Towards a Sandbox for the Deobfuscation and
Dissection of PHP Malware: A Literature
Survey

Peter Wrench

27th May 2013

Supervisor: Professor Barry Irwin

Department of Computer Science, Rhodes University

Abstract

The creation and proliferation of Remote Access Trojans (or web
shells) capable of compromising web platforms has fuelled research into
automated methods of dissecting and analysing these shells. In the past,
such shells were ably detected using signature matching, a process that is
currently unable to cope with the sheer volume and variety of web-based
malware in circulation. This survey describes and evaluates some of the
notable solutions that have been proposed to address the twin problems
of code deobfuscation and dissection with the aim of identifying viable
and automatable analysis techniques.

Contents

I Introduction 4
II PHP Overview 4
1 Language Features 5
2 Performance and Use 5
3 Security 6
4 'Web Shells 6
III Code Obfuscation 7
1 Methods of Obfuscation 8
1.1 Layout Obfuscation. 8
1.1.1 Format Modification 8

1.1.2 Identifier Name Modification 8

1.2 Data Obfuscation 9
1.2.1 Storage and Encoding Modification 9

1.2.2 Data Aggregation 9

1.2.3 DataOrdering 10

1.3 Control Obfuscation 10
1.3.1 Computation Modification 11

1.3.2 Code Aggregation 11

1.3.3 Code Ordering 12

2 Code Obfuscation and PHP 12
3 Deobfuscation Techniques 12
3.1 Pattern Matching o oL 13
3.2 Program Slicing 13
3.3 Statistical Analysis Lo 13
3.4 Partial Evaluation 14

4 Existing Deobfuscation Systems

41 LOCO
4.1.1 Features . .
4.1.2 Limitations

4.2 PHP Deobfuscation using the evalhook Module
4.2.1 Features Lo
4.2.2 Limitations 0o
IV Code Dissection
1 Dissection techniques
1.1 Static Approaches o o oo
1.1.1 Signature Matching,
1.1.2 Pattern Matchingo oL
1.2 Dynamic Approaches

1.2.1 API Hooking

1.2.2 Sandboxes and Function Overriding

2 Existing Code Dissection Systems

21 Eureka
2.1.1 Features . .
2.1.2 Limitations

2.2 CWSandbox
2.2.1 Features . .
2.2.2 Limitations

V Conclusion

14
14
14
14
15
15
15

15

16
16
16
16
16
17
17

18
18
18
18
18
19
19

19

Part 1

Introduction

The deobfuscation and dissection of PHP-based malware is a non-trivial task
with no well-defined solution. Many different techniques and approaches can be
found in the literature, each with their own advantages and limitations. In an at-
tempt to evaluate these approaches, this paper begins by providing an overview
of the PHP language itself, including its notable features, performance relative
to other languages, usefulness, inherent security characteristics and most partic-
ularly its role as the language of choice for developers of Remote Access Trojans
and other malware. Part three introduces the concept of code obfuscation and
the many methods of achieving it, before moving on to discuss techniques for
reversing it and briefly exploring existing systems capable of automated code
deobfuscation. The fourth part covers code dissection, the two main approaches
that are often followed in pursuit of it, and the properties and uses of sandboxes
before comparing two widely-used frameworks for analysis. In closing, the pa-
per discusses the viability of PHP as an implementation language, the feasibility
and ideal characteristics of an automated deobfuscation system, and finally the
approach that should be followed when developing a complete system for the
dissection of PHP-based malware.

Part II
PHP Overview

PHP (the recursive acronym for PHP: Hypertext Preprocessor) is a general pur-
pose scripting language that is primarily used for the development and mainten-
ance of dynamic web pages [2, 56]. First conceived in 1994 by Rasmus Lerdof
[2], the power and ease of use of PHP has enabled it to become the world’s most
popular server-side scripting language by numbers [54]. It is able to transform
static web pages with predefined content into pages capable of displaying dy-
namic content based on a set of parameters. Although originally developed as
a purely interpreted language, multiple compilers have since been developed for
PHP, allowing it to function as a platform for standalone applications [55, 46].
Since 2001, the reference releases of PHP have been issued and managed by The
PHP Group [18].

1 Language Features

Much of the popularity of PHP can be attributed to its relatively shallow learn-
ing curve. Users familiar with the syntax of C++, C#, Java or Perl are able
to gain an understanding of PHP with ease, as many of the basic programming
constructs have been adapted from these C-style languages [2, 47]. As is the
case with more recent derivatives of C, users need not concern themselves with
memory or pointer management, both of which are dealt with by the PHP in-
terpreter [30]. The documentation provided by the PHP group is concise and
comprehensively describes the many built in functions that are included in the
language’s core distribution [48]. The simple syntax, recognisable programming
constructs and thorough documentation combine to allow even novice program-
mers to become reasonably proficient in a short space of time.

PHP is compatible with a vast number of platforms, including all variants of
UNIX, Windows, Solaris, OpenBSD and Mac OS X [2]. Although most com-
monly used in conjunction with the Apache web server, PHP also supports a
variety of other servers, such as the Common Gateway Interface, Microsoft’s In-
ternet Information Services, Netscape iPlanet and Java servlet engines [49]. Its
core libraries provide functionality for string manipulation, database and net-
work connectivity, and file system support [18, 2, 55], giving PHP unparalleled
flexibility in terms of deployment and operation.

As an open source language, PHP can be modified to suit the developer. In
an effort to ensure stability and uniformity, however, reference implementations
of the language are periodically released by The PHP Group [18]. This rapid
development cycle ensures that bug fixes and additional functionality are read-
ily available and has contributed directly to PHP’s reputation as one of the
most widely supported open source languages in circulation today [2, 39]. An
abundance of code samples and programming resources exist on the Internet in
addition to the standard documentation [50, 69, 57|, and many extensions have
been created and published by third party developers [51].

2 Performance and Use

PHP is most commonly deployed as part of the LAMP (Linux, Apache, MySQL
and PHP /Perl/Python) stack [9]. It is a server-side scripting language in that
the PHP code embedded in a page will be executed by the interpreter on the
server before that page is served to the client [18]. This means that it is not
possible for a client to know what PHP code has been executed - they are only
able to see the result. The purpose of this preprocessing is to allow for the
creation of dynamic pages that can be customised and served to clients on the

fly [2].

When implemented as an interpreted language, studies have found that PHP is
noticeably slower than compiled languages such as Java and C [65, 58]. However,

since version 4, PHP code has been compiled into bytecode that can then be
executed by the Zend Engine, dramatically increasing efficiency and allowing
PHP to outperform competitors written in other languages (such as Axis2 and
the Java Servlets Package) [44, 12, 59]. Performance can be further enhanced
by deploying commonly-used PHP scripts as executable files, eliminating the
need to recompile them each time they are run [3].

At the time of writing, PHP was being used as the primary server-side scripting
language by over 240 million websites, with its core module, mod php, logging
the most downloads of any Apache HTTP module [54]. Of the websites that
disclosed their scripting language (several chose not to for security reasons),
79.8 percent were running some implementation of PHP, including popular sites
such as Facebook, Baidu, Wikipedia and Wordpress [61].

3 Security

A study of the National Vulnerability Database performed in April 2013 found
that approximately 30 percent of all reported vulnerabilities were related to
PHP [16]. Although this figure might seem alarmingly high, it is important to
note that most of these vulnerabilities are not vulnerabilities associated with
the language itself, but are rather the result of poor programming practices
employed by PHP developers. In 2008, for example, a mere 19 core PHP vul-
nerabilities were discovered, along with just four in the language’s libraries [16].
These numbers represent a small percentage of the 2218 total vulnerabilities
reported in the same year [16].

Apart from a lack of knowledge and caution on the part of PHP developers,
the most plausible explanation for the large number of vulnerabilities involving
PHP is that the language is specifically being targeted by hackers. Because of
its popularity, any exploit targeting PHP can potentially be used to compromise
a multitude of other systems running the same language implementation [16].
PHP bugs are thus highly sought after because of the high pay-off associated
with their discovery. This mentality is clearly demonstrated in the recent spate
of exploits targeting open source PHP-based Content Management Systems like
phpBB, PostNuke, Mambo, Drupal and Joomla, the last of which has over 30
million registered users [31, 33].

4 Web Shells

The overwhelming popularity of PHP as a hosting platform [54, 45] has made it
the language of choice for developers of Remote Access Trojans (or web shells)
and other malicious software [13, 43]. Web shells are typically used to com-
promise web platforms by providing the attacker with basic remote access to
the system, including file transfer, command execution, network reconnaissance

and database connectivity [25]. Once infected, compromised systems can be
used to defraud users by hosting phishing sites, perform Distributed Denial of
Service attacks, and serve as anonymous platforms for sending spam or other
malfeasance [26].

The proliferation of such malware has become increasingly aggressive in recent
years, with some monitoring institutes registering over 70 000 new threats every
day [1, 24]. The sheer volume of software and the rate at which it is able to
spread make traditional, static signature-matching infeasible as a method of
detection [15, 35]. Previous research has found that automated and dynamic
approaches capable of identifying malware based on its semantic behaviour in
a sandbox environment fare much better against the many variations that are
constantly being created [22, 15, 32, 10]. Furthermore, many malware tools
disguise themselves by making extensive use of obfuscation techniques designed
to frustrate any efforts to dissect or reverse engineer the code [28, 14]. Advanced
code engineering can even cause malware to behave differently if it detects that
it is not running on the system for which it was originally targeted [37].

Part III
Code Obfuscation

Code obfuscation is a program transformation intended to thwart reverse engin-
eering attempts [34]. The resulting program should be functionally identical to
the original, but may produce additional side effects in an attempt to disguise
its true nature [8].

In their seminal work detailing the taxonomy of obfuscation transforms, Colberg
et al. define a code obfuscator as a “potent transformation that preserves the ob-
servable behaviour of programs” [17]. The concept of “observable behaviour” is
defined as behaviour that can be observed by the user, and deliberately excludes
the distracting side effects mentioned above, provided that they are not discern-
ible during normal execution. A transformation can be classified as potent if it
produces code that is more complex than the original [34].

All methods of code obfuscation can be evaluated according to three metrics [8]:

e Potency - the extent to which the obfuscated code is able to confuse a
human reader

e Resilience - the level of resistance to automated deobfuscation techniques

e Cost - the amount of overhead that is added to the program as a result of
the transformation

Although primarily used by authors of legitimate software as a method of pro-
tecting technical secrets, code obfuscation is also employed by malware authors
to hide their malicious code [27]. Reverse engineering obfuscated malware can
be tedious, as the obfuscation process complicates the instruction sequences,
disrupts the control flow and makes the algorithms difficult to understand [27].
Manual deobfuscation in particular is so time-consuming and error-prone that
it is often not worth the effort [27].

1 Methods of Obfuscation

Although the number of code obfuscation methods is limited only by the cre-
ativity of the obfuscator, the common ones listed below fall neatly into the three
categories of layout, data and control obfuscation [64]. Each category boasts
methods of varying potency, and a powerful obfuscator should employ methods
from each category to achieve a high level of obfuscation.

1.1 Layout Obfuscation

Perhaps the most trivial form of obfuscation, layout obfuscation is concerned
with the modification of the formatting and naming information in a program
[19].

1.1.1 Format Modification

The removal of formatting information such as line breaks and white space from
source code is the most common method of obfuscation [17]. It can only be per-
formed on programs written in languages that don’t depend on formatting as a
structural device and is of low potency, as it removes very little semantic content
and is easily processed by automated deobfuscation systems [17]. This method
is resilient to manual deobfuscation due to the decrease in code readability,
however, and can be performed without adding any overhead to the original
program [17].

1.1.2 Identifier Name Modification

The transformation or scrambling of meaningful variable names into arbitrary
identifiers is another common method of obfuscation [19]. Like format modific-
ation, it does not affect the efficiency of the resulting program (it contributes
no additional overhead) and fails to confound automated deobfuscation systems
[17]. Tt is of a slightly higher potency, however, as variable names in unmodified
form contain a wealth of semantic information that could be of use to a manual
deobfuscator [19, 17].

1.2 Data Obfuscation

The obscuring of data structures in a program by modifying how they are stored,
accessed, grouped and ordered is known as data obfuscation [17]. It is con-
sidered more powerful than layout obfuscation as it obscures the semantics of
a program and is able to stymie some automated deobfuscation systems [37].
Programs written using object-oriented languages in particular store much of
their semantic information in the form of data structures. Data obfuscation
is thus of paramount importance when attempting to obscure code written in
these languages [17].

1.2.1 Storage and Encoding Modification

Modifying the data storage characteristics of a program changes the way data
structures are stored in memory [19]. Typical examples of this type of obfusca-
tion include variable splitting (parts of a single variable stored in many different
locations) and the conversion of static data (such as a string) to procedural
data (such as a function that produces the same string at runtime). The former
makes it difficult to discern the purpose of a variable (it could be a variable
fragment with no individual value) and the latter removes static data that may
contain information that could be used to aid in the reverse engineering process

[64].

Modifying the data encoding characteristics of a program changes how stored
data is interpreted [19]. Changing the encoding of a variable, for example, can
make it more complex to reverse engineer, as is demonstrated in Figure 1 below:

int i=1; int i=11;

while (i < 1000) { 'T while (i<8003) {
coe AT4] oo :> ... A[(i-3)/8] ---;
i++; i+=8;

} }

Figure 1: Variable Encoding Example [17].

Before the transformation, it is clear that the loop will run exactly 999 times.
After the transformation, some simple arithmetic is required to arrive at the
same conclusion. Although the encoding in this example is rudimentary, more
complex encodings will yield variables that are more resilient to reverse engin-
eering [17].

1.2.2 Data Aggregation

Modifications to the way data is grouped in a program can also serve to obscure
the data structures contained within it [19]. Three common examples of this
type of obfuscation are listed below:

e Scalar variables such as integers can be merged into a single variable
provided that the single variable is sufficiently large to accommodate the
scalar variables with no loss in precision [17]. It is possible, for example,
to store two 32-bit integers in one 64-bit integer, although this would then
require major changes to how each variable is referenced in the rest of the
program [17].

e Structures such as arrays can be merged, split, folded or flattened to in-
crease their complexity [64]. These techniques all complicate access to
the arrays and further remove them from the data they are intended to
represent (flattening a two-dimensional array that was intended to repres-
ent a chess board, for example, will make it more difficult to extract this
representation after the obfuscation process) [64].

e Class inheritance relationships can be complicated by splitting a single
class into multiple classes or by introducing fake classes into the inherit-
ance hierarchy [17]. The result of these operations is a class structure in
which classes no longer represent complete entities and relationships are
convoluted and illogical [17].

1.2.3 Data Ordering

When constructing a program, it is common practice to follow the principle
of locality of reference and group data structures with the functions that are
likely to modify them [36]. This fact can be used by deobfuscators to identify
which data structures are related to various functions, making it simpler for
them to reverse engineer the code . Reordering data structures removes this
advantage and increases the complexity of the deobfuscation process. Simple
techniques include reordering variables (this often includes making some local
variables global to thwart locality analysis), reordering object methods and their
parameters, and reordering elements within an array [64]. When data reordering
is combined with data aggregation and storage and encoding modification, it
becomes very difficult for a deobfuscator to correctly restore the program’s data
structures [17].

1.3 Control Obfuscation

Perhaps the most important characteristic of a program that needs to be ob-
scured during the obfuscation process is the control flow [17]. Reverse engineer-
ing a program when the control flow and data structures are known is a trivial
process - as has been discussed, other obfuscation methods such as layout modi-
fication are simple to overcome [17]. As was the case with the obfuscation of
data, the aggregation and ordering of control flow statements are important and
can be modified to increase the program’s complexity and resilience [17].

10

1.3.1 Computation Modification

The modification of the computations involved in the determination of control
flow (such as condition calculations in loops and predicate evaluation in if state-
ments) is a powerful method of obfuscation, but it does introduce a significant
amount of overhead into the resulting program [17]. Computation modification
can be achieved in the following ways:

e Irrelevant code (i.e. code that has no impact on the control flow) can be
inserted into a program to frustrate deobfuscators and make the reverse
engineering process more time-consuming, as the deobfuscator has no way
of knowing whether a section of code is irrelevant until it has processed it
[19].

e Loop conditions can be made arbitrarily complex without affecting the
number of iterations that will be performed [19]. If the loop was intended
to run eight times, for example, the condition could be i < 2 * (24 - 20)
instead of i < 8. Once again, this technique is of a low potency, as it serves
only to make the deobfuscation process more lengthy [19].

e Dummy processes can be added to the program to distract reverse en-
gineering attempts and code can be parallelised to complicate the control
flow, making it more difficult to unravel [17]. The latter technique is con-
sidered one of the more powerful methods of obfuscation, as each parallel
process increases the number of possible execution paths exponentially,
greatly complicating and sometimes defeating the deobfuscation process
altogether [17].

1.3.2 Code Aggregation

Much like data aggregation, code aggregation merges dissimilar blocks of code
and separates similar blocks of code. Colberg et al. describe the twin goals of
code aggregation as follows [17]:

1. Code that a programmer placed in a method (because it logically belonged
together) should be scattered throughout the program

2. Code that has no logical relationship should be aggregated into a single
method

Further obscuring of the abstractions usually employed by programmers can
be achieved through the use of inline and outline methods [64]. Instead of
abstracting commonly used code into a separate method, an obfuscator will in-
clude this code (as an inline method) wherever it is needed, effectively removing
a semantically rich procedural abstraction that could be leveraged by a deob-
fuscator [64]. Outline methods, by contrast, abstract a section of code that is

11

not commonly used into a separate method, granting it an undeserved status
as a procedural abstraction and potentially misleading any reverse engineering
attempts [17].

1.3.3 Code Ordering

When writing code, programmers tend to organise expressions and statements
in a logical manner that makes the program easy to read and understand [19].
Since the goal of obfuscation is to discourage understanding, it follows that the
ordering of code should be as random as possible. This is trivial for structures
such as methods in classes, but in some cases the ordering of statements cannot
be entirely randomised because of the dependencies that exist between them
(a variable declaration cannot be placed below an expression that includes that
variable, for example). In these cases, a dependency analysis must be performed
between the two statements before any form of code reordering is attempted
[19]. Although reordering is not a powerful method of obfuscation when used in
isolation, its effectiveness increases when combined with code aggregation and
computation modification [19].

2 Code Obfuscation and PHP

As a procedural language with object-oriented features, PHP can be obfuscated
using all of the methods detailed above [56]. In addition to this, the language
contains several functions that directly support the protection/hiding of code
and which are often combined to form the following obfuscation idiom [66]:

eval(gzinflate(base64 decode(str _rot13($str))))

To begin with, the string containing the malicious code is encrypted using the
rot13 algorithm. It is then encoded in base64 (using base64 encode) before
being compressed (using gz inflate). At runtime, the process is reversed and
the eval function is used to evaluate the resulting string as PHP code [48, 66].

Although seemingly complex, code obfuscated in this manner can easily be
neutralised and analysed for potential backdoors. Replacing the eval function
with an echo command will display the code instead of executing it, allowing
the user to determine whether it is safe to run. This process can be automated
using PHP’s built in function overriding mechanisms [62], which are examined
in more detail in Part IV, Section 1.2.2.

3 Deobfuscation Techniques

The obfuscation methods described in the previous sections are all designed to
prevent code from being reverse engineered. Given enough time and resources,

12

however, a determined deobfuscator will always be able to restore the code to
its original state. This is because perfect obfuscation is provably impossible, as
is demonstrated by Barak et al. in their seminal paper “On the (Im)possibility
of Obfuscating Programs” [5]. Colberg et al. concur, postulating that every
method of code obfuscation simply “embeds a bogus program within a real pro-
gram” and that an obfuscated program essentially consists of “a real program
which performs a useful task and a bogus program that computes useless in-
formation” [17]. Bearing this in mind, it is useful to review the techniques that
are widely employed by existing deobfuscation systems.

3.1 Pattern Matching

Sophisticated deobfuscation systems are able to construct databases of previ-
ously detected bogus code segments [64]. They can then compare fragments
of an obfuscated piece of code with the patterns stored in the database and
remove these fragments from the program before applying the other techniques
described below [64]. The resultant decrease in the size of the program greatly
increases the efficiency of the deobfuscator - the larger the database, the greater
the increase in efficiency [64].

3.2 Program Slicing

Deobfuscators that employ program slicing techniques are able to split an ob-
fuscated program into manageable units called slices that it can then evaluate
both individually and in relation to other slices[17]. In this way, the system can
avoid bogus code entirely and group similar code blocks together, reversing the
efforts of the obfuscator and making the code more readable [17]. Advanced
slicing systems are able to create chains of slices leading up to a target slice
that represent the code blocks that were executed up to that point, even if said
blocks were scattered throughout the program [17].

3.3 Statistical Analysis

Like pattern matching, statistical analysis aims to remove unimportant code,
but it is able to do so without knowledge of previously discovered bogus seg-
ments [17]. Instead, the deobfuscator will repeatedly test an expression in an
obfuscated program and record the results [38]. If the expression always returns
the same value, then it is likely to belong to the meaningless part of the obfus-
cated code and can safely be substituted with the value itself or removed from
the program altogether [17].

13

3.4 Partial Evaluation

A partial evaluator is a system capable of splitting a source program into a static
segment and a dynamic segment [17]. The static segment consists of all the code
that can be identified and computed by the evaluator prior to runtime [17]. This
code can be considered to be unimportant in the sense that it produces no useful
result and therefore corresponds to the spurious code blocks often introduced
by code obfuscators. Once the static segment has been removed, the remaining
dynamic segment represents the original program [17].

4 Existing Deobfuscation Systems

Several automatic tools exist online that are capable of deobfuscating PHP
code [41, 4]. The source code for these tools is not available, however, and their
features are not well documented or even disclosed, making them poor subjects
to study. Instead, a brief summary of two generic deobfuscation systems is
presented below, with a view to identifying features to replicate and pitfalls to
avoid.

4.1 LOCO

LOCO is a interactive graphical environment in which a user can experiment
with and observe the effects of both obfuscation and deobfuscation transforma-
tions [29].

4.1.1 Features

Based on a visualisation tool called Lancet and an obfuscation infrastructure
called Diablo, LOCQO is able to expose the control flow of a program and show the
effects of any obfuscating or deobfuscating actions on it [29]. Users can choose
either to execute and evaluate existing obfuscation/deobfuscation transforma-
tions or to develop and test transformations of their own. The environment’s
visualisation feature is particularly helpful when it comes to identifying flaws in
deobfuscation transformations, as the user can step through the program and
identify the effects of the transformation at any point in the code [29]. It also
facilitates the manual deobfuscation of programs by allowing users to modify
the source code and observe how each modification affects the flow of control
[29].

4.1.2 Limitations

Although LOCO includes powerful transformation testing and visualisation fea-
tures, it is more a tool for developing deobfuscation systems than a system in

14

itself. It lacks the ability to store and reuse code transformations, and its built
in deobfuscation algorithms are designed to be extensible rather than compre-
hensive [29]. LOCO also functions at the assembler level, which gives it more
flexibility but means that its algorithms cannot be adapted for use in deobfus-
cation systems that function at a higher level [29].

4.2 PHP Deobfuscation using the evalhook Module

In a study attempting to analyse exploitation behaviour on the web, Canali
and Balzarotti [11] found it necessary to develop and implement an automated
deobfuscator of PHP code.

4.2.1 Features

The system implemented by Canali and Balzarotti made use of the evalhook
PHP extension, which attaches itself to all calls to dynamic code evaluation
functions such as eval [11]. This meant that any malicious code hidden in an
eval construct could be monitored in real time [11]. The system was able to
achieve a success rate of 24 percent, which is remarkable since it relied solely
on one very specific deobfuscation technique [11]. It was also fully automatic,
requiring no human intervention during the deobfuscation process [11].

4.2.2 Limitations

As an auxiliary system to the main project, the deobfuscator lacked several of
the deobfuscation techniques discussed in Section 3 of Part III. As a result of
this, it was unable to correctly deobfuscate scripts encoded with proprietary
tools such as Zend Optimiser or ionCube PHP Encoder [11]. The incorporation
of other techniques would increase the robustness of the system, as well as its
success rate [11].

Part IV

Code Dissection

The process of analysing the behaviour of a computer program by examining
its source code is known as code dissection or semantic analysis [7]. The main
goal of the dissection process is to extract the primary features of the source
program, and, in the case of malicious software, to neutralise and report on any
undesirable actions [63]. Sophisticated anti-malware programs go beyond tradi-
tional signature matching techniques, employing advanced methods of detection
such as sandboxing and behaviour analysis [60].

15

1 Dissection techniques

All code dissection techniques can be classified as being either static or dynamic
in nature [7].

1.1 Static Approaches

Static analysis approaches attempt to examine code without running it [40].
Because of this, these approaches have the benefit of being immune to any po-
tentially malicious side effects. The lack of runtime information such as variable
values and execution traces does limit the scope of static approaches, but they
are still useful for exposing the structure of code and comparing it to previously
analysed samples [68].

1.1.1 Signature Matching

A software signature is a characteristic byte sequence that can be used to
uniquely identify a piece of code [68]. Anti-malware solutions make use of
static signatures to detect malicious programs by comparing the signature of
an unknown program to a large database containing the signatures of all known
malware - if the signatures match then the unknown program is flagged as sus-
picious. This kind of detection can easily be overcome by making trivial changes
to the source code of a piece of malware and thereby modifying its signature
[67].

1.1.2 Pattern Matching

Pattern matching is a generalised from of signature matching in which pat-
terns and heuristics are used in place of signatures to analyse pieces of code
[68]. This allows pattern matching systems to recognise and flag code that con-
tains patterns that have been found in previously analysed malware samples,
which, although an improvement on signature matching, is still insufficient to
identify newly developed malware [68]. Patterns that are too general will lead to
false positives (benign code that is incorrectly classified as malicious), whereas
patterns that are too specific will suffer from the same restrictions faced by
signature matching [68].

1.2 Dynamic Approaches

Dynamic approaches to analysis extract information about a program’s func-
tioning by monitoring it during execution [40]. These approaches examine how
a program behaves and are best confined to a virtual environment such as a
sandbox so as to minimise the exposure of the host system to infection [40].

16

1.2.1 API Hooking

API (Application Programming Interface) hooking is a technique used to inter-
cept function calls between an application and an operating system’s different
APIs [23]. In the context of code dissection, API hooking is usually carried
out to monitor the behaviour of a potentially malicious program [6]. This is
achieved by altering the code at the start of the function that the program has
requested access to before it actually accesses it and redirecting the request to
your own injected code [6]. The request can then be examined to determine
the exact behaviour exhibited by the program before it is directed back to the
original function code [23].

The precision and volume of code required for correct API hooking mean that
behaviour monitoring systems that make use of the technique are complex and
time consuming to implement [6]. They are also virtually undetectable and
thoroughly customisable (only functions relevant to behaviour analysis need be
hooked) [6].

1.2.2 Sandboxes and Function Overriding

A sandbox is a restricted programming environment that is used to separate
running programs [20]. Malicious code can safely be run in a sandbox without
affecting the host system, making it an ideal platform for the observation of
malware behaviour [21].

Later versions of PHP include the Runkit Sandbox class that is capable of
executing PHP code in a sandbox environment [52]. This class creates its own
execution thread upon instantiation, defines a new scope and constructs a new
program stack, effectively isolating any code that is run within it from other
active processes [52]. Other options are also provided to further restrict the
sandbox environment [52]:

e The safe_mode include dir option can be used to specify a single dir-
ectory from which modules can be included in the sandbox

e The open basedir option can be used to specify a single directory that
can be accessed from within the sandbox

e The allow url fopen option can be set to false to prevent code in the
sandbox from accessing content on the Internet

e The disable functions and disable classes options can be used to disable
any functions and classes from being used inside the sandbox

Of particular interest to a developer of a code dissection system is the runkit.internal
configuration directive that can be used to enable the ability to modify, remove
or rename functions within the sandbox [53]. This can facilitate the dissection

17

of PHP code by providing the functionality to replace functions associated with
code obfuscation (such as eval) with benign functions that merely report an
attempt to execute a string of PHP code [53]. Network activity could be mon-
itored in much the same way - calls to url_fopen could be replaced by an echo
statement that prints out the URL that was requested by the code.

2 Existing Code Dissection Systems

Two slightly different code dissection systems are presented below: the first uses
dynamic analysis and execution tracing and the second uses dynamic analysis
and APT hooking [38, 42].

2.1 Eureka

Designed by Sharif et al. in 2008, Eureka is a framework that aims to enable
dynamic malware analysis [38, 48].

2.1.1 Features

Eureka is able to analyse malware by employing statistical analysis and exe-
cution tracing techniques [38]. These techniques allow the system to identify
APT calls (without resorting to traditional dynamic analysis approaches such
as a sandbox) and even group these calls according to their functionality [38].
Execution tracing is performed by logging all system calls made by a process
bearing the malware’s program ID and statistical analysis is performed on the
program’s memory space to determine when it terminates and if it terminates
correctly [38].

2.1.2 Limitations

Eureka is unable to track the execution of malware that only reveals part of its
source code during an execution stage and then re-encrypts the code once it has
been run [38]. It is also possible that a piece of malware capable of detecting
APT hooking could avoid certain system calls and thereby avoid setting off the
triggers that drive the framework [38].

2.2 CWSandbox

CWSandbox is a generic malware analysis tool that boasts automatic, effective
and accurate software analysis [42]. It is automated in the sense that it is
able to produce detailed reports of malware activity with no user intervention

18

and effective in the sense that it is able to produce a comprehensive list of
the detected features [42]. It is correct in the sense that no false positives are
returned (i.e. all the logged activity was a result of the actions of the malware)
[42].

2.2.1 Features

CWSandbox analyses malware dynamically in a sandbox environment [42]. Be-
cause of this, it is able to bypass the problems faced by static analysers when
faced with obfuscated code, as it is concerned solely with the behaviour of the
code at runtime [42]. As was the case with the Eureka framework, CWSandbox
uses API hooking to determine malware behaviour [42]. The system is able to
monitor all calls to the Windows APT during execution and determine whether
each call has originated from the malware or not [42].

2.2.2 Limitations

As a large-scale, commercial malware analysis system, CWSandbox is able to
accurately dissect most malware instances [42]. The system can be bypassed,
however, by making system calls directly to the kernel instead of via the Win-
dows API [42]. Since the system is not able to monitor calls to the kernel, this
malware activity would go unnoticed [42].

Part V

Conclusion

The paper began with a discussion on the merits of the PHP language. It
was found to be a robust, fully-featured language that employs a simple, C-like
syntax, making it easy to learn and develop in. As a language with a well-
developed community, PHP enjoys regular updates and bug fixes and is endowed
with a comprehensive set of documentation and example code. Although the
language is associated with many security flaws, it was determined that these
flaws generally occur as a result of poor programming practice on the part of
PHP developers rather than core issues with the language itself.

Code obfuscation was introduced as an obstacle to automated code dissection.
Various methods of obfuscation were presented and it was determined that a
combination of these techniques greatly complicated the deobfuscation process.
Techniques for reversing code obfuscation were then presented and it was found
that even highly obfuscated code could be restored to its original state given
enough time. Two existing deobfuscation systems were briefly introduced and

19

evaluated. LOCO, a graphical environment for observing the effects of obfuscat-
ing transforms, proved to be more a tool for developing a deobfuscation system
than a system in itself. The second system made use of the evalhook module,
employed only one deobfuscation technique, and was able to decode 24 percent
of the scripts that it encountered.

The concept of code dissection was then introduced and discussed. The two main
approaches to dissection - namely static and dynamic analysis - were compared,
and it was found that dynamic analysis techniques fared better against new
types of malware, but were more complex to implement. Two existing code
dissection systems were also compared: the first, Eureka, was able to dissect
most malware examples, but was stymied by code that only revealed part of its
source during a given execution stage and then re-encrypted itself. CWSandbox
was found to be a powerful commercial code analyser with only one observable
flaw - it could not intercept system calls made directly to the kernel and was
thus unable to dissect malware that behaved in this way.

After discussing the ease of use, security, performance, and feature set of PHP, it
became clear that it would be a fitting host language for the implementation of a
code dissection system. A review of the literature concerning code deobfuscation
and dissection revealed that a dynamic analysis approach with a sandbox as its
primary testing entity was the most viable solution. With its built in sandbox
and a wide array of functions deliberately designed to facilitate the analysis of
live code, PHP was chosen as the sensible implementation choice.

20

References

[1]

2]
3]

4]

5]

[6]

7]

8]

[9]

[10]

[11]

[12]

Malware Statistics. Online, 2009. Available from: http://www.av-test.
org/en/statistics/malware/.

ARGERICH, L. Professional PHP/. Professional Series. Wrox Press, 2002.

ATKINSON, L., AND SURASKI, Z. Core Php Programming. Core series.
PRENTICE HALL COMPUTER, 2004.

BALLAST SECURITY. PHP Decoder. Online, June 2012. Available from:
https://www.ballastsecurity.net/php-decoder/.

BArAk, B., GoLDREICH, O., IMPAGLIAZZO, R., RUDICH, S., SAHAI,
A., VADHAN, S., AND YANG, K. On the (im) possibility of obfuscating
programs. In Advances in Cryptology-CRYPTO 2001 (2001), Springer,
pp- 1-18.

BERDAJS, J., AND BosNic, Z. Extending applications using an advanced
approach to dll injection and api hooking. Software: Practice and Experi-
ence 40, 7 (2010), 567-584.

BINKLEY, D. Source code analysis: A road map. In 2007 Future of Software
Engineering (Washington, DC, USA, 2007), FOSE ’07, IEEE Computer
Society, pp. 104-119.

BORELLO, J.-M., AND ME, L. Code obfuscation techniques for meta-
morphic viruses. Journal in Computer Virology 4, 3 (2008), 211-220.

BuUGHIN, J., CHUI, M., AND JOHNSON, B. The next step in open innova-
tion. The McKinsey Quarterly 4, 6 (2008), 1-8.

BURGUERA, I., ZuruTuzA, U., AND NADJM-TEHRANI, S. Crowdroid:
behavior-based malware detection system for android. In Proceedings of
the 1st ACM workshop on Security and privacy in smartphones and mobile
devices (New York, NY, USA, 2011), SPSM ’11, ACM, pp. 15-26.

CANALI, D., AND BALZAROTTI, D. Behind the Scenes of Online At-
tacks: an Analysis of Exploitation Behaviors on the Web. In Proceedings of
the 20th Annual Network € Distributed System Security Symposium (San
Diego, Etats-Unis, Feb. 2013), p. n/a.

CeccHET, E., CHANDA, A., ELNIKETY, S., MARGUERITE, J., AND
ZWAENEPOEL, W. Performance comparison of middleware architectures
for generating dynamic web content. In Middleware 2003, M. Endler and
D. Schmidt, Eds., vol. 2672 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003, pp. 242-261.

21

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]

CHOLAKOV, N. On some drawbacks of the php platform. In Proceedings
of the 9th International Conference on Computer Systems and Technolo-
gies and Workshop for PhD Students in Computing (New York, NY, USA,
2008), CompSysTech 08, ACM, pp. 12:11.7-12:2.

CHRISTODORESCU, M., AND JHA, S. Testing malware detectors. SIG-
SOFT Softw. Eng. Notes 29, 4 (July 2004), 34—44.

CHRISTODORESCU, M., JHA, S., SESHIA, S., SONG, D., AND BRYANT, R.
Semantics-aware malware detection. In Security and Privacy, 2005 IEEE
Symposium on (May), pp. 32-46.

CoEeLHO, F. PHP-related vulnerabilities on the National Vulnerability
Database. Online, April 2013. Available from: http://www.coelho.net/
php_cve.html.

COLLBERG, C., THOMBORSON, C.; AND Low, D. A taxonomy of obfus-
cating transformations. Tech. rep., Department of Computer Science, The
University of Auckland, New Zealand, 1997.

DoyLE, M. Beginning PHP 5.3. Wiley, 2011.

ERTAUL, L., AND VENKATESH, S. Jhide-a tool kit for code obfuscation. In
8th TASTED International Conference on Software Engineering and Ap-
plications (SEA 2004) (2004), pp. 133-138.

GOLDBERG, I., WAGNER, D., THOMAS, R., AND BREWER, E. A. A
secure environment for untrusted helper applications confining the wily
hacker. In Proceedings of the 6th conference on USENIX Security Sym-
posium, Focusing on Applications of Cryptography - Volume 6 (Berkeley,
CA, USA, 1996), SSYM’96, USENIX Association, pp. 1-1.

GonNgG, L., MUELLER, M., AND PRAFULLCH, H. Going beyond the sand-
box: An overview of the new security architecture in the java development
kit 1.2. In In Proceedings of the USENIX Symposium on Internet Techno-
logies and Systemns (1997), pp. 103-112.

Hyung CHAN Kim, Daisuke INoueE, M. E. Y. T. K. N. To-
ward Generic Unpacking Techniques for Malware Analysis with
Quantification of Code Revelation. Online, 2009. Available from:
http://jwis2009.nsysu.edu.tw/location/paper/Toward’,20Generic
20Unpacking)20Techniques’20for’,20Malware’20Analysis’20with
20Quantification200f%20Code)%20Revelation. pdf.

IvaNov, I. Api hooking revealed. The Code Project (2002).

KASPERSKY, E. Number of the Month: 70K per day. Online, Octo-
ber 2011. Available from: http://eugene.kaspersky.com/2011/10/28/
number-of-the-month-70k-per-day/.

22

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Kazanciyan, R. Old Web Shells, New Tricks. Online, December 2012.
Available from: https://www.owasp.org/images/c/c3/ASDC12-01d_
Webshells_New_Tricks_How_Persistent_Threats_haverevived_an_
old_idea_and_how_you_can_detect_them.pdf.

LANDESMAN, M. Malware Revolution: A Change in Target. Online, March
2007. Available from: http://technet.microsoft.com/en-us/library/
cc512596. aspx.

Laspe, E. An Automated Approach to the Identification and Re-
moval of Code Obfuscation. Online, September 2008. Available
from: http://www.blackhat.com/presentations/bh-usa-08/Laspe_
Raber/BH_US_08_Laspe_Raber_Deobfuscator.pdf.

L1, J., Xu, J., Xu, M., ZHAO, H., AND ZHENG, N. Malware obfuscation
measuring via evolutionary similarity. In Future Information Networks,
2009. ICFIN 2009. First International Conference on (Oct.), pp. 197-200.

Mabpou, M., VaN PuT, L., AND DE BosscHERE, K. Loco: an interact-
ive code (de)obfuscation tool. In Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipula-
tion (New York, NY, USA, 2006), PEPM 06, ACM, pp. 140-144.

McLAUGHLIN, B. PHP & MySQL: The Missing Manual. Missing Manual.
O’Reilly Media, Incorporated, 2012.

MILLER, R. PHP Apps A Growing Target for Hackers. Online, January
2006. Available from: http://news.netcraft.com/archives/2006/01/
31/php_apps_a_growing_target_for_hackers.html.

MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of static analysis for
malware detection. In Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual (Dec.), pp. 421-430.

OPEN SOURCE MATTERS. What is Joomla? Online, January 2013. Avail-
able from: http://www.joomla.org/about-joomla.html.

PREDA, M., AND GIACOBAZZI, R. Semantic-based code obfuscation by ab-
stract interpretation. In Automata, Languages and Programming, L. Caires,
G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, Eds., vol. 3580
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,
pp- 1325-1336.

PrREDA, M. D., CHRISTODORESCU, M., JHA, S., AND DEBRAY, S. A
semantics-based approach to malware detection. SIGPLAN Not. 42, 1
(Jan. 2007), 377-388.

ROGERS, A., AND PINGALI, K. Process decomposition through locality of
reference, vol. 24. ACM, 1989.

23

[37] SHARIF, M., LaNzi, A., GIFFIN, J., AND LEE, W. Impeding malware
analysis using conditional code obfuscation, 2009.

[38] SHARIF, M., YEGNESWARAN, V., SAIpI, H., PORRAS, P., AND LEE,
W. Eureka: A framework for enabling static malware analysis. In Com-
puter Security - ESORICS 2008, S. Jajodia and J. Lopez, Eds., vol. 5283
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp- 481-500.

[39] SKLAR, D. Learning PHP 5. O’Reilly Media, 2008.
[40] SpasoJEvICc, B. Using optimization algorithms for malware deobfuscation.

[41] Sucurl LaBs. PHP Decoder. Online, January 2012. Available from:
http://ddecode.com/phpdecoder/.

[42] SUNBELT SOFTWARE. CWSandbox Service. Online, May 2013. Available
from: https://mwanalysis.org/7site=1&page=about.

[43] SUNNER, M. The rise of targeted trojans. Network Security 2007, 12
(2007), 4 — 7.

[44] SuzumuRrA, T., TRENT, S., TATSUBORI, M., TozAawA, A., AND
ONODERA, T. Performance comparison of web service engines in php, java
and c. In Web Services, 2008. ICWS ’08. IEEE International Conference
on (2008), pp. 385-392.

[45] TATROE, K. Programming Php. Oreilly & Associates Inc, 2005.

[46] TaTsuBori, M., Tozawa, A., Suzumura, T., TRENT, S., AND
ONODERA, T. Evaluation of a just-in-time compiler retrofitted for php.
In ACM Sigplan Notices (2010), vol. 45, ACM, pp. 121-132.

[47] THE PHP GrouP. Basic Syntax. Online, May 2013. Available from:
http://php.net/manual/en/language.basic-syntax.php.

[48] THE PHP Group. Function Reference. Online, May 2013. Available from:
http://www.php.net/manual/en/funcref .php.

[49] THE PHP Group. Installation and Configuration. Online, May 2013.
Available from: http://www.php.net/manual/en/install.php.

[50] Tue PHP Group. PEAR - PHP Extension and Application Repository.
Online, 2013. Available from: http://pear.php.net/.

[51] THE PHP Group. PECL. Online, January 2013. Available from: http:
//pecl.php.net/.

[52] THE PHP GroupP. Runkit Sandbox. Online, May 2013. Available from:
http://php.net/manual/en/runkit.sandbox.php.

24

53]

[54]

[55]

[56]

[57]

[58]

[59]

|60]

[61]

[62]

[63]

|64]
|65]

[66]

[67]

THE PHP Group. Runtime Configuration. Online, May 2013. Available
from: http://php.net/manual/en/runkit.configuration.php.

THE PHP Group. Usage Stats for January 2013. Online, May 2013.
Available from: http://php.net/usage.php.

TeE PHP Group. What Can PHP Do? Online, May 2013. Available
from: http://www.php.net/manual/en/intro-whatcando.php.

Tue PHP Grour. What Is PHP? Online, May 2013. Available from:
http://www.php.net/manual/en/intro-whatis.php.

THE RESOURCE INDEX ONLINE NETWORK. The PHP Resource Index.
Online, January 2005. Available from: http://php.resourceindex.com/.

TITCHKOSKY, L., ARLITT, M., AND WILLIAMSON, C. A performance
comparison of dynamic web technologies. SIGMETRICS Perform. Ewval.
Rev. 31, 3 (Dec. 2003), 2-11.

TRENT, S., TATSUBORI, M., SUZUMURA, T., TOzZAWA, A., AND
ONODERA, T. Performance comparison of php and jsp as server-side script-
ing languages. In Proceedings of the 9th ACM/IFIP/USENIX International
Conference on Middleware (New York, NY, USA, 2008), Middleware 08,
Springer-Verlag New York, Inc., pp. 164-182.

WAGENER, G., STATE, R., AND DuLAUNOY, A. Malware behaviour ana-
lysis. Journal in Computer Virology 4, 4 (2008), 279-287.

WEB TECHNOLOGY SURVEYS. Usage statistics and market share of PHP
for websites. Online, May 2013. Available from: http://w3techs.com/
technologies/details/pl-php/all/all.

WELLING, L., AND THOMSON, L. PHP and MySQL Web development.
Sams Publishing, 2003.

WiLLEMS, C., Horz, T., AND FREILING, F. Toward automated dynamic
malware analysis using cwsandbox. Security & Privacy, IEEE 5, 2 (2007),
32-39.

WROBLEWSKI, G. General method of program code obfuscation, 2002.

Wu, A., WanaG, H., AND WILKINS, D. Performance comparison of al-
ternative solutions for web-to-database applications—. In Proceedings of the
Southern Conference on Computing (2000), Citeseer, pp. 26-28.

WysoraL, C., ENG, C., AND SHIELDS, T. Static detection of application
backdoors. Datenschutz und Datensicherheit - DuD 34, 3 (2010), 149-155.

ZAREMSKI, A. M., AND WING, J. M. Signature matching: A key to reuse,
vol. 18. ACM, 1993.

25

[68] ZAREMSKI, A. M., AND WING, J. M. Signature matching: a tool for
using software libraries. ACM Transactions on Software Engineering and
Methodology (TOSEM) 4, 2 (1995), 146-170.

[69] ZEND TECHNOLOGIES. The PHP Company. Online, February 2013. Avail-
able from: http://wuw.zend.com/en/resources/.

26

