gured to check:

• Transport layer type (TCP, ICMP, UDP)

• Source port

• Destination IP address

• Source IP address

• Network interface the packet arrives on

• Destination port

Packet �lters do the above by applying a rule set residing in the TCP/IP kernel that

de�nes what action goes with which rule. They come under three subsets being:

Static Filtering:These �rewalls require that �ltering rules governing how the �rewall

decides which packets are allowed and which are denied are developed and installed.

Hence the name static [3, 24].

Dynamic Filtering:Dynamic �ltering �rewalls allow the �rewall to react to emergent

event and update or create rules to deal with the event dynamically.

Stateful Filtering:These types of �rewalls keep track of each network connection be-

tween internal and external systems using a state table [41]. Filtering decisions are made

based on the kept information about a given connection. A state is kept by a rule that

2.5. FIREWALL TYPES 13

speci�es keep state so that responses to sent packets are monitored especially for frag-

mented IP packets and UDP packets.

2.5.2 Circuit Level Firewalls

These are based on second generation �rewall technology [38]. Their principle of operation

is based on the fact that a packet is either a data packet or a connection request belonging

to a connection or circuit between two peer transport layers [37]. Circuit level �rewalls

work by checking that each connection setup follows a handshake system for the transport

layer protocol being used. They also store session identi�ers and connection state in a

table of valid connections and removing them once connection is terminated. Connection

tear-down happens once transmission is complete.

Like packet �lters, circuit level �rewalls work by applying a rule set that is maintained

in the TCP/IP kernel [14, 39]. They allow all network packets bound for that connection

through the �rewall as stated in the �rewall server's routing table but do not do further

security checks on the packets [37]. They also perform Network Address Translation and

perform checks to see if a packet has been spoofed and whether the data being transported

complies with the protocol de�nition.

2.5.3 Application Layer Firewall

Also called third generation �rewall; these �rewalls evaluate packets for valid data at the

application layer before allowing a connection [34].

• Examines data in network packets at the application layer

• Maintains connection state and sequencing information

• Can validate passwords and service requests

• Most of them include proxy services for speci�c services such as HTTP or FTP which

provide more checks and generate audit records about the tra�c they transfer.

2.6. SECURITY POLICY 14

Application layer �rewalls generally do not focus on the network packet information. This

makes the risk higher if the network layer is not performing well [35]. They also employ

proxies that require additional passwords or some validation of some sort. This brings

more delays.

2.5.4 Dynamic Firewalls (Stateful Firewall)

A fourth generation �rewall type allowing modi�cation of the rule set. A virtual connec-

tion is established and the packet is allowed to travel the �rewall server [30]. These provide

support for UDP packets by associating them with a virtual connection [31]. The connec-

tion information is kept for a short period and the connection is terminated if no response

packet is received within that short time. They are good for not allowing unwanted UDP

packets into a network because the response packet must contain a destination address

that matches the original source address [38].

2.5.5 Hybrid Firewall

Because of the need to do more than packet inspection, �rewalls are being implemented as

hybrid systems. These are mostly implemented by adding packet �ltering to an application

gateway. Cisco PIX �rewalls are an example of such hybrid �rewalls [38].

2.6 Security Policy

Packet �ltering is done based on a set of rules written and con�gured on the �rewall device.

These �rewall rules are written based on the organization's security policy [24, 41]. They

need to be built on clear business ideas. This is because various business reasons will

demand di�erent communication to be allowed through a �rewall. As such, the security

policy must take care of the di�erent subnet tra�c needs so that when rules for the

�rewall are written, �ltering matches the security considerations.Each protocol carries

with it some risks and these risks di�er from protocol to protocol therefore, protocol

analysis is key when coming up with a security policy [41]. Cases of having subnets with

di�erent tra�c considerations make writing security policies complex. This also grows

rule sets to lengths that network administrators do not understand any more, especially

if rules are written by di�erent administrators [43].

2.7. FIREWALL FILTERING COMPLICATIONS 15

2.7 Firewall Filtering Complications

There are various factors that come into play when dealing with packet �ltering. These

are mostly requirements and values on which packet �ltering is performed. Useful as they

may be, some of them pose challenges and security risks in �rewall functionality.

2.7.1 Protocols

Packet �ltering is one complex if not hard aspect of network security [15, 30]. For example,

you can permit or deny protocols by port numbers; it is hard to allow some operations

while denying others in the same protocol. You also can never be sure that the packets

coming in on that port is actually the protocol you wanted to allow [8]. Therefore,

characteristics of protocols, services and implementations greatly a�ect how e�ective a

�rewall will be.

2.7.2 IP Fragmentation

IP fragmentation is one huge complication in �rewall performance. IP packets are frag-

mented to smaller sizes to meet Maximum Transmission Unit (MTU) requirements for the

links they are transported on [5]. They are then reassembled into the original IP packet

at the destination. A Fiber Distributed Data Interfac (FDDI) frame for example, is much

bigger than an Ethernet frame. A router between the FDDI ring and an Ethernet one

may have to split an IP packet that �sts into a single FDDI frame into multiple fragments

that �t into smaller Ethernet frames [7]. This is a problem from the packet �ltering point

at �rewall level [7]. Only the �rst of the IP fragments contains protocol headers TCP

or UDP) from the original packet that are vital for making �ltering decisions. IPFW

�rewall supports IP fragmentation using the frag keyword on a rule, which applies the

�ltering rules to the starting packet that has necessary protocol data and allow or deny

the rest of the packets that are part of that established transmission by using keep state

[14]. This is a dangerous action in that the decision on the remaining packets is based

on the assumption that the �rst packet was allowed or denied entry. The �gure below

explains packet and protocol layer relationship.

2.7. FIREWALL FILTERING COMPLICATIONS 16

Figure 2.1: Packet Layer Relationship (Adapted from [3])

2.7.3 IP Source Filtering

This is another potential source of abuse by attackers. Basically allowing �ltering to be

based on IP sources and destinations ties the �rewall to trust those trusted addresses.

Unauthorized packets can get through purporting to be from those addresses listed as

trusted ones in the �rewall. To counter this, an enhancement of Internet Protocol called

Path Enhanced IP (PEIP) has been developed [6]. PEIP is designed to detect forged

source addresses, their original source and even �lter them.Another solution to this is

to only allow in response packets to sent out packets for which dynamic rules have been

established [5].

2.7.4 Filtering Criteria

Packet �ltering can be performed based on Protocol, IP address, Interface, and Port

number or service name [3]. Filtering by hostname is possible but must never be done.

2.8. SUMMARY 17

This is because hostnames can be easily changed intentionally to mask bad blacklisted

sources and these get fed to your network's DNS server.

2.8 Summary

The above architectures have their own advantages and disadvantages when evaluated

based on performance and security. Based on performance, Packet Filers provide the

highest performance, then Circuit Level, Dynamic Packet Filter �rewalls and Application

Layer �rewalls [30, 38]. This is a reverse in terms of security. Application Layer Firewalls

make packets go through more protocol layers inspection and detail [25]. Application

Layer Firewall therefore are seen to be more secure than Dynamic Packet �lter �rewalls

that are viewed more safer than Circuit Level �rewalls and Packet �lter �rewalls [39].

Application Layer �rewalls are more process intensive and hence slower but considered to

be the most secure.

A �rewall is just one part of the network security system of a private network. These

�rewalls do not protect the network from viruses, insider attacks and previously unknown

attacks [35].This is because most �rewall technology works on a 'catch up' and 'protect

from known threats' technology [37]. Therefore keeping the network secure demands

continued updates of the �rewall rule set and other security policies [31].The fact that a

network is dynamic and not all rules in the �rewall rule base are matched at all times

is the motivation for this project which is seeking to �nd ways of optimizing the �rewall

rule set to improve throughput at layer 3, Network Layer.

IPFW �rewall employs some of the �ltering implementations discussed above. It can

perform dynamic or stateful �ltering by specifying keep state and check state on a rule.

It is thus considered to be a hybrid type network layer �rewall.

De�ning rules to �lter tra�c need to be well understood. Key issues to consider in that

exercise are essentially based on the security policy. Protocol implementations, �ltering

choices, desired services and choices of �ltering must be well dealt with to have in depth of

what is being allowed or denied and how it impacts on the overall security of the network

[7, 8].

2.9. RULE-SET OPTIMIZATION TECHNIQUES 18

2.9 Rule-set Optimization Techniques

Increased �rewall complexity breeds more vulnerability and may reduce availability of

network services and applications an enterprise uses [15, 2]. The increase in network size,

bandwidth, and processing power of networked hosts continues to increase the demand

for optimizing �rewall operations to improve performance [22]. The following techniques

are some of the many approaches previous works have considered in optimizing �rewall

rule sets.

2.9.1 Rule set clean up

This approach analyzes the rule set to identify inconsistencies and redundancy in the rule

set and removes them. Rules that make no unique contribution to the �rewall behavior

are removed. These are either Redundant or Shadowed rules [33]. Redundant rules never

match packets because there are more preceding rules matched �rst. Unused rules that

have the log option but have no logs showing that they have matched packets. They are

therefore candidates for removal when optimizing though their removal may a�ect �rewall

behavior later [28]. Remove rules for unused Network groups; if the organization does not

have a mail server, SMTP rules can be taken out of the con�guration [33]. This should

also be done for unused Network objects. Remove unused service objects and disable

them on machines. A blend of this depends on the speci�c organizational network needs

and should be tailored well to achieve better packet �ltering that improves throughput

[26].

2.9.2 Rule set re-ordering

This technique relies on the network statistics logged on the �rewall or written to a �le

in a network database. Jukka Zitting et al [13] and Hunt [22] suggested listing most used

rules in decreasing order of usage by hit count and percentage hit count. These rules can

then be moved towards the beginning of the rule set to improve performance. Optimize

the rule set by ordering rules based on the rule usage data and rule order dependencies

that does not alter the �rewall behavior [28]. This moves the most used rules toward the

beginning of the rule set until they are very close to the source of an order dependency.

The complexity with this method is the dependencies problem [16] and the tra�c pattern

changes [24].

2.9. RULE-SET OPTIMIZATION TECHNIQUES 19

2.9.3 Rule Grouping

It is evident that a major part of the network tra�c matches a small subset of the �rewall

rules [20, 14, 21, 33]. This therefore calls for selecting these rules and calling them by

groups depending on their usage [12]. This scheme divides the �ltering policy into two

layers of rules, (a) most active rules-those performing the most packet matching and (b)

inactive rules-perform much less matching. Rules are checked and if two or more rules

are found to have the same matching action, they are merged [33]. This reduces the rule

set size and consequently the search time for the �ltering algorithm because less rules are

inspected by the �rewall to deny or allow a packet.

2.9.4 Rule Frequency re-ordering

The number of times a rule is triggered is recorded and used to determine matching

patterns and arrangement of the whole rule set [19]. Ehab Al-Shaer et.al. proposed

an adaptive way of dynamically optimizing �rewall rule sets using actively calculated

statistics. This looks at other �ltering categories other than the traditional IP header.

Subrata et.al.[2] and Ehab Al-Shaer et.al.[19] presented a technique that uses Internet

tra�c characteristics to optimize �rewall �ltering policies. They have called this method

statistical matching. It has however been found challenging to implement with fears of

performance degradation [34].

2.9.5 Rule Editing

Firewalls have thousands of rules and hundreds of IP addresses to take care of. The

typical approach is to scan through all these rules in a linear fashion until a match is

found for the packet being inspected [15, 29, 34]. In trying to change this scenario, �rst

remove the con�guration errors or anomalies in the implemented rule set [21]. This can

be done by aggregating rules, rule checking against matched packets, rearranging them,

and other algorithm speci�c ways e.g. Pre-calculating values though it uses up memory

[5]. This helps remove these four classed anomalies;

1. Shadowing : rules not matching packets because earlier rules are matched.

2. Redundancy : rules not matched by packets

3. correlation : rules performing the same action.

2.9. RULE-SET OPTIMIZATION TECHNIQUES 20

4. irelevance: rules for unavailable services and or protocols.

Rules can be edited from being too generic to more speci�c.This requires religiously ob-

serving dependencies in order not to open the �rewall up to allow undesired tra�c [17].

Most techniques used to classify packets use the behavior of �ltering rules without taking

into account, tra�c behavior in their optimization algorithms [19].

2.9.6 Go To Function

Modern �rewalls come with a feature allowing skipping from one rule or rule set to another

rule in a rule set [43]. The go to function is used to switch the search and match �ow

from the default one (next rule in the list) to the one speci�ed in the go to command.

In IP Tables it is called �jump� [15, 35]. This causes the search algorithm to skip all

rules following until it reaches the speci�ed one called a �target�. IPFW has this �skipto�

functionality i.e. skip the following rules until the one speci�ed after the skipto [14].

This works in a �rewall more like a break or jump in a normal program. This function

or command makes optimization possible in that, not all rules in a list are checked for

matching with a given packet as Layer 3 �rewall is concerned.

2.9.7 Dynamic Filtering

Hunt [22], Subrata [2], and Hamed [19], in their publication proposed ways of creating

�rewalls that adapt to tra�c changes dynamically. These tra�c aware �rewalls are pro-

posed to work on previous tra�c patterns to detect new transmissions and react. Andrea

et al [28] suggested creating such an adaptive way of optimizing rule sets by using rule

ranking so that less priority rules are pushed to the bottom of the rules set as they are not

expected to match most of the tra�c. This is argued to be a good way of getting matches

fast and reducing the time as most �rewalls exit inspection once a match is found.

2.9.8 Dynamic Rule-Ordering

A dynamic way of re-ordering rules was suggested by Ehab Al-Shaer and Hazem Hamed

[19]. Their suggested technique utilizes Internet tra�c characteristics to optimize �rewall

�ltering rules. The technique timely adapts to tra�c changing conditions using actively

calculated statistics to dynamically optimize the ordering of packet �ltering rules. This

2.10. RULE-SET OPTIMIZING TOOLS 21

takes into account, rule importance in tra�c matching and dependency of rules on other

rules to perform the optimization. Just like [2] and [22], they have considered tra�c

characteristics to come up with a way of making the �rewall tra�c-aware as it starts

inspecting new �ows. They have pointed out how hard the optimization problem is to

solve in polynomial time and have presented a heuristic approximation algorithm that

achieves near-optimal results for the most common �rewall policies.

2.9.9 Early Packet rejection

The default deny rule is placed at the end of a rule set and it matches all undesired tra�c.

Adel et al [20] proposed a technique that analyzes the �rewall rule-set in order to come up

with a sub set of rules that can reject maximum number of undesired packets as early as

possible. They have however acknowledged that this is an NP-complete problem and have

as such used an approximation algorithm that pre-processes the �rewall rule-set o�-line

and generates di�erent close to optimal solution [20]. A solution that seen to be more

appropriate in this approach is one that has the least overhead cost, which is dynamically

selected based on network tra�c statistics [11].

2.10 Rule-set Optimizing Tools

There is work done in the research and design of tools that can be used to optimize

�rewall rule-sets. These tools have taken di�erent design approaches and incorporate

di�erent ways of looking at tra�c in relation to rule-sets and security policies.

2.10.1 Athena FirePAC 1

This is a proprietary tool owned by Athena Security Inc. It operates on o�-line network

tra�c to perform �rewall rule set checks on Cisco, Check Point and Netscreen �rewalls.

Its functionality is centered on removing vulnerabilities, non-compliance and errors in the

�rewall con�guration. It is con�gured to perform comparison functionality to see how

packet �ows have been a�ected by speci�c rule and object changes [33]. Its auditing fea-

ture �nds miscon�guration, redundant rules,overshadowed rules, and unused objects that

1http://www.athenasecurity.net/athena�repac.html

2.10. RULE-SET OPTIMIZING TOOLS 22

can be removed to optimize the rule-set. It does not perform rule removal automatically

but recommends which rules can be removed and rule re-ordering based on audited tra�c

�ows. Therefore, it is more of a monitoring tool and a good one for use by administrators

to proceed with rule-set optimization.

2.10.2 OPTWALL 2

This is a hierarchical tra�c aware framework for �rewall rule-set optimization proposed

by Mehmud et al [1] of the University of Pittsburgh. OPTWALL divides a rule-set into

multiple rule sets to reduce the packet matching time to a rule. The proposed tool o�ers

adaption schemes that should dynamically change priority of a rule based on the tra�c.

This adaptation is based on a heuristic solution that takes initial �lter determinations of

hit count per rule, hit count of related rules and a random measure of how often those

rules match tra�c. Those values are then used to calculate the cost of a rule. They have

presented a 35% improvement in operational cost of a heavily loaded �rewall [1]. This

proposed solution has not been produced yet but does show that optimizing a rule set

o�ers a speed up in packet inspection time.

2.10.3 Policy Advisor 3

This tool was suggested by Ehab Al-Shaer in his research paper [4]. It takes into con-

sideration, rule set design to recommend optimization techniques. Their focus was on

correctness and usability of �rewall rule-sets using this tool than the computation com-

plexity and optimization of the algorithm. It inspects a rule-set for shadowing anomaly,

correlation anomaly, redundancy anomaly, and generalization anomaly. Their anomaly

detection algorithm works by applying relationships to rules in a set and compares the

�elds speci�ed for matching actions to recommend an optimization action. The admin-

istrator can then perform those actions from a graphical interface. This too uses o�ine

analysis to process recommendations on the rule set.

2http://www.chautari.org/forums/index.php?showtopic=12303
3http://www.mnlab.cs.depaul.edu/projects/SPA/

2.11. OBSERVATIONS 23

2.11 Observations

Other methods used explore the subject in a similar way as outlined above though their

naming conversions may be di�erent. Adel El-Atawy et al [20] propose a technique that

uses dynamic statistics collected on �rewall policy rules and uses these results to construct

a set of rules for denying or allowing tra�c. Most research has presented and acknowledged

that this is an NP-Complete problem [26, 33]. They used an algorithm that processes the

�rewall policy o�ine and comes up with optimal solutions. The solution with the least

processing cost is dynamically selected based on network tra�c statistics. This can be

likened to [2].

Heuristic based algorithms have been employed in �nding the shortest time of matching a

packet by doing the least search [16]. These are a combination of most of the techniques

discussed above. Disjoint rule set creator for rule set based optimization [2], Direct

Acyclical Graphs [16], Filtering Trees [20] among others, all use one or more of the above

techniques as a single implementation or in a hybrid form. Most of these methods are

based on the standard performance evaluation benchmarks set by the Internet Engineering

Task Force in [?].

2.12 Summary

An overview of network concepts from addressing, protocols, security, to packet �ltering

and considered �ltering complications have been discussed in this chapter. Tra�c �ltering,

complex has it is, can be done at di�erent levels being application, proxy and network

levels. All �ltering work conducted in this research focused on network layer �rewalling

unless explicitly stated.

Firewall rule set optimization means reducing the rule set size to achieve optimal inspec-

tion time . This takes many approaches like rule grouping, merging, skipping, and rule

editing among others.Work to �nd better ways of optimizing a rule set while maintaining

the �rewall security semantics continues receiving attention. Hardware improvements and

increased network speeds are calling for better �ltering approaches. As such, overwhelm-

ing �rewalls with undue processing must be avoided to get better performance by reducing

the inspection time. It is evident that tra�c traversing a network does not match all de-

�ned rules in the rule set. This therefore increases the processing time unnecessarily and

2.12. SUMMARY 24

drastically impacts on �rewall performance with regard to throughput and consequently

security. Rule sets grow to large depths and therefore optimizing them is necessary. Mak-

ing these rules react more dynamically to ever changing tra�c with varying characteristics

will answer most of the �rewall performance problems. This has however been described

as an NP-Hard task to accomplish [19, 33]. The optimization approaches this research

has taken combines packet �ltering functionality with tra�c characteristics.Then taking

the approaches into designing a tool that can be integrated in a �rewall to optimize the

rule set and give the much sought after increase in throughput.

Chapter 3

Project Methodology

Conducting investigations regarding rule set optimization requires an environment in

which all parameters necessary would be blended to come up with conclusive results.

As such, this section describes the experimental setup. It give the hardware, software,

tools and other components used in performing the research. It begins with a description

of the �rewall package used; detailing its features and implementation architecture that

made it useful in this research. A look at the tools used to perform tests and results

gathering are given at the end and the reasoning behind using them explained in the

respective sub-sections.

3.1 IPFW FreeBSD Firewall

The �rewall used for all testing done in this research was ipfw a FreeBSD IP packet �lter

and tra�c accounting facility. It is included in the FreeBSD install as a separate run

time loadable module. The system dynamically loads the kernel module when the rc.conf

statement �rewall_enable="YES" is used. It is also available in other operating systems,

open source and proprietary;adapted as WIPFW for Microsoft windows operating sys-

tems, Apple in their Mac OS operating systems series have implemented ipfw [9]. Linux

implements it as a variation called Net�lter, a framework for providing �rewalling tools

- iptables and nftables [35]. IPFW was used because of the built in features discussed

below that make it e�cient and adaptive:

25

3.1. IPFW FREEBSD FIREWALL 26

• NAT support: o�ers in-kernel Network Address Translation using the various op-

tions available for the parent Nat command; nat nat_number con�g nat-con�guration.

NAT in ipfw helps in masking the internal addressing of a network as the �rewall

uses a public well known address when �ltering outbound tra�c and mapping re-

sponses for the internal addresses.

• Tra�c Logging: A packet that matches a rule with the log keyword creates a

message that will be logged to the speci�ed log �le. The rest of the packets update

counters of the accounting module depending on speci�ed options in etc/rc.conf and

in the kernel. This was a source of information critical for rule set optimization.

• Kernel mode control: IPFW is built into the FreeBSD kernel as a utility. This

makes it faster in responce processing,good communication, easy manipulation and

con�guration as opposed to implementations that are loaded from external instal-

lation directories .

• IP accounting: The ability to log tra�c o�ers a good way of accounting for object

access and failures. This is the source of general statistics in log �les and counters.

This makes it possible to see what ports or services malicious tra�c is targeting. It

also works as an internal control system for user behavior on the network.

• Tra�c shaping: This is implemented using dummynet, a tra�c shaper, packet

scheduler and network emulator. Dummynet is a IPFW subsystem that can be used

to delay or drop packets just like some network links or queuing systems.

• Dynamic rule support : upon a match, the �rewall will create a dynamic rule.

This rule's default behavior is to match bidirectional tra�c between source and

destination IP/port using the same protocol. Dynamic rules have a limited lifetime

which is refreshed every time a matching packet is found. This keeps the host safe

from �ood attacks from fake TCP packets and helps �ght DoS attacks.

• Stateful Firewall : this is a way of keeping connections for protocols requiring

responses to their communication. This too creates dynamic rules and o�ers support

for stateless protocols once the check-state, keep-state and limit option is enabled

on a rule. ipfw add check-state, ipfw add deny tcp from any to any established,

ipfw add allow tcp from my-net to any setup keep-state [12]. This will allow the

�rewall to create dynamic rules only for those connections that start with a regular

SYN packet coming from the inside of the network thereby protecting from spoofed

requests [14].

3.2. FIREWALL RULE SET 27

3.2 Firewall Rule set

A rule set is a group of rules programmed to allow or deny packets.The decision to allow

or deny is based on the values contained in the packet. The �rewall rule-set processes

both packets arriving from the public Internet, as well as the packets originating from

the internal network [14, 35]. Every service based on TCP/IP i.e.: telnet, www, mail,

etc. is prede�ned by its protocol i.e SSH, HTTP, SMTP e.t.c and privileged (listening)

port.Packets destined for a speci�c service, originate from the source address using an

unprivileged (high order) port and target the speci�c service port on the destination

address. The above parameters (ports, addresses and protocols) are used as traditional

selection criteria to create rules which will pass or block packets [5, 15, 34]. Collectively,

they are referred to as the 5-tuple {Source IP Source Port Destination IP Destination Port

Protocol} The table below shows an example �ltering policy written in rules structure by

adding an action to the 5-tuple.

1 2 , 3 4 , 5 Action

Protocol Source Address:port Destination Address:port Action

1 tcp * . * . * . * :any 172.128.16.41:25 allow

2 tcp 146.231.125.30:any * . * . * . * :21 deny

3 tcp * . * . * . * :any 172.128.16.*:21 deny

4 tcp 146.231.125. *:any * . * . * . *:21 allow

5 tcp * . * . * . * :any 172.128.16.*:22 allow

6 tcp 146.231.125. *:any * . * . * . * :80 deny

7 tcp * . * . * . * :any 172.128.16.40:80 allow

8 tcp * . * . * .* :any 172.128.16.42:53 allow

9 udp * . * . * .* :any 172.128.16.42:53 allow

Figure 3.1: Sample Filtering Policy

3.2. FIREWALL RULE SET 28

3.2.1 Packet Inspection

When a packet enters the �rewall it is compared against the �rst rule in the rule-set and

progresses one rule at a time moving from top to bottom of the set in ascending rule

number sequence order. When the packet matches the selection parameters of a rule,

the rules' action �eld value is executed and the search of the rule-set terminates for that

packet [14, 15, 35]. This is referred to as '�rst match wins' search method. If the packet

does not match any of the rules, it is caught by the default rule, number 65535 (deny

all) which denies all packets and discards them without any reply back to the source

[14, 28]. It is important that no reply is sent for those packets so that attackers sending

such malicious packets do not get to know the transmission status and addresses replying

to their packets.

3.2.2 Rule Manipulation

Firewall rules in ipfw can be added in two ways [7]. Using the ipfw command at run

time or writing them in a �le to be loaded at boot time. Adding or deleting from the

active �rewall internal rules while the �rewall is running can be convenient for reacting

to observed trends without service interruption [29]. The drawback with this approach is

that once the �rewall is stopped, all rules that were changed, added or deleted are lost.

Rule sets used in this research were of the second method of writing rules in a �le for

better administration and manipulation of rules. This �le is read by ipfw and rules loaded

at boot time.

3.2.3 Rule Set Types

Two types of rule sets have been named according to how they are written and perform

packet �ltering [24]. That classi�cation de�nes a rule set as either Inclusive or Exclusive.

The di�erence between these types is the way the �rewalls they create do packet �ltering.

Exclusive Rule sets

Exclusive rule sets create �rewalls that allow all tra�c through except for the tra�c

matching the rule-set [8]. Inclusive �rewalls allow tra�c matching the rules through and

deny everything else.

3.2. FIREWALL RULE SET 29

Inclusive Rule sets

Inclusive rule-sets create �rewalls that o�er much more control of both outgoing and

inbound tra�c. This is the type used for all rule sets implemented in this research.

Because of more control, inclusive �rewalls reduce chances of allowing unwanted tra�c to

pass through signi�cantly [8].

3.2.4 Used Rule-set

This research utilized inclusive rule sets for the �rewall tests performed. It was a mix of

stateful and stateless network �rewalling because; a single implementation ends up oping

the system to attacks. Stateful �rewalling for example is a good implementation that

tightens security further. It keeps track of which connections are opened up through the

�rewall and only allows tra�c that matches the connection or opens a new one. This

can open the network to Denial of Service (DoS) attacks if lots of new connections are

opened and their state maintained [7]. Stateful �rewalling treats tra�c as a bi-directional

exchange of packet for a single session. This allows any packet that ipfw stateful �lter will

be certain to be part of an active session to pass through even if it is a di�erent protocol.

The inclusive �rewall used included rules to allow free movement of special internally used

packets that are operating system critical and if blocked would lock out the system from

any interaction. FreeBSD being a Unix system is designed to use the loopback interface

lo0 and IP address 127.0.0.1 for internal operating system communication [18].

3.2.5 Rule Syntax

Firewall con�guration is an involving task considering that the security policy must be

understood and broken into a rule set [35]. Rule sets grow to large numbers of rules and

network tra�c trends keep changing [31]. For the general syntax of ipfw �rewall rules,

refer to appendix C.

3.2. FIREWALL RULE SET 30

3.2.6 Rule Numbering

Ipfw rules like most �rewall rules in production environments should be numbered as a

good practice for easy administration [15]. Ipfw numbers rules automatically from 00001

to 65535 by adding 100 to the previous rule if a number is not set manually on the rule.

This complicates manipulation of rules as the the numbering is not �exible to track. The

last rule 65535 usually has the default deny action but may be di�erent depending on

the kernel build option [15]. This rule matches all packets and that fall through without

matching earlier rules.This makes sure unwanted packets do not enter the network. It

is not mandatory to have all the rules from 00001 to 65535 because security needs and

services di�er from network to network. Rules can also show duplicate numbers in the

same rule set [4].

3.2.7 Ports

Ports are the end points to logical connections and specify the way a client program

communicates with a server on a network [32]. Ports represent named services and ap-

plications. e.g HTTP port 80 RIP port 520. Ports 0 to 1023 are reserved as well known

ports for privileged services and applications. Random and dynamic ports are assigned

from 1024 to 65535 [3]. All these ports are used by clients when initiating connections to

hosts that they need to communicate with. Refer to [32]for more details on assigned port

numbers.

Firewalls use these ports combined with the protocol, address, interface and other selected

values to perform their �ltering [27]. It is therefore cardinal that these ports are well known

when writing rules to avoid locking the network from receiving legitimate tra�c.Also to

avoid opening the network to malicious tra�c meant to be denied entry.

Using the syntax discussed above, rules in a rule set are then written based on the security

policy of the organization. This must be well reviewed to get the best of the �ltering and

not allow what is meant to be denied. Refer to Appendix A for the example ipfw rule set.

3.3. TEST ENVIRONMENT 31

3.3 Test Environment

In this section, the environment in which the tests were performed is presented. The

researcher gives details of the testbed layout, starting with a brief explanation of the

virtual machines networking followed by how the virtual machines used were con�gured.

A description of the FreeBSD ipfw kernel module follows on to detail how ipfw �rewall

works with tra�c traversal, tra�c statistics logging and extraction.

3.3.1 Environment Setup

This research was performed in a visualized network environment using virtualisation

software, various tools and test parameters. The �rewall host operated in bridged mode

con�guration connecting two networks con�gured on its two interfaces. One interface em0

was con�gured with a private IP address and the other interface em1 was con�gured with

the public IP simulating a public Internet address. These two interfaces were used to

create the bridge:

ifcon�g bridge create

bridge0

ifcon�g bridge0

#ifcon�g bridge0 addm em0 addm em1 up

The interfaces em0 and em1 were con�gured with IP addresses and only added as members

of the bridge and setting the bridge up. The client hosts connected to the �rewall for test

purposes detailed in the following sections. The Linux host was also used for exporting

graphics from the �rewall machine using secure shell.

mungole@ubuntu:~$ sudo ssh -X -vvv root@192.168.46.134

[sudo] password for mungole:

The Bridged �rewall in the diagram below was assigned the IP 192.168.46.134 on the

bridge interface shown for remote access as earlier mentioned.

3.3. TEST ENVIRONMENT 32

����������������
����������������
����������������

����������������
����������������
����������������

192.168.46.139 FreeBSD 8 client 192.168.46.140 Linux Ubuntu 10.10192.168.46.134 IPFW Firewall

To Rhodes network

Experiment setup

Figure 3.2: Test Environment

3.3.2 VMWare

Due to the advances in virtiualisation, the researcher conducted all experimental work

using virtual machines in VMWare workstation version 7 [23]. VMWare workstation is a

software that allows setting up complex testing networks and networked applications run-

ning on di�erent platforms all on a single physical machine. For this implementation, two

operating systems were used Linux Ubuntu 10, two FreeBSD 8, one being the �rewall and

the other two as clients.These operating systems were isolated in secure virtual machines

that co-existed on a single piece of hardware - the lab PC. This is because virtualisation

maps the physical PC resources to the virtual machines resources giving each VM host,

its own CPU,memory,disks and I/O devices, etc [5].

Tests done in this research used data sources that contained multiple protocols. Clients

speci�ed application layer entities which were not associated with a direct physical inter-

face but did receive tra�c.

3.3.3 Virtual Machines Con�guration

The three virtual machines run FreeBSD 8, (IPFW �rewall and a client) and Linux Ubuntu

10 as their operating system. These hosts, were connecting to the Internet using Network

Address Translation (NAT), for installation of testing tools and updates.

3.3. TEST ENVIRONMENT 33

IPFW Host

The ipfw �rewall host had graphing tools installed among them RRDTOOL, GNUPLOT,

MRTG, IPFW-Graph. The use of more than one tool was to explore and see which one

presented results best.IPFW-Graph was used to get the results and then graphed them

using another tool for presentation purposes.This host also had installed, packet crafting

and injecting tools like Nemesis, TCPReplay, Bittwist and Hping2 to craft and send

di�erent protocol based packets through the bridge on the �rewall. The �rewall type was

set to simple in rc.conf to make the �rewall act like it was protecting a full networking. A

�le name to load rules from was speci�ed so as to avoid loading default rules generated by

the ipfw module. Refer to the Appendix section for the rule �les used. These tools were

used to send packets from the �rewall in Bridged mode - the DUT assumes it is forwarding

packets to a host connected to the bridge interface.The �rewall host had various services

enabled on the rules and in the host itself to support di�erent tra�c types some of which

are listed here under:

• FTP

• DNS

• SSH

• NFS

• IPv6 support

• SMTP

• HTTP

• ICMP

• Samba

FreeBSD and Linux Host

The services above were also enabled on the hosts to allow �ow of various packets to the

clients through the �rewall. This made the �rewall to inspect the client tra�c against

the con�gured rule set and take appropriate action taken depending on the rules. These

two clients were Linux Ubuntu 10 and FreeBSD 8. Clients had packet generating and

crafting tools installed and worked as the untrusted network sources sending packets that

the �rewall was �ltering.

3.3. TEST ENVIRONMENT 34

3.3.4 Tools

A variety of tools were tested along the project life time and a few taken as candidates

for tra�c generation. Tools were selected based on their capabilities in creating packets

of variable length, di�erent datagram protocols and also the general behavior of their

crafted packet in traversing the �rewall for �rewall testing. Their packets were used to

check both rule sets tra�c expected to be allowed or denied. This was necessary to isolate

issues with certain protocols.

Nemesis 1

This is a command line based tool authored by Je� Nathan for crafting and inject-

ing custom packets for Unix and windows based systems to test �rewall and other de-

vices. Nemesis provided a good source of the many packets it creates and injects; ARP,

ICMP,IP,OSPF,RIP,TCP,ETHERNET,IGMP and UDP packets. It was used in IP and

Ethernet injection modes; those modes o�er a chance to craft and inject any packet.

Hping22

This tool works on Unix based systems.It is a command-line based tool that supports

sending TCP, UDP,ICMP and RAW-IP protocol. It proved useful in �rewall testing and

supports fragmentation which is one of the features �ltering testing considers a challenge.

Bittwist 3

Bittwist is a libcap based utility built to complement tcpdump. It allows packet regenera-

tion from capture (.pcap) �les onto the live network. It simulates network tra�c well for

�rewall testing and simpli�ed the process. It runs on FreeBSD, Linux and windows. It

has features that allows sending packets at custom set speed or line rates in Mbps. This

helped testing the �ltering capability on the rule-sets with regard to connection handling

and tear-down.

TCPReplay4

Developed by Aaron Turner, this Unix based tool gives the ability to use previously cap-

tured tra�c in pcap format to test the �rewall. It allows for header rewriting and tra�c

1http://nemesis.sourceforge.net/
2http://www.hping.org/
3http://bittwist.sourceforge.net/
4http://tcpreplay.syn�n.net/wiki/tcpreplay

3.4. TRAFFIC TRAVERSAL 35

classi�cation before playing the tra�c back onto the network. The header rewriting fea-

ture was not used as test cases demanded same packet structure over naive and optimized

rule-sets of �rewall.

3.4 Tra�c Traversal

This could be said to the critical part of this research. Everything from �rewall placement,

statistics collection, tool functionality to the actual optimization of the rule set depended

on the kind of tra�c used and how it moved in the virtual network and the �rewall

in particular. This part explains how the test setup provided tra�c movement for the

�ltering tests and optimization conducted.

.

3.4.1 Captured Packets (.pcap)

The approach used to generate test tra�c was sending tra�c from pcap capture �les

over a bridged interface on the �rewall. This enhanced the statistics and tested the

�rewall's �ltering performance using the unoptimized and optimized rule-sets. The pcap

�les used were taken from the network security web sources5 and 6.Use of these packet

�les improved testing requirements of using huge amounts of real network tra�c of various

protocol composition as needed for �rewall �ltering testing. The bridged con�guration

gave two unique tra�c �ows (i) protected -> unprotected (ii) unprotected -> protected

which is vital for conclusive inspection investigation as both directions apply the rule

set. Shown below is the movement of tra�c in the test environment. It should be noted

that crafted packets were only used to test for false positives and negatives to check how

optimization handled allowed and denied tra�c.

5http://wiki.wireshark.org/SampleCaptures#Sample_Captures
6https://www.evil�ngers.com/repository/pcaps.php

3.4. TRAFFIC TRAVERSAL 36

Figure 3.3: Tra�c Traversal

3.4.2 Tra�c Activity Logging

Tra�c logging is a mechanism of recording �rewall tra�c related activity. It is very vital

as it provides a way of detecting attacks and is the best source of information about what

happened when an attack succeeds. It is also a sure way of knowing whether a �rewall is

functioning as expected from its con�guration[28]. The �rewall tested here,ipfw, has this

as a kernel logging module that gathers tra�c �ltering patterns, for rules with the log

key word set. General traversal of packets through the �rewall can be viewed by issuing

the command ipfw show at the command line. The logging module is pre-con�gured

but needs to be enabled and the log limit de�ned by adding the following lines to the

con�guration �le , /etc/sysctl.conf :

net.inet.ip.fw.verbose=1

net.inet.ip.fw.verbose_limit=10

This enables logging and limits log amounts to 10 per rule that has the keyword log.

Limiting the log amount is cardinal to prevent Denial of Service attacks from syslogd

�ooding[15]. The count of 10 was used to give good counters of how often packets of

a given type came through to make good optimization decisions. This in the real sense

3.4. TRAFFIC TRAVERSAL 37

impacts on storage as the log �le grows with each rule logging its statistics. This limit

was adjusted to the default 5 after collecting enough log information to proceed with

optimization. The best practice in production environments is to keep log �les in more

than one place for security purposes.

3.4.3 Tra�c Statistics

To capture tra�c statistics, logging was enabled to take stock of network activities

going through �rewall. They were logged to a �le created in on the �rewall host in

/var/log/ipfw/ipfw.log. Tra�c logging provided log counters for packets matching rules

that had the log keyword speci�ed. The logs captured critical data and �elds that were

vital for optimization decisions and techniques as outlined below:

1. The date of packet receipt

2. Time of packet receipt in HH:MM:SS.F for hours, minutes, seconds and fractions of

a second.

3. Interface name the packet was processed on. e.g Bridge0

4. Group and rule number of the rule matched

5. The action applied. Allow, Deny and those for default deny as the global setting.

6. The addresses, source IP and port and destination IP and port. e.g 192.168.125.131:80

-> 192.168.128.4:1722

7. The protocol carrying the tra�c. e.g tcp , udp.

8. The packet length in bytes.

9. Match count per rule

Packet matching statitics for all rules are kept by the ipfw accounting facility dynamically.

These can then be viewed by issuing viewing comands:

#ipfw -t list : this lists all the rules with a time stamp of when last the rule was matched.

ipfw show : shows all rules with the packet matching counters associated with each rule.

There are other commands available for viewing tra�c and rule related statistics available

in ipfw [15].

3.4. TRAFFIC TRAVERSAL 38

3.4.4 Packet Inspection

Ipfw �rewall enforces the policy according to '�rst-match' semantics: for each new IP

connection, the �rewall checks the rules one by one, according to their order in the rule

set, until it �nds a rule that matches the new connection.

3.4.5 Rule Action

The �rst rule that matches the connection determines the �rewall's action: if the �rst

matching rule has an action of 'ALLOW ' then the �rewall will allow the connection to

continue, and if the rule's action is 'DENY ' then the �rewall will discard all the packets

belonging to the connection. Once a packet matches a rule, rule set checking for that

packet ceases, and the packet is either ALLOWED or DROPPED according to the action

speci�ed in the matched rule.If no rule matches the connection then the �rewall uses a

default action, which is usually DENY. All denied packets were dropped and logged to

see how well the �rewall performed on handling illegal packets.

3.4.6 Statistics Extraction

Logged tra�c statistics were extracted by reading the log �le. The counters were also

viewed using the ipfw show command to see how rules performed. The sample output in

Appendix B shows the result obtained after issuing the ipfw show command to see if any

tra�c was going through the �rewall.

During statistics collection, counters and logs were reviewed after inspection of pcap �les

was completed.The output was then saved in text �les and log counters reset and log �le

cleared for logs to start new counts. These text �les were then used to make comparisons

of tra�c �ows and general inspection patterns of the �rewall over the naive rule sets and

used to perform optimization.

3.5. OPTIMIZATION 39

3.5 Optimization

Optimization means reducing the rule set so that packet inspection is only done using

fewer applicable rules out of a given rule set size. Traditional rule sets are normally large

in the number of rules they contain. Most network layer �rewalls like ipfw terminate

inspection once a mtch is found. However, this is still a performance degrading situation

as rules are evaluated sequentially thus inspection termination depends on the position of

the rule being matched. The accounting facility of ipfw provides such statistics related to

tra�c matching patterns and was used to evaluate tra�c trends and all packet to rule set

relations. There are various anomalies a large rule set intoduces that a�ect the �ltering of

the �rewall as earlier stated. Redundancy, rule overshadowing, corelation, irelevance and

other anomalies are bought about by the changing tra�c patterns and network topologies

and general security requirements. There are times when a service an enterprise needed

becomes obsolete or is just no longer needed. Most times rules for those services are other

objects are not removed. These increase the processing load for the �rewall as it searches

through them even if they will not apply to tra�c being inspected.

In this research, optimization was done based on the gathered statistics to come up with

an optimal rule set that o�ers less inspection time. From the statistics, it was noticed

that not all rules matched packets. Even some of those that matched packets, performed

actions similar to other rules because of being too generic or their matching frequency

was too low.

3.6 Optimization Approaches

To achieve the set out objective of reducing the rule set, many techniques were employed

after collecting statistics from log �les and counters after testing with di�erent pcap �les.

This was an incremental approach in that the rule set was revised after observing changes

in the matching patterns. The approaches used to reduce the initial rule set of 37 rules to

13 rules are presented here next. It should be noted that, the initial rule set was written

based on a generic Internet security policy and most of it was adapted from the ipfw

recommended rule set for network �rewalls. Refeer to the appendices for the default and

optimized rule sets.

3.6. OPTIMIZATION APPROACHES 40

3.6.1 Removing Redundant Rules

Rules observed not to match any packets over a period of time introduced processing

overheads and as such were removed to improve performance.

3.6.2 Merging rules

Rules seen to be performing the same matching were merged by writing single replacement

rules. This can happen when rules are de�ned too generic matching the same protocol

for example if there no other special �elds added to the rule.

3.6.3 Disabling rules

Having started with a generic rule set written for a fully operational network o�ering

most services that �ltering was con�gured for, tests showed that not all services received

packets. Having such rules active in the rule set brings performance degradation because

they are evaluated for packets they don not match. These were disabled on the assupmp-

tion that the services they were written for may become available later. This was done

as principle that ipfw will skip such rules and when their intended tra�c does show that

it is being dropped in the logs, then they can be enabled.

3.6.4 Changing Rule Priority

Some rules were expected to be matched more than others after reviewing the matching

patterns of the packets over time. This was done by placing such rules at the beginning

of the rule set.

3.6.5 Removing Overshadowed Rules

These are rules that never match packets either because earlier rules match tra�c or there

are higher priority rules matching packets earlier. This is a fair decision though it is a

challenging thing to do because these rules might later be needed if their predecessors are

removed or new tra�c that matches them comes through. These rules were removed to

optimize the rule set.

3.7. SUMMARY 41

3.6.6 Using Skipto function

This function allows setting next rule to be checked if the current rule is not matched.

It was based on matching frequencies and rule associative properties. It also works in

checking other criteria needed as an addition security check to the previous rule matched.

3.6.7 Rule Re-sequencing

Based on matching frequencies, rules are ordered with the highly matched one being

more favored. This was based on expectations that similar packet �ow patterns will come

through.

3.7 Summary

Packet �ltering requires rules developed from a security policy that de�nes how the orga-

nization uses it's computer network and how they interact with other networks of di�erent

trust levels. Firewalls could be implemented locally in the network segmenting subnets

that should not have access to certain types of data across subnets. These rules are se-

quentially evaluated against a packet until a match is found. The testing environment

described here used FreeBSD ipfw and other tools to transmit tra�c and get statistics

used in optimizing the rule set. The optimization was done based on these statistics.

Care must be taken to ensure that optimizing does not open up the system to tra�c that

should be denied or lock it from receiving expected tra�c.

Chapter 4

OptAid :Rule set Optimizer

Having observed tra�c behavior and conducted optimization, this researcher proceeded

to the second objective of coming up with a tool that can be used to aid network ad-

ministrators in optimizing �rewall rule sets. Design attention focused on the principle

of the operation of �rewalls, the tra�c characters, transmission mechanisms, protocol

functionality among others.

4.1 Design

The tool was designed to analyzes a �rewall's �ltering patterns based on the collected traf-

�c statistics. These statistics were to be collected and used to determine a recommended

action to the administrator. OptAid functionality design features were to provide opti-

mization advice and the second key feature was to adapt a rule set for tra�c from the

unoptimized rule set. The �rst feature was to be achieved by implementing algorithms

that manipulate collected statistics for the tool to:

• recommend rule re-sequencing

• suggest rules to be added to skip commands

• show rules not matching packets

• suggest dependency ordering

• allow for viewing rule counts dynamically through a graphical interface

42

4.2. IMPLEMENTATION 43

The second feature of coming up with a sub rule set was to manipulate the most recent

tra�c statistics and use them to reduce the rule set dynamically - NP Hard[19]. This sub

rule set is then used to inspect inbound tra�c. This is to cater for long transmission �ows

for sessions lasting greater than or equal to a de�ned threshold. This dynamic algorithm

should be triggered by the threshold and perform the following:

• check rules that matched the starting packets of the �ow from the statistics

• compile a rule set based on those matched rules

• apply that rule set to the rest of the �ow

• terminate once the close connection packet is received. TCP FIN

4.2 Implementation

OptAid was to be implemented using the functionality given in the design section. The

diagram below illustrates the overview operational concept of the tool.

4.3. ISSUES FACED 44

Figure 4.1: OptAid Tool Design

The tool uses data stored in an a database section that is updated by statistics from

the ipfw counters of packet matching patterns. When the user starts the tool from the

programs menu, it invokes a reader method that reads count statistics from the database

and passes them to the threshold checker. The threshold checker runs and compares which

rules have met the set triggering thresholds for recommending actions to be done on the

rule. The recommendations are presented to the administrator in a graphical interface.

4.3 Issues Faced

The design and implementation of OptAid did not go far because of issues that needed to

be addressed and well understood before proceeding. These problems had functionality

4.3. ISSUES FACED 45

and performance implications and as such needed to be well highlighted and dealt with.

Key issues experienced and are currently receiving attention to resolve them are:

1. Statistics aggregation vs. dynamic nature of tra�c: tra�c being dynamic by nature

changes patterns so often. This poses challenges when collecting statistics on which

to base recommendations. Using an o�ine database that updates periodically could

make the recommendations invalid as tra�c changes.

2. De�ning triggering counter thresholds for ever changing tra�c: when thresholds are

de�ned for recommending actions, there is no guarantee that they will re�ect what

will happen next. This means actions might be of little use at optimizing stage

especially using an o�ine mechanism relying on periodic updates.

3. Should rules be discarded completely: if a recommendation to discard rules is given,

should a rule be taken out of the rule set completely. This proved to be a complex

problem as tra�c coming next might need removed rules.

4. How much overhead does all this introduce: ascertaining how much processing over-

heads the sending of statistics to the OptAid database was not easy. Also how often

those updates had to be run could not be well de�ned because of network tra�c

dynamics.

With respect to the second consideration of creating a sub rule set dynamically from the

bigger set for tra�c �ows, there are inherent problems that became apparent and could

not be sorted by the time of this reporting. Some of these problems are outlined here:

1. Processing complications: with regard to picking rules for oncoming tra�c, what

to use to determine what �ow is oncoming was not resolved. Any dynamic way of

coming up with a sub rule set must take care of this. This research is continuing

exploring this factor.

2. What �ows to adapt for: questions need to be asked relating to which �ows to adapt

for; the most recent �ow, or those with dynamic state kept?

3. Issues with rule numbering for re-sequencing: once it is decided to re order rules

based on matching frequency, this may complicate processing the rule set and a�ect

general �ltering negatively. This is because, frequently, some rules will have trigger

thresholds higher than others. These are expected to be matched faster by placing

them upfront. This overwhelms the �rewall with rule set processing instead of packet

�ltering.

4.4. SUMMARY 46

4. How does this sub-rule set get applied to tra�c: if this sub rule set is created, how

can it be used to general tra�c arriving or leaving the �rewall in real-time? This is

yet to be understood.

4.4 Summary

It has been learned from the design and implementation that suggestions that packet

�ltering and optimizing a rule set dynamically in particular is NP-Hard. This is because

the many issues that have to be considered bordering on performance and e�ciency of

the chosen algorithms to be implemented to do this. It is also generally hard to deter-

mine oncoming tra�c �ows given the dynamic nature of tra�c. This makes choices of

processing modes hard; o�ine processing for example, though can be argued to work well

for suggesting actions on rules, it can be done in vain as tra�c changes each time and

statics become old in a very short time.

Chapter 5

Performance Benchmarking Tests

Firewalls have become increasingly complex, evolving from traditional �ltering capabilities

to o�ering application-aware processing of several Internet protocols. This is becuase of

the upsurge in Internet applications that have to be controlled through �rewalls. They are

now being implemented as hybrid platforms for o�ering next-generation application-aware

inspection capabilities that include:

• Network security � Application-aware content inspection, access protocols in-

cluding IPSec, 802.1x, RADIUS, intrusion prevention capabilities and DDoS attack

mitigation

• Web security � Intelligent HTTP/URL content inspection to fend o� �bu�er over-

�ow� attacks, virus and spyware prevention for the web, phishing attacks, and to

validate protocol compliance by ensuring the requests are not malformed

• Email security � Protection from spam, virus and phishing attacks, which over-

whelms networks signi�cantly with wasteful tra�c

• Next-generation � Support for IPv6, quality-of-service, voice (e.g., SIP) and video

streaming.

This has given rise to complex �rewall testing mechanisms and approaches so that all such

issues covered in a given �rewall implementation are catered for. The focus of the work

47

5.1. PERFORMANCE TESTS 48

conducted in this research was on network layer packet �ltering. As such performance im-

provement tests done centered around the following network layer related metrics detailed

below.

5.1 Performance Tests

These tests were done to determine the throughput of the �rewall using a default and

optimized rule set packets traversing the �rewall. It should be noted that there is no

standard testing methods and tests prescribed for �rewall testing. However, there are

recommended guidelines proposed by the IETF Network Working Group in[10]. Tests

conducted are case speci�c; dependent on what metrics the experiment is measuring as

being performance contributors [40]. The tests conducted here measured the time it took

for a packet of given size to be inspected by the �rewall using the naive and optimized

rule-sets. The timing observations were then recorded and are discussed in the context of

the metrics presented in section 5.2

5.1.1 Setup Parameters

As a test case, packet size and test duration were used to compare �ltering performance of

both rule sets. These two provided a good comparison basis given that all other metrics

are somewhat dependent on them.

• Packet Size - the number of bytes in the packets going through the �rewall. This is

regardless of any link layer or protocol speci�c headers or check-sums.

• Test Duration - time in seconds taken for a packet of given size in bytes to be

transmitted. The contents of the pcap �le in this case are sent through and get

inspected on a rule set.

5.1.2 Procedure

As earlier explained in previous sections, the test environment sent IP packets to the

�rewall at a constant rate. The packet �les played through �rewall Bridged interface were

5.2. MEASURED METRICS 49

.pcap �les of di�erent protocols and sizes downloaded from web network sources 1

The tests were performed using di�erent packet sizes to see the di�erence in �rewall

performance under the same rule-set and general �rewall environmental variables. This

involved using the default naive rule set and the optimized one to see the gain in �ltering

time on the same packet sizes.

5.2 Measured Metrics

5.2.1 Connection establishment

This test de�nes a single TCP connection between two end hosts.It measures the time it

takes for a TCP connection establishment (3-way handshake) to be set up between the

DUT and the client seeking to transmit packets to it.

5.2.2 Forwarding Rate

A measure of packets forwarded expressed in either bits per second or packets per second.

This is based on the o�ered load and covers IP packets, header and payload.

5.2.3 Connections per second

This measured the rate at which new TCP connections were initiated per second through

the �rewall. Processing time is directly dependent on how many requests a �rewall is

servicing per second given the amount of requests sent to it in a second. This a good indi-

cator of how much processing gain optimizing gives. It also helps isolate any bottlenecks

on the network and provides a good basis for tuning the �rewall to operate optimally.

1http://wiki.wireshark.org/SampleCaptures#Sample_Captures

5.2. MEASURED METRICS 50

5.2.4 IP Throughput

Measured the maximum o�ered load at which no packet loss is detected for legitimate

tra�c. The unit of measurement used was bits per second and packets per second based

on the pcap �les played in the �rewall. Clients crafted protocol speci�c packets and sent

them to the �rewall. The less rules used the higher the throughput.

5.2.5 Connection Tear-down

This measured the time it took for the �rewall to react to transmission complete signals

from end nodes. A heavily loaded rule set showed long time processing in connection

closures because of so many dependencies like fragments being checked.

5.2.6 Legal Tra�c

The �rewall was tested to see how well it handled legitimate tra�c. This was done to

see if limiting the rule set would deny the network of necessary tra�c. It also measured

if any critical services that network and the �rewall host itself might need for operation

will be available. This might be termed as the false negatives test.

5.2.7 Illegal Tra�c

Illegal tra�c handling tested the �rewall's ability to block what was con�gured to be

blocked. The essence of having a �rewall is to block unwanted tra�c from entering a

network. Therefore testing to see if any illegal tra�c is �nding its way through is critical.

It not only checks how e�ective optimization is but also how secure the system is after

optimizing. If it is found that illegal tra�c is being allowed through the �rewall, the

rule set should be checked for con�guration �aws. This can happen due to rule set

miscon�guration or specifying rules that are too generic. It can also be as a result of

certain rules not having complementary or child rules that perform extended inspection

especially for �rewalls that perform deep packet inspection.

5.3. SUMMARY 51

5.3 Summary

Performance testing is the best way to determine the signi�cance of any approach taken.Metrics

and tests measured for performance gain investigation and benchmarking tests carried out

to test �rewall on both rule sets have been described. Performance metrics used here are

not exhaustive of the many that can be employed to test �rewalls for other security re-

quirements. The researcher performed the ones explained above as they related to the

investigation of determining an increase in throughput by limiting the �rewall rule set

size. The log �le shows dropped or denied packets, their source and destination IP and

what port they were attempting to establish connections on. This accounts for failed

connections, and gave a way of seeing how the �ltering actions were working.

Chapter 6

Performance Test Results

The test environment, approaches used to perform rule set optimization and the tests con-

ducted to measure performance have been discussed in preceding chapters. This section

presents the results of those tests and how they relate to the metrics explained earlier. It

starts by giving the high level view of how packets were inspected by the �rewall by show-

ing matching patterns captured using a tool. Then comparative results for tests done on

both rule sets are presented and analysed in the following parts leading to the summary.

They represent performance tests carried out using both the default and optimized rule

sets in an augmented approach as reported graphically here under.

6.1 Results

The tests conducted on the rule sets were augmented in that a single transmission done

measured metrics that were adopted as performance variance determinants in this re-

search. Figure 6.1 reported here under shows rule set packet matching patterns using

Ipfw-Graph. Ipfw-Graph captures the bytes going through ipfw �rewall and graphically

displays allowed, denied and all packets but does not show the time taken to inspect.

Ipfw-graph was run from the start of transmission to the end observing the time when the

end of the packet size was reached manually. The views below show matching propotions

of denied and allowed packets as an example view of how tra�c was being treated by the

�rewall. Below is the output from ipfw-graph.

52

6.1. RESULTS 53

Figure 6.1: Ipfw-graph Reporting Format

The snapshots seen above were taken on ipfw-graph output showing a concentration of

�ltering statitics.

Deny: denied packets are shown in red under then Deny button.

Allow: allowed packets are showed in gree under the Allow button.

All: shows a combination of both allowed and denied packets.

As can be seen, there is no timing captured, therefore manual timing on a packet of

1500 Bytes was done on both rule sets. This �le was a multi-protocol composed pcap

downloaded from 1 as can be seen from the packet replay snapshot in Figure 6.2 below

showing partial output of the long protocol list that the 1500 Byte packet contained.

1http://wiki.wireshark.org/SampleCaptures#Sample_Captures

6.1. RESULTS 54

Figure 6.2: Protocol Composition

Figure 6.3 shows a comparison of �ltering timings for both rule sets on a source packet

of the same size. This time taken was manually recorded from start of transmission to

completion as viewed in ipfw-graph. This was done because ipfw-graph does not provide

a timer view for the transmission against packet size. The manual timings were then

graphed for both rule sets to show the performance comparison between the two rule sets.

The results graphed below are based on a 1500 Bytes pcap �le and sums up the results

reporting by showing the bytes against time taken to inspect them on both rule sets.

Figure 6.3: Performance Results

6.2. RESULTS DISCUSSION 55

6.1.1 Default rule-set (Blue)

The default rule set contained 37 rules. Other test environment factors were kept the

same; packet size, services enabled, processor capacity, memory, I/O devices and any

other underlying hardware. The graph above presents the time taken to fully inspect a

1500 Bytes .pcap �le of various protocols.

6.1.2 Optimized Rule-set (Red)

The same .pcap �le used on the default or un-optimized rule set was used to test the

optimized rule set that contained 13 rules. Other environment variables mentioned inthe

previous section were kept the same as they were when testing using the default rule set.

Refer to section 3.6 on how optimization was performed.

The results in the graph above show that the optimized rule set �nished inspecting the

1500 Bytes early enough at around 320 seconds as opposed to the naive rule set that went

on beyond 400 seconds.

6.2 Results Discussion

From the results presented in 6.3, it can be observed that optimizing a rule set o�ers a

speed up in inspection time.This result takes into account all measured metrics as already

mentioned in section 5.2 and explained here next. Having kept all other factors constant

when testing with both rule sets, the throughput contributors or measures discussed here

next are purely based on the rule set size. On both rule sets, legal and illegal tra�c

handling tests were conducted.

6.2.1 Connection establishment

Connection establishment took longer in the case of the default rule set because it applied

more rules to each packet and checked them until a match was found. This delayed new

connection establishment and contributed to the �rewall taking longer to �nish inspecting

the �le. It can then be advanced here that the optimized rule set did perform connection

establishment faster. Packets inspected are sent over a connection established between

two end points, source and destination. That being the case, connection establishment is

6.2. RESULTS DISCUSSION 56

a indeed a factor in �ltering speed up and does depend on how many rules packets are

being evaluated through.

6.2.2 Forwarding Rate

Packets in the pcap sent through the di�erent rule sets with other variables kept same

di�ered in forwarding date. The default rule set took longer inspecting packets, hence

forwarding was a�ected. The optimized one performed better because packets became

available for forwarding earlier than on the default rule set. This is the case in production

networks where the �rewall protecting a network inspects inbound and outbound packets

at the border and forwards them to receiving nodes.

6.2.3 Connections per second

The faster the inspection the faster the connection tear-down and consequently more

connection were processed per second on the optimized rule set. This contributed to

carrying through the �le 1500 �le size faster than on the default rule set. This is closely

related to connection establishment.

6.2.4 IP Throughput

The bits per second sent through were less on the default rule set and better on the

optimized rule set. The general observation on the timings shows faster completion on

the optimized rule set. This is because more bits are carried through per second than

on the default rule set. This signi�es the need for better �ltering mechanisms using less

rules.

6.2.5 Connection Tear-down

Closing connections happens when the transmission of a �ow is complete.The optimized

rule set closed connections much quicker hence the shorter time taken to complete in-

specting as it gave room for new connections to be established faster.

6.3. SUMMARY 57

6.2.6 Legal Tra�c

Both rule sets gave positive results, the logs showed no legal tra�c dropped after running

pcap �les on both naive and optimized rule sets. It should however be noted that, this

needs serious caution and continuous checking to be sure that nothing is falsely denied

and all services are functioning as expected.

6.2.7 Illegal Tra�c

The e�ectiveness of handling illegal packets by not allowing false positives was tested

and both rule sets reported good results. They blocked tra�c explicitly set to be denied

entry. This is another test that should be done often to ascertain the safety of the

network. Dangers now exist with protocol encapsulation and other tunneling mechanisms

that might shield denied tra�c.

6.3 Summary

Given a network environment with all variables kept at bay and tra�c changing as it

does, there can be �ltering performance gained by optimizing a rule set by the many

approaches available and those that be seen necessary. Optimizing reduces the number of

rules in a rule set thereby reducing the search space for packet to rule evaluation. This is

however an involving exercise and needs to be done with caution to avoid closing out the

network from communicating or from being open to attack.

Chapter 7

Conclusion

This section sums up the work done in this research. A look at the work presented in each

chapter is taken and the set out goals revisited. Packet �ltering and rule set optimization

are discussed in a summary context to present how they ingredients into investigating

performance speed up. Filtering challenges are highlighted alongside some issues faced

in coming up with an optimization aiding tool. The chapter closes by focusing on some

considerations being explored to expand on the work done in this research.

7.1 Summary

The concept of �rewalls has been presented and described from its inception and history

in the beginning chapters. The existing types were discussed in the context of their

implementation, stages of �ltering, how much inspection they each performed and how

they �lter packets.

The researcher reviewed previous works done on rule set optimization starting from the

basics of how �rewalls have evolved, how they perform �ltering and rules are developed

from security policies. This gave a better understanding of core concepts before going

on to with the advanced material. A look at some tools that have been proposed and

some implemented was taken, focusing on their operation principle and optimization

mechanisms used.

An environment in which to perform this research was set up using chosen operating

systems and tools. This provided the test bed in which tests on developed rule sets were

58

7.2. PROBLEM STATEMENT AND GOALS REVISITED 59

conducted. Based on the results obtained from log �les and packet counters, the original

rule set of 37 rules was used to come with a sub rule set that contained 13 rules. Filtering

tests were then performed using both rule sets (default and optimized) rules sets using the

same packet sources of the same protocol composition and their inspection time noted.

Metrics measured in checking performance gain were chosen as contributors to the overall

throughput. They do not represent an exhaustive list of tests that can be done as there

is no recommended way of testing �rewalls. Tests done for �rewall performance depend

on the factor being measured.

This research used a single testing approach that measured packet size against inspection

completion time and discussed �ltering improvements around adopted metrics taken as

throughput contributors being:

• Connection establishment

• Forwarding rate

• connections per second

• IP throughput

• Connection tear-down

• Legal tra�c handling

• Illegal tra�c handling.

Investigating performance gain was achieved and can be seen from the presented results

in the results chapter. Work on designing and implementing the optimization guide tool

(OptAid) was not completed due to much work and issues that needed to be solved before

proceeding. There were several issues encountered that hampered progress on this goal.

There is however, a design presented that will be worked on in future to deliver the tool.

Also possible extensions to improve the design have been outlined for further investigation.

7.2 Problem statement and Goals Revisited

The problem domain this research set out to address is based on the evidence that not all

rules in a �rewall rule set match every packet inspected. Considering the dynamic nature

7.2. PROBLEM STATEMENT AND GOALS REVISITED 60

of tra�c, better �ltering approaches that measure up to modern tra�c demands have to

be worked out. Rule sets grow large in number and are often changed by di�erent network

administrators according to network demands. This introduces anomalies and other rule

inconsistencies among them rule over-shadowing, rule redundancy and other problems in

the �rewall con�guration.

Firewalls inspect packets against a set of rules sequentially to �nd one that matches a

packet and applies the action set on it. This sequential evaluation of the rule set to �nd a

matching rule is a major negative contributor to �rewall performance as all rule inspected

do not match a packet they are evaluated for. Most �rewalls exit on the match of a rule

but that does not help alleviate the performance drawback as the position of the rule in

a rule set determines how fast it will be matched.

Given the improvements in both hardware, network transmission techiniques, protocol

designs and network speeds, there is need for better packet �ltering mechanisms. Firewalls

are key components in network security as they are deployed between two networks of

di�erent trust levels to �lter packets or within networks to limit data and access to other

network resources. From other reviews and the �ndings of this research, it is evident that

not all rules in a rule set match a packet and network tra�c is not static. Firewalls are

therefore posed with increased challenges on their �ltering performance.

Based on the problem statement discussed here, this research set out two objectives with

the �rst one being the basis for the second one:

• to investigate if reducing the �rewall rule set size o�ers a speed up in packet inspec-

tion time.

• to develop a tool that will aid network administrators in optimizing rule sets.

From the results obatined and anlysed in the results section, the �rst objective of deter-

mining whether optimization o�ers inspection improvements was met. It was found that

a smaller rule set �nished inspecting a the same size of packets faster then the original,

unoptimized rule set. Work on the designing of the tool as the second objective was slowed

by issues faced with the design of the tool. Functionality demands that were set to be

considered for the design need further investigation before the actual implementation is

done.

7.3. CONCLUSION 61

7.3 Conclusion

Packet �ltering optimization has been investigated by many researchers. However, there

is still need for better directions and approaches to be taken given the continued changes

in network technologies. Improved �ltering mechanisms will enable �rewalls that perform

their �ltering based on rules to use the least rules to keep up with increasing speeds

of modern networks. Packet �ltering is generally an NP Hard problem because of the

complexity and mostly non-deterministic nature of tra�c �ows. The work done in this

research has demonstrated that �rewall rule set optimization does noticeably increase

throughput. An optimized rule set means less rules are checked against a packet and as a

result matches are found faster thereby giving a speed up in �ltering performance. Better

�ltering mechanisms through rule set optimization bring about better Quality of Service.

Ways of implementing this have been explored and tested in the optimization approaches

used with early packet matching for frequently matched rules, rule merging for similar

ones and editing those observed to be too generic as some of the approaches. Automating

this in a tool so that the rule set is adjusted dynamically was embarked on to add e�ciency

to the �rewall - NP Hard. It has however been investigated and work is continuing on

the tool, OptAid. The idea of the tool is to aid network administrators in optimizing rule

sets; dynamic rule set adaptation is a possible extension on the functionality of the tool.

The tool removes the need for the network administrator to manually recon�gure rules.

Manual con�guration is not only a cost on time but may introduce �aws considering the

number of rules being adjusted. Typical rule sets in production networks average above

a thousand and are often written by di�erent administrators as the security policies and

topologies changed over time. The growth of the rule set not only increases con�guration

complexity but adds the obvious processing overheads and use of memory on the �rewall

device. From the work done in this research, rule matching frequency for �rewall rules can

be quali�ed as a critical property for optimization. This researcher proposes using this

property to create a dynamic way of adjusting the rule set by augmenting these statistics

dynamically using a threshold mechanism to pick a sub rule set from the original rule set.

7.4 Future Work and Extensions

Having explored and investigated performance gain through optimization fully, the rule

set optimization guide tool OptAid will be developed after resolving pending issues of

7.4. FUTURE WORK AND EXTENSIONS 62

performance consideration in the design and implementation.

The ideal extension will be adding a feature that creates a sub rule set for oncoming

tra�c and applies it to perform �ltering. There are pending problems with rule selection

and choosing which �ows to adapt for. Once these are worked on and processing versus

performance trade o�s are well understood and seen viable. This will be a good feature

and a breakthrough in packet �ltering.

References

[1] Acharyaý, S., Ablizý, M., Millsý, B., Znatiý, T. F., Wangü, J., Geü, Z.,

and Greenbergü, A. Optwall: A hierarchical tra�c-aware �rewall. Network and

Distributed Security Symposium (2007). Accessed 18 June 2010.

[2] Acharyaý, S., Wangü, J., Geü, Z., Znatiý, T. F., and Greenbergü, A.

Tra�c-aware �rewall optimization strategies. IEEE International Conference (June

2006). Accessed 15 August 2010.

[3] Adolfo Rodriguez, John Gatrell, J. K. R. P. TCP/IP Tutorial and Technical

Overview. IBM Redbooks, 2001.

[4] Al-shaer, E. S., Hamed, H. H., Al-shaer, E. S., and Hamed, H. H. Design

and implementation of �rewall policy advisor tools. Tech. rep., 2002. Accessed on 23

June 2010.

[5] And, M. L. Firewall security: Policies, testing and performance evaluation. Accssed

14 June 2010.

[6] Arkko, J., Vogt, C., and Haddad, W. Enhanced route optimization for mobile

ipv6. RFC 4866 (Proposed Standard), May 2007. Accessed on 24 June 2010.

[7] B. Chapman, E.D. Zwicky, S. Building Internet Firewalls. O'Reilly & Associates,

2000.

[8] Chapman, D. B. Network (in)security through ip packet �ltering. In In USENIX

Security Symposium III Proceedings (1992), USENIX Association, pp. 63�76. Ac-

cessed 8 June 2010.

[9] Computers, A. MacOSXServer 2009, 2009.

[10] D Newman B Hickman, S Tadjudin, T. M. Benchmarking methodology for

�rewall performance, 2003. Accessed on 18 April 2010.

63

REFERENCES 64

[11] Ehab S Al-Shaer, H. H. H. Modeling and management of �rewall policies. IEEE

Network and Management (April 2004). Accessed 14 May 2010.

[12] Ehlert, S., Zhang, G., and Magedanz, T. Increasing sip �rewall performance

by ruleset size limitation. In PIMRC (2008), pp. 1�6. Accessed 12 May 2010.

[13] Eronen, P., and Zitting, J. An expert system for analyzing �rewall rules. Ac-

cessed on 19 March 2010.

[14] FreeBSD. Firewalls. FreeBSD Document Project, February 2010, ch. 30, p. 777.

Accessed 16 May 2010.

[15] FreeBSD, F. FreeBSD Handbook 2010. FreeBSD Document Project, February

2010.

[16] Fulp, E. W. Optimization of network �rewall policies using directed acyclic graphs.

Accessed 4 July 2010.

[17] Grote, A., Funke, R., and Heiss, H.-U. Performance evaluation of �rewalls in

gigabit-networks. In Proc. 1999 Symposium on Performance Evaluation of Computer

and Telecommunication Systems. Chicago, Society for Computer Simulation (1999).

Accessed 27 Augsut 2010.

[18] Hall, B. B. Beej's Guide To Network Programming Using Internet Sockets.

USENIX, 2005.

[19] Hamed, H., and Al-Shaer, E. Dynamic rule-ordering optimization for high-speed

�rewall �ltering. In ASIACCS '06: Proceedings of the 2006 ACM Symposium on

Information, computer and communications security (New York, NY, USA, 2006),

ACM, pp. 332�342. Accessed 24 April 2010.

[20] Hamed, H., El-atawy, A., and Al-shaer, E. Adaptive statistical optimization

techniques for �rewall packet �ltering. Accessed on 11 April 2010.

[21] Hazelhurst, S. A proposal for dynamic access lists for tcp/ip packet �lering.

Accessed on 13 July 2010.

[22] Hunt, R., and Verwoerd, T. Reactive �rewalls - a new technique. Computer

Communications, Elsevier, U.K. Vol 26,No 12, (2003). Accessed 19 Augsut 2010.

[23] Inc, V. VMware Workstation 7.0. VMware Inc, 3401 Hillview Ave, 2009.

[24] Karen Scarfone, P. H. NIST: Guidelines on Firewalls and Firewall Policy. 2009.

REFERENCES 65

[25] Katic, T., and Pale, P. Optimization of �rewall rules. IEEE Information Tech-

nology Interfaces.

[26] Kolehmainen, A. Optimizing �rewall performance. Seminar on Internetworking

(2007). Accessed 6 May 2010.

[27] Lavigne, D. BSD Hacks. O'Reilly & Associates, Inc., Sebastopol, CA, USA, 2004.

[28] Maiolini, G., Nicotra, A., Tornari, P., and Baiocchi, A. Automated frame-

work for policy optimization in �rewalls and security gateways. Information Assur-

ance and Security (2009). Accessed on 16 March 2010.

[29] Marmorstein, R. A tool for automated iptables �rewall analysis. In Freenix Track,

USENIX Annual Technical Conference (2005), pp. 71�82. Accessed on 3 April 2010.

[30] Márton Illés, T. B. The evolution of the �rewall. June 2006.

[31] Paco Hope, Yanek Korff, B. P. Mastering FreeBSD and OpenBSD Security.

O'Reilly, 2005.

[32] Reynolds, J., and Postel, J. Assigned numbers. Accessed on 7 April 2010.

[33] Security, A. Firewall cleanup and optimization. Accessed 28 May 2010.

[34] Shimonski R.J, Shinder D.L, D. S. T. Best Damn Firewall Book Period. Syn-

gress, 2003.

[35] Steve Suehring, R. Z. Linux Firewalls, Third Edition. Sams Publishing, 2005.

[36] Stewart, J. M., Tittel, E., and Chapple, M. CISSP: Certi�ed Information

Systems Security Professional Study Guide. SYBEX Inc., Alameda, CA, USA, 2008.

[37] Sunshadowz. Types of �rewals. http://www.sunshadowz.com/articles/�rewalls,

May 2010. Accessed 11 August 2010.

[38] Systems, C. Evolution of the �rewall industry. Cisco Press, 2002.

[39] Training, I. Firewalls: Overview. vol. 11/23/2009. Accessed 17 May 2010.

[40] Wack, J., Cutler, K., and Pole, J. Guidelines on Firewalls and Firewall Policy.

U.S. Government Print O�ce, January 2007.

[41] Whitman, M. Principles of Information Security 2nd Edition. Course Technology,

2004.

REFERENCES 66

[42] William R. Cheswick, Steven M. Bellovin, A. D. R. Firewalls and Internet

Security : Repelling the Wily Hacker. Addison Wesley, 2003.

[43] Zhao, L., Shimae, A., and Nagamochi, H. Linear-tree rule structure for �rewall

optimization. In CIIT '07: The Sixth IASTED International Conference on Commu-

nications, Internet, and Information Technology (Anaheim, CA, USA, 2007), ACTA

Press, pp. 67�72. Accessed 30 July 2010.

Appendix A

Default Rule set

The default or naive rule set here under contains rules that were seen necessary to secure

the network and o�er services. They were continually reviewed after testing the �ltering

capacity using �les and the packet matching statistics used to come up eith the next rule

set.

############# default ruleset######### #

!/bin/sh

#Flush all the rules, quietly

ipfw -q -f �ush

#rules command pre�x

cmd="ipfw -q add"

pif="bridge0"

#Localhost rules

$cmd 100 allow all from any to any via lo0

Prevent any tra�c to 127.0.0.1, localhost spoo�ng

$cmd 110 deny log all from any to 127.0.0.0/8

$cmd 120 deny log all from any to 127.0.0.0/8

#Testing rules.These rules allow ALL tra�c to pass disabling any subsequent rules

67

68

#$cmd 140 allow log logamount 500 tcp from any to any

#$cmd 150 allow log logamount 500 udp from any to any

#Start dynamic state �ltering

$cmd 200 check-state

#Filter out fragmented packets that

$cmd 210 deny all from any to an frag in via $pif

#Block ACK packets that are not matched dynamically

$cmd 220 deny tcp from any to any established in via $pif

#Outbound web server ports, port 80 and 443 (SSL)

$cmd 230 allow tcp from any to any 80 out via $pif setup keep-state

$cmd 240 allow tcp from any to any 443 out via $pif setup keep-state

#nameserver ports

#DNS SERVICE DISABLED

traceroute out allowed for diagnostics

$cmd 270 allow udp from me to any 33434-33525 out via $pif keep-state

$cmd 271 allow udp from any to any 33434-33525 in via $pif keep-state

#inbound traceroute for diagnosis if needed

$cmd 280 allow log icmp from any to me icmptypes 3,11 in via $pif keep-state

#outbound ping

$cmd 290 allow icmp from any to any out via $pif keep-state

#DHCP requests from all of the 192.168.46.0 subnet.

$cmd 300 allow udp from any 68 to 192.168.46.0/24 67 out via $pif keep-state

$cmd 310 allow udp from 192.168.46.0/24 67 to any 68 in via $pif keep-state

#Allow ssh out to any host

$cmd 400 allow tcp from any to any 22 out via $pif setup keep-state

69

#Only Linux, 192.168.46.140 is allowed ssh to the �rewall(me)

$cmd 410 allow tcp from 192.168.46.140 to me 22 setup keep-state

#NTP rule, for setting of time automatically

$cmd 420 allow udp from any to any 123 out via $pif keep-state

$cmd 421 allow tcp from any to any 123 out via $pif setup keep-state

#inbound ping for diagnostic purposes

$cmd 470 allow log icmp from any to me icmptype 0,8 in via $pif keep-state

#Samba rules

$cmd 520 allow tcp from any to any 137,138,139 out via $pif keep-state setup

$cmd 530 allow udp from any to any 137,138,139 out via $pif keep-state

#Microsoft Active Directory Service rules - needed for login

$cmd 560 allow tcp from any to any 3268 out via $pif keep-state setup

$cmd 570 allow udp from any to any 3268 out via $pif keep-state

#Outgoing SMTP to send messages if needed

$cmd 610 allow tcp from any to any 25 out via $pif keep-state setup

Rules to allow IMP mail to function

$cmd 660 allow tcp from any to any 8444 out via $pif keep-state setup

Allow RTSP streaming media

$cmd 680 allow tcp from any to any 554 out via $pif keep-state setup

$cmd 681 allow udp from any to any 554 out via $pif keep-state

$cmd 682 allow tcp from any to any 554 in via $pif keep-state setup

$cmd 683 allow udp from any to any 554 in via $pif keep-state

#RSTP uses UDP ports to communicate, and need to be open.

$cmd 684 allow udp from 192.168.46.0/24 6970-32000 to me in via

$pif keep-state

70

#Monitor requests

$cmd 700 allow tcp from any to any 8180 out via $pif keep-state setup

#Deny rules to �lter out bogus packets

#Multicast packets to ignore

$cmd 700 deny tcp from any to 224.0.0.0/4 in via $pif setup keep-state

$cmd 710 deny ip from any to 224.0.0.0/4 in via $pif keep-state

#External ICMP redirect requests

$cmd 720 deny log icmp from any to any icmptype 5 in via $pif keep-state

#Prevent spoo�ng attacks, one should never see any tra�c to and from me

$cmd 730 deny log ip from me to me in via $pif keep-state

#Prevent ping echo attacks

$cmd 740 deny log icmp from any to me icmptype 0,8 in via $pif keep-state

#Deny any TCP setup requests from the outside world

$cmd 750 deny log tcp from any to any setup in via $pif keep-state

#Default deny rule

$cmd 10000 deny log logamount 500 all from any to any

############ End of rule set #########################

Appendix B

Optimized Rule Set

This is the reduced size set of 13 working rules. As can be seen, most rules have been

removed from the default rule set. Others are disabled/removed but showing in the rule

set. This was done after it became apparent that some services did not receive or send

tra�c. So they are inactive and not being evaluated against any packets.

############# Optimized ruleset######### #

!/bin/sh

#Flush all the rules, quietly

ipfw -q -f �ush

#rules command pre�x

cmd="ipfw -q add"

pif="bridge0"

#Localhost rules

$cmd 100 allow all from any to any via lo0

Prevent any tra�c to 127.0.0.1, localhost spoo�ng

$cmd 110 deny log all from any to 127.0.0.0/8

$cmd 120 deny log all from any to 127.0.0.0/8

#Testing rules.These rules allow ALL tra�c to pass disabling any subsequent rules

71

72

#$cmd 140 allow log logamount 500 tcp from any to any

#$cmd 150 allow log logamount 500 udp from any to any

#Start dynamic state �ltering

$cmd 200 check-state

#Filter out fragmented packets that

$cmd 210 deny all from any to an frag in via $pif

#Block ACK packets that are not matched dynamically

$cmd 220 deny tcp from any to any established in via $pif

#Outbound web server ports, port 80 and 443 (SSL)

$cmd 230 allow tcp from any to any 80 out via $pif setup keep-state

$cmd 240 allow tcp from any to any 443 out via $pif setup keep-state

#nameserver ports #DNS SERVICE DISABLED

#outbound ping

$cmd 290 allow icmp from any to any out via $pif keep-state

#DHCP requests from all of the 192.168.46.0 subnet.

#$cmd 300 allow udp from any 68 to 192.168.46.0/24 67 out via $pif keep-state #

$cmd 310 allow udp from 192.168.46.0/24 67 to any 68 in via $pif keep-state

#Allow ssh out to any host

$cmd 400 allow tcp from any to any 22 out via $pif setup keep-state

#Only Linux, 192.168.46.140 is allowed ssh to the �rewall(me)

$cmd 410 allow tcp from 192.168.46.140 to me 22 setup keep-state

#Outgoing SMTP to send messages if needed #

$cmd 610 allow tcp from any to any 25 out via $pif keep-state setup

Rules to allow IMP mail to function

$cmd 660 allow tcp from any to any 8444 out via $pif keep-state setup

73

#Monitor requests

#$cmd 700 allow tcp from any to any 8180 out via $pif keep-state setup

#Deny rules to �lter out bogus packets

#Multicast packets to ignore

#$cmd 700 deny tcp from any to 224.0.0.0/4 in via $pif setup keep-state

#$cmd 710 deny ip from any to 224.0.0.0/4 in via $pif keep-state

#External ICMP redirect requests

$cmd 720 deny log icmp from any to any icmptype 5 in via $pif keep-state

#Prevent spoo�ng attacks, one should never see any tra�c to and from me

$cmd 730 deny log ip from me to me in via $pif keep-state

#Prevent ping echo attacks

$cmd 740 deny log icmp from any to me icmptype 0,8 in via $pif keep-state

#Deny any TCP setup requests from the outside world

$cmd 750 deny log tcp from any to any setup in via $pif keep-state

#Default deny rule

$cmd 10000 deny log logamount 500 all from any to any

############ End of rule set #########################

Appendix C

Packet Counter results

The sample output shown here was taken to test ipfw accounting module and see that

the tra�c sent through the bridge interface was being checked by the �rewall. Most rules

were set to just count to as to give a picture of packet movement. This was done before

the default and optimized rule sets were created.

ipfw show

00005 640322 1808654976 count ip from any to any via lo0

00010 1756 141490 count ip from any to 127.0.0.0/8

00015 1756 141490 count ip from 127.0.0.0/8 to any

00020 0 0 count tcp from any to any frag

00025 0 0 check-state

00035 640330 1808655308 count ip from any to any out keep-state

00040 14 552 count icmp from any to any

00045 0 0 count tcp from any to any dst-port 21 in setup keep-state

00046 0 0 count udp from any to any dst-port 21 in setup keep-state

00050 991008 943447488 count tcp from any to any dst-port 22 in setup keep-state

00060 0 0 count udp from any to any dst-port 53 in setup keep-state

00061 0 0 count tcp from any to any dst-port 53 in setup keep-state

74

75

00065 0 0 count tcp from any to any dst-port 80 in setup keep-state

00070 0 0 count tcp from any to any dst-port 443 in setup keep-state

00075 0 0 count tcp from any to any dst-port 110 in setup keep-state

00080 0 0 count tcp from any to any dst-port 143 in setup keep-state

00090 0 0 count tcp from any to any dst-port 2222 in setup keep-state

00100 1632979 2752301886 count ip from any to any

00100 0 0 count tcp from any to any dst-port 49152-65535 out setup keep-state

00500 1632979 2752301886 allow ip from any to any

00999 0 0 deny log ip from any to any 65535 0 0 deny ip from any to any

The output above shows sample output of counters per rule by number, packets matched, the packets size

in bytes and the rule itself.

Appendix D

Rule Syntax and use

ipfw �rewall rules are written according to a standard syntax that follows network re-

quiremets for packet matching.

The general syntax of an ipfw rule is:

Syntax = CMD RULE_NUMBER ACTION LOGGING SELECTION STATEFUL

CMD: each rule must be pre�xed with ipfw add for it to be added to the internal table.

RULE_NUMBER: each rule should be numbered, though it si not mandatory because rules are

numbered automatically. Ipfw rule numbering scheme makes administering a rule set complex as rules

are incremented by 100 from a previous number and makes administering a rule set complex.

ACTION: A rule is associated with one of the following actions:

• allow | accept | pass | permit : speci�ed to allow the matching packets into the network. These

words mean the same thing.

• check-state : check if the incoming packet matches an established state in the dynamic rules table.

Then apply the action de�ned on the rule that generated the dynamic.

• deny | drop : discards packets matching the rule with this action. The search terninates once this

rule is matched.

Logging

76

77

• log or logamount : writes a record to the log �le through syslogd for a packet matching the

rule with the log keyword.

Selection: This gives the characteristics of a packet on which action determination is based. There are

general functional features applicable as discussed here next:

• udp | tcp | icmp: This is a mandatory requirement and can be in any other protocol as listed in

/etc/protocols.

• from src to dst: to and from are used to match originating and destination IP addresses. Other

words like any andme specify special matching with any matching any IP address andme being

the host IP of the �rewall.

• port number: are used to specify services that use port numbers that will be matched.Corresponding

service names available from /etc/services can be used instead instead on numeric port values.

• in | out: matches incoming or outgoing packets depending on which one is coded for a rule. It is

mandatory to specify one of them as part of the matching criterion.

• via IF: Matches packets going through the interface speci�ed by name. The interface is always

checked as part of the match process.

• setup: identi�es the session start request for TCP packets.

• keep-state: When speci�ed, the �rewall creates a dynamic rule that matches bidirectional tra�c

between source and destination IP/port using the same protocol.

• limit {src-addr | src-port | dst-addr | dst-port}: provides same functionality as keep-state

di�erently.It limits N connections that have the same set of parameters.

Adapted from the FresBSD handbook, [15] ipfw section.

Appendix E

CD Contents

The compact disk accompanying this thesis contains all the items used to conduct the

research in folders named under. Those not available on it were intentionally left out due

to space limitation but the sources have been provided.

1. Project proposal

2. Literature review

3. Poster presentation

4. Final presentation

5. Thesis

6. References

7. Data

8. Softwares

9. Operating Systems

78

