
Peter Wrench
Supervised by Prof Barry Irwin

 Recap of the problem description

 Recap of the objectives

 What I’ve done

 Problems I’ve encountered

 What I’d still like to do

 Questions

2

 PHP has become the language of choice for
developers of Remote Access Trojans (web shells)

 Proliferation of such shells has become more
aggressive in recent years

 Developers disguise their malware by employing
code obfuscation techniques

 Sheer volume and clever code obfuscation frustrate
efforts to identify and dissect malware

3

 A deobfuscator for normalising input code
before execution.

 A sandbox for executing and dissecting
malicious PHP code

 A reporting mechanism for feedback on any
offensive features detected by the system.

4

 Research into popular obfuscation techniques

 Evaluation of other proprietary deobfuscators

 Partial implementation of a deobfuscation system
with some basic reporting

 Installation and testing of the runkit_sandbox
extension for PHP

5

 PHP has a long list of functions that can be abused by an
attacker:

6

 I am interested specifically in functions that can be used for
obfuscation

 Several coding idioms are common across all shells:

7

 eval()

 Proprietary software can do some very impressive things:

8

 Trying to implement some of the features that I found by
looking at other decoders

 Focusing on extensibility

 Also trying to add code persistence and similarity analysis

 Using the runkit_sandbox to disable functions that I don’t yet

override manually

9

10

11

 An extension for PHP that allows you to run a script
in a controlled environment:

 Separate scope and stack

 safe_mode_include_dir

 open_basedir

 allow_url_fopen

 disable_functions

 disable_classes

12

13

 Learning HTML and PHP as I go along

 Configuring the runkit_sandbox properly

 Uploading the shells without letting them run

 Managing file permission carefully to prevent errant
shells from destroying my project (not just giving
Apache read, write and execute permissions like I
did to begin with)

14

 Save decoded scripts in a sensible way

 List variables, URLs and email addresses
discovered in code

 Graphically illustrate the chain of functions
called by a script

 Perform a similarity match between new
shells and those already stored

15

