
Project Proposal

Peter Wrench

13th March 2013

1 Principal Investigator

Peter Mark Wrench

0834437934

g10w1139@campus.ru.ac.za

Supervisor: Prof. Barry Irwin

2 Project Title

The project is proposed under the title of:

A PHP Sandbox for the Dissection of Web Malcode and Remote Access Trojans

3 Statement of the Problem

The overwhelming popularity of PHP as a hosting platform [2, 28] has made it
the language of choice for developers of Remote Access Trojans (or web shells)
and other malicious software [6, 26]. Web shells are typically used to com-
promise web platforms by providing the attacker with basic remote access to
the system, including �le transfer, command execution, network reconnaissance
and database connectivity [16]. Once infected, compromised systems can be
used to defraud users by hosting phishing sites, perform Distributed Denial of
Service (DDOS) attacks, or serve as anonymous platforms for sending spam or
other malfeasance [19].

The proliferation of such malware has become increasingly aggressive in recent
years, with some monitoring institutes registering over 70 000 new threats every
day [4, 15]. The sheer volume of software and the rate at which it is able to
spread make traditional, static signature-matching infeasible as a method of

1



detection [8, 24]. Previous research has found that automated and dynamic
approaches capable of identifying malware based on its semantic behaviour in a
sandbox environment fare much better against the many variations that are con-
stantly being created [11, 8, 22, 5]. Furthermore, many malware tools disguise
themselves by making extensive use of obfuscation techniques designed to frus-
trate any e�orts to dissect or reverse engineer the code [20, 7]. Advanced code
engineering can even cause malware to behave di�erently if it detects that it is
not running on the system for which it was originally targeted [25]. To combat
these defensive techniques, this project intends to create a sandbox environment
that accurately mimics a vulnerable host and is capable of semi-automatic se-
mantic dissection and syntactic deobfuscation of PHP code.

4 Research Objectives and Potential Extensions

In response to the problem detailed above, three primary objectives have been
identi�ed. An additional two objectives are also presented as potential exten-
sions to the core project.

• Primary Objectives:

� The development of a sandbox-based system capable of safely execut-
ing and dissecting potentially malicious PHP code. The sandbox will
mimic a vulnerable host and will allow the code to run as it usually
would, but without negatively a�ecting the machine on which it is
being run. The purpose of such a system would be to identify poten-
tially malicious actions undertaken by the code (semantic analysis).

� An auxiliary system for performing normalisation and deobfuscation
of input code prior to execution. This system would analyse the
code for syntactic structures and functions that are typically asso-
ciated with code obfuscation (such as eval) and replace them with
equivalent, deobfuscated alternatives using PHP's function overrid-
ing mechanisms (such as _call) [3].

� A basic reporting mechanism for feedback on any backdoors or other
potentially o�ensive features detected by the system. This would
have to interact with the sandbox system to determine which features
have been discovered.

• Secondary Objectives

� An exploration into possible methods of code classi�cation based on
similarity to previously analysed samples. This would draw on exist-
ing work in the �eld of similarity analysis [30, 10].

2



� The construction of a taxonomy tracing the evolution of popular web
shells such as c99, r57, b374k and barc0de [21] and their derivatives.
This would involve the implementation of several tree-based struc-
tures that have the aforementioned shells as their roots and are able
to show the mutation of the shells over time. Such a task would
build on research into the evolutionary similarity of malware already
undertaken by Li et al. [20].

5 Background and History

Malware can be described as software that harmfully attacks other software
[18]. The �rst piece of malware for the PC, a virus called Brain, was developed
in Pakistan in 1986 [27]. Able to spread only via media such as �oppy disks,
these early malware samples failed to make a large impact of any kind. The
advent of the Internet and related technologies allowed malware to propogate
more e�ciently and led to a drastic increase in the development of malicious
tools [4].

Malware can manifest itself in di�erent ways and is made up of several subcat-
egories, the most common of which are listed below [18]:

• Computer viruses

• Computer worms

• Trojan horses (the focus of this project)

• Rootkits

• Keyloggers

• Spyware and adware

Malware analysis is the process of extracting behaviours and capabilities from
malware samples and was developed in response to the malware explosion cata-
lysed by the advent of the Internet [4, 15, 25]. These techniques are often
signature-based - they identify malware based on known patterns or signatures
[9]. As a result of these increasingly sophisticated methods of detection, malware
developers began to disguise their code using a process known as obfuscation
[4, 15]. This involves creating code that is di�cult to analyse while still being
functionally equivalent to the original [25]. Code obfuscation was successful at
avoiding detection by most signature-based systems until updated signatures
were released [22], during which time considerable damage could be caused [14].
Research into techniques for dealing with obfuscation has therefore focused on
dynamic systems that are capable of classifying code according to behaviour
rather than structure [24, 20, 7].

3



The evolution of malware has largely been driven by a need to stay ahead
of the developers of malware detection signatures [30]. As malware detectors
became adept at recognising common web shells, malware coders were forced to
create variations of su�cient complexity to avoid detection by these signatures
[31, 10]. Genetic algorithms that synthesise new code from a pool of existing
samples are often used for this purpose [23]. In addition to avoiding detection,
these variations are often endowed with new features through the evolution
process [30, 23].

6 Approach

The �rst preparatory phase of the project is divided into three parts, the �rst of
which will involve gaining an understanding of the PHP language with particular
emphasis on the function calls that are commonly employed in code obfuscation
(such as eval). In the second part, a study of current PHP obfuscation practises
will be undertaken to better understand how to reverse them [12, 29]. During
the third part, several common PHP shells will be examined to become familiar
with their overall structure and to identify any behaviour that they might share.
These shells have already been sourced [1].

The second phase is the collection of web shells and phishing kits that can be
used as inputs to the system. Samples will be collected from the Internet and
the archives of the Security and Networks research group at Rhodes University.

The third phase will be concerned with the examination of related work, partic-
ularly in the �eld of semantic code analysis [8, 24]. Research into PHP deobfus-
cation conducted by Christodorescu et al. and Hyung et al. will also be studied
to provide a base from which to construct the syntactic deobfuscator section of
the system [11, 8].

The fourth phase of the project will be concerned with the construction of the
PHP sandbox environment. Since the project involves storing and executing
malicious code, care will have to be taken to ensure that the environment is
isolated from the host machine to prevent any malicious actions from a�ecting
it. This will be achieved by making use of a virtual machine running an Apache
web server. If possible, a virtual �le system could also be implemented as an
added precaution [13, 17]. Ideally the machine should have controlled access to
an Internet connection, as some malware will simply not execute if it detects
that it is running in a simulated environment with no external connections [25].
Existing malware analysis tools such as Anubis and CWSandbox will be studied
to discover how to achieve such a state of accurate emulation.

The main phase of the project involves the development of a system to examine
PHP code. It is intended that the core system be written in Python for ease of
coding. Since the system is not built for real-time dissection of code, the speed
advantages o�ered by other languages (such as C or C++) are not an important

4



consideration. It is envisaged that the system will consist of three major parts: a
deobfuscation segment that will attempt to strip away any unnecessary function
calls, a sandbox environment that will identify any malicious features, and a
reporting mechanism that will produce both the deobfuscated code and a list
of its major features. An analysis of several existing implementations of PHP
decoders will also be studied to gain an understanding of the main principles of
the decoding process.

The �nal phase of the project will involve a thorough testing of the completed
system. This will be achieved by comparing the results with those produced
by other PHP decoding systems, most notably the system developed by Ballast
Security [1]. The accuracy of the features identi�ed by the system will also need
to be determined. This will be done by acquiring a common malware tool with
a known feature set and testing whether the system is able to reproduce it.

7 Requirements

The hardware requirements for this project are as follows:

• Access to a PC capable of running multiple virtual machines

The software requirements for this project are as follows:

• Windows 7

• Ubuntu and an Ubuntu image for use as a virtual machine

• Virtual machine software (VirtualBox, VMPlayer)

• Python 3.3

• A Python IDE (PyScripter, PyDev, Eric)

The project will also require the collection of live malware samples obtained
from the Internet and the Security and Networks research group at Rhodes
University.

5



8 Project Time Line

Activity Proposed Deadline

Submit project proposal 01 March 2013

Create project website 15 March 2013

First Seminar: Present project outline to sta� and peers 19 March 2013

Complete setup of virtual machine environment 22 March 2013

Become familiar with PHP 25 March 2013

Submit literature review 27 May 2013

Complete �rst draft of dissection system 20 June 2013

Perform �rst full test of draft system 01 July 2013

Complete fully functional system 21 July 2013

Second Seminar: Report on project progress 06 August 2013

Complete �rst draft of thesis 20 August 2013

Submit short paper 16 September 2013

Third Seminar Series: Present project to sta� and peers 29 October 2013

Submit thesis 01 November 2013

Complete website 04 November 2013

Oral research exam 19 November 2013

References

[1] PHP Decoder. Online, 2007. Available from: https:

//defense.ballastsecurity.net/decoding/index.php?hash=

d5c0c0123e7bd4c4fc7002cdb588e92d.

[2] Usage Stats for April 2007. Online, 2007. Available from: http://www.

php.net/usage.php.

[3] What's new in php 6. In Pro PHP. Apress, 2008, pp. 41�52.

[4] Malware Statistics. Online, 2009. Available from: http://www.av-test.
org/en/statistics/malware/.

[5] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. Crowdroid:
behavior-based malware detection system for android. In Proceedings of

the 1st ACM workshop on Security and privacy in smartphones and mobile

devices (New York, NY, USA, 2011), SPSM '11, ACM, pp. 15�26.

[6] Cholakov, N. On some drawbacks of the php platform. In Proceedings

of the 9th International Conference on Computer Systems and Technolo-

gies and Workshop for PhD Students in Computing (New York, NY, USA,
2008), CompSysTech '08, ACM, pp. 12:II.7�12:2.

[7] Christodorescu, M., and Jha, S. Testing malware detectors. SIG-

SOFT Softw. Eng. Notes 29, 4 (July 2004), 34�44.

6



[8] Christodorescu, M., Jha, S., Seshia, S., Song, D., and Bryant, R.

Semantics-aware malware detection. In Security and Privacy, 2005 IEEE

Symposium on (May), pp. 32�46.

[9] Egele, M., Scholte, T., Kirda, E., and Kruegel, C. A survey on
automated dynamic malware-analysis techniques and tools. ACM Comput.

Surv. 44, 2 (Mar. 2008), 6:1�6:42.

[10] Gupta, A., Kuppili, P., Akella, A., and Barford, P. An empirical
study of malware evolution. In Communication Systems and Networks and

Workshops, 2009. COMSNETS 2009. First International (Jan.), pp. 1�10.

[11] Hyung Chan Kim, Daisuke Inoue, M. E. Y. T. K. N. To-
ward Generic Unpacking Techniques for Malware Analysis with
Quanti�cation of Code Revelation. Online, 2009. Available from:
http://jwis2009.nsysu.edu.tw/location/paper/Toward%20Generic%

20Unpacking%20Techniques%20for%20Malware%20Analysis%20with%

20Quantification%20of%20Code%20Revelation.pdf.

[12] Jain, S. Malware obfuscator for malicious executables. In Global Trends in
Information Systems and Software Applications, P. Krishna, M. Babu, and
E. Ariwa, Eds., vol. 270 of Communications in Computer and Information

Science. Springer Berlin Heidelberg, 2012, pp. 461�469.

[13] Jiang, X., Wang, X., and Xu, D. Stealthy malware detection through
vmm-based "out-of-the-box" semantic view reconstruction. In Proceedings

of the 14th ACM conference on Computer and communications security

(New York, NY, USA, 2007), CCS '07, ACM, pp. 128�138.

[14] Kalafut, A., Acharya, A., and Gupta, M. A study of malware in peer-
to-peer networks. In Proceedings of the 6th ACM SIGCOMM conference

on Internet measurement (New York, NY, USA, 2006), IMC '06, ACM,
pp. 327�332.

[15] Kaspersky, E. Number of the Month: 70K per day. Online, Octo-
ber 2011. Available from: http://eugene.kaspersky.com/2011/10/28/

number-of-the-month-70k-per-day/.

[16] Kazanciyan, R. Old Web Shells, New Tricks. Online, December 2012.
Available from: https://www.owasp.org/images/c/c3/ASDC12-Old_

Webshells_New_Tricks_How_Persistent_Threats_haverevived_an_

old_idea_and_how_you_can_detect_them.pdf.

[17] King, S., and Chen, P. Subvirt: implementing malware with virtual ma-
chines. In Security and Privacy, 2006 IEEE Symposium on (May), pp. 14
pp.�327.

[18] Kramer, S., and Bradfield, J. A general de�nition of malware. Journal
in Computer Virology 6 (2010), 105�114.

7



[19] Landesman, M. Malware Revolution: A Change in Target. Online, March
2007. Available from: http://technet.microsoft.com/en-us/library/
cc512596.aspx.

[20] Li, J., Xu, J., Xu, M., Zhao, H., and Zheng, N. Malware obfuscation
measuring via evolutionary similarity. In Future Information Networks,

2009. ICFIN 2009. First International Conference on (Oct.), pp. 197�200.

[21] Moore, T., and Clayton, R. Evil searching: Compromise and recom-
promise of internet hosts for phishing. In Financial Cryptography and Data
Security, R. Dingledine and P. Golle, Eds., vol. 5628 of Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2009, pp. 256�272.

[22] Moser, A., Kruegel, C., and Kirda, E. Limits of static analysis for
malware detection. In Computer Security Applications Conference, 2007.

ACSAC 2007. Twenty-Third Annual (Dec.), pp. 421�430.

[23] Noreen, S., Murtaza, S., Shafiq, M. Z., and Farooq, M. Evolvable
malware. In Proceedings of the 11th Annual conference on Genetic and

evolutionary computation (New York, NY, USA, 2009), GECCO '09, ACM,
pp. 1569�1576.

[24] Preda, M. D., Christodorescu, M., Jha, S., and Debray, S. A
semantics-based approach to malware detection. SIGPLAN Not. 42, 1
(Jan. 2007), 377�388.

[25] Sharif, M., Lanzi, A., Giffin, J., and Lee, W. Impeding malware
analysis using conditional code obfuscation, 2009.

[26] Sunner, M. The rise of targeted trojans. Network Security 2007, 12
(2007), 4 � 7.

[27] Szor, P. The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

[28] Tatroe, K. Programming Php. Oreilly & Associates Inc, 2005.

[29] ?urfina, L., and Kolá?, D. C source code obfuscator. In Book of

Abstracts ISCAMI 2011 (2011), Ostrava University, p. 1.

[30] Walenstein, A., and Lakhotia, A. The software similarity problem in
malware analysis. In Duplication, Redundancy, and Similarity in Software

(Dagstuhl, Germany, 2007), R. Koschke, E. Merlo, and A. Walenstein, Eds.,
no. 06301 in Dagstuhl Seminar Proceedings, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[31] Witten, B., and Nachenberg, C. Malware evolution: A snapshot of
threats and countermeasures in 2005. In Malware Detection, M. Chris-
todorescu, S. Jha, D. Maughan, D. Song, and C. Wang, Eds., vol. 27 of
Advances in Information Security. Springer US, 2007, pp. 3�15.

8


