An Investigation of Digital Mixing and Panning Algorithms

JESSICA KENT

SUPERVISED BY RICHARD FOSS WITH CONSULTATION FROM CORINNE COOPER
Song is made up of multiple tracks that have been summed

Difference between analogue and digital summing is widely debated

Does a visual or audible difference exist?
 - Listening and visual testing

Can digital mixing algorithm be created to emulate analogue summing?
What I have done

- Literature Review
 - Investigated source code of three DAWs
- Started programming interface to easily test and switch between audio samples
- Recorded samples in music department studio
Investigated different aspects that could affect the digital summing process:
- Sampling Rates and Fletcher-Munson curves
- How analogue equipment sums the tracks
- Panning Laws
- Summing Algorithms

Previous testing method:
- Summing of five different DAWs tested (Leonard and Buttner-Schnirer, 2012)
 - Differences heard when panning included

Source code
All the Source Code
Comparing the code

- Testing from 2012 investigated three specific aspects of each DAW
- Differences in representation and implementation of
 - Gain
 - Panning
 - Summing
- Ardour, Audacity and Rosegarden dealt with all three in similar ways
Comparing the Summing

```c
void MixBuffers(int numChannels, int *channelFlags, float *gains, samplePtr src, samplePtr *dests,
                int len, bool interleaved)
{
    ...
    float gain = gains[c];
    float *dest = (float*)destPtr;
    float *temp = (float*)src;
    for (int i = 0; i < len; i++) {
        *dest += temp[j] * gain; // the actual mixing process
        dest += skip;
    }
}
```

```c
void default_mix_buffers_with_gain (ARDOUR::Sample * dst,
                                    const ARDOUR::Sample * src,
                                    pframes_t nframes, float gain)
{
    for (pframes_t i = 0; i < nframes; i++) {
        dst[i] += src[i] * gain;
    }
}
```

```c
void default_mix_buffers_no_gain (ARDOUR::Sample * dst,
                                  const ARDOUR::Sample * src,
                                  pframes_t nframes)
{
    for (pframes_t i = 0; i < nframes; i++) {
        dst[i] += src[i];
    }
}
```

```c
for (size_t i = 0; i < n; ++i) {
    sample_t v = cached[0][scanFrame + i]
    + cached[1][scanFrame + i];
    destination[0][i + offset] += v;
}
```
Different Summing Algorithms

Audio Sample Tester
Analogue Desk (Mackie) and Digital Workstation (Cubase)

Summed sine waves

- Different bit depths and sampling rates
- How high frequency and complex waves are affected by recording

<table>
<thead>
<tr>
<th>Waves</th>
<th>48kHz & 24-bit</th>
<th>48kHz & 32-bit</th>
<th>96kHz & 24-bit</th>
<th>96kHz & 32-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 kHz alone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300Hz + 30kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1kHz + 30kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300Hz + 1kHz + 30kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1kHz sin + 20kHz square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summed three contemporary songs of different genres

- Had to turn master volume down lower on digital workstation
The Rest of the Year

- Finish Audio Tester program
 - Play Tracks section of GUI
 - Code various mixing algorithms
 - If time: code different panning algorithms
- Conduct visual tests
- Conduct listening tests
QUESTIONS???