
Peter Wrench
Supervised by Prof Barry Irwin

 Recap of the problem description

 Recap of the objectives

 What I’ve done

 Problems I’ve encountered

 What I’d still like to do

 Questions

2

 PHP has become the language of choice for
developers of Remote Access Trojans (web shells)

 Proliferation of such shells has become more
aggressive in recent years

 Developers disguise their malware by employing
code obfuscation techniques

 Sheer volume and clever code obfuscation frustrate
efforts to identify and dissect malware

3

 A deobfuscator for normalising input code
before execution.

 A sandbox for executing and dissecting
malicious PHP code

 A reporting mechanism for feedback on any
offensive features detected by the system.

4

 Research into popular obfuscation techniques

 Evaluation of other proprietary deobfuscators

 Partial implementation of a deobfuscation system
with some basic reporting

 Installation and testing of the runkit_sandbox
extension for PHP

5

 PHP has a long list of functions that can be abused by an
attacker:

6

 I am interested specifically in functions that can be used for
obfuscation

 Several coding idioms are common across all shells:

7

 eval()

 Proprietary software can do some very impressive things:

8

 Trying to implement some of the features that I found by
looking at other decoders

 Focusing on extensibility

 Also trying to add code persistence and similarity analysis

 Using the runkit_sandbox to disable functions that I don’t yet

override manually

9

10

11

 An extension for PHP that allows you to run a script
in a controlled environment:

 Separate scope and stack

 safe_mode_include_dir

 open_basedir

 allow_url_fopen

 disable_functions

 disable_classes

12

13

 Learning HTML and PHP as I go along

 Configuring the runkit_sandbox properly

 Uploading the shells without letting them run

 Managing file permission carefully to prevent errant
shells from destroying my project (not just giving
Apache read, write and execute permissions like I
did to begin with)

14

 Save decoded scripts in a sensible way

 List variables, URLs and email addresses
discovered in code

 Graphically illustrate the chain of functions
called by a script

 Perform a similarity match between new
shells and those already stored

15

