
A Comparison of Virtual Reality Platforms
Shaun Bangay

Department of Computer Science
Rhodes University

Grahamstown, 6140
South Africa

Internet: cssb@cs.ru.ac.za

1. Introduction

Over the last few years the field of virtual reality developed from a subject known to a few select

researchers to a household discussion topic. Research into the subject over that period has

increased the available software from a few systems running on expensive machines to systems

that can give reasonable results on an inexpensive PC.

Many of the newer systems are intended to allow the development of diverse applications and

are not restricted to one application. These systems are mostly university research projects, not

commercial products, and as a result, source code and/or design documentation for these systems

is often freely available.

This paper introduces the design of one such system, developed specifically for creating virtual

reality applications on a parallel architecture. This system, referred to as the VROS (Virtual

Reality Operating System), is then compared with other systems which were being developed at

the same time. Practical experience with the other systems is limited since many require

specialised hardware, both for computation and for interaction. For this reason, the discussion will

concentrate mainly on design rather than performance issues.



2. The VROS

The VROS was created as part of the development of a virtual reality system specifically for a

parallel architecture. The implementation environment is a cluster of transputers, communicating

via message passing. The design decisions are documented in detail in [3] but the following brief

description suffices for the purpose of the comparisons presented here.

The virtual universe is divided into worlds, representing each particular scenario. Each world

contains a number of objects, which have various attributes including position and orientation in

space. Some of the objects may represent the humans interacting with the system and are

sometimes referred to as users. A virtual reality application will normally consist of one or more

worlds containing object interacting toward a particular goal. An example of an application would

be a walkthrough consisting of a world containing the building object and a number of furniture

objects.

The VROS contains various device drivers for supplying data to the users (output device drivers)

and reading data from them (input device drivers). However the section of interest for this

discussion is the virtual world simulator, usually called the kernel.

The kernel is capable for supporting multiple worlds simultaneously, and allowing multiple users

to enter each world.

To utilise the parallel architecture effectively, each world is represented as a data structure

consisting of the attributes of the objects in that world. The objects must query the world for all

data relating to them and the other objects in the world. This approach is implemented as a

number of processes which can run on any of the processors in the transputer cluster. The world

processes simply act as servers, supplying data to each object and updating their databases on

request. In this way these processes can keep all the data consistent. The object processes control

the actions of the objects in the world and implement the laws of that world. In addition, the

object processes belonging to users may invoke the device drivers for additional control

information. A communication layer exists for routing messages between processes, masking the

details of the physical architecture. This is represented visually in Figure 1.



Figure 1 Summary of VROS design

Application programmers supply the control routines for each object. They are provided with a

set of routines for manipulating aspects of the virtual worlds. The underlying architecture is

invisible at this level. Routines exist for reading and updating the attributes of the current object.

Similar routines exist for reading and updating attributes of the other objects, although more

restrictions exist in this case. Objects can only control others if they are classed as owners of

these objects. No direct communication between objects is currently supported by the kernel.

Object processes may signal to each other by changing their attributes, or through communication

routines that must be implemented by the application programmer. Various other functions exist

to provide useful facilities such as transferring objects from one world to another.

3. Comparisons with other systems

The following sections describe other virtual reality systems, highlighting in particular the areas

in which they differ with the virtual reality system described previously.

3.1. AVIARY

The Advanced Interfaces Group at the University of Manchester is working on the development

of a general framework for advanced interfaces, which they are calling AVIARY [13][10]. This

system is intended to support a broad range of Virtual Reality environments.

The AVIARY system currently runs on transputers and SUN workstations. The communications



system is the module most affected by different architectures. Versions are implemented for

transputer networks and SUNs connected by ethernet. Graphics are produced by a hardware

renderer.

The model of reality used in developing the AVIARY system is similar to that used in the

VROS. Many of the same terms are used, but subtle differences exist in the meanings ascribed

to these words. ’Worlds’ are collections of attributes (eg. mass) and laws (eg. gravitation) rather

than the data structure containing collections of objects and a few attributes as for the VROS.

Objects are known as ’entities’ and may be controlled by processes called ’demons’. Applications

are distinct processes that manipulate the objects in the world. Many of the applications can exist

in a single world, controlling the various objects. An application in the VROS is a more abstract

concept consisting of one or more worlds, a collection of objects, and the manner in which they

interact.

As with the VROS, objects are also permitted to be bound to processes which control their

behaviour. An extra form of control is present, however, from users or applications. This differs

from that found in the VROS, where the only interaction between objects is through the

ownership concept. A user under AVIARY combines characteristics of objects, in that it also has

a visible manifestation, and of applications, in that it is also subject to control beyond that of the

physical laws of the world.

AVIARY is segmented into processes that can run in parallel. A communication system similar

to that used in the VROS is present to allow communication between processes. The processes

in the system consist of:

• Input processes (coinciding with input device drivers).

• Output processes (coinciding with output device drivers).

• A Virtual Environment Manager (where the VROS has multiple world servers).

• Environment Database that provides spatial management such as collision detection.

• Object Servers (corresponding to the object processes).

• Applications to control users or manipulate the virtual environment.

The communication and parallel strategies differ between AVIARY and the VROS. In the VROS

objects communicate only with the servers, and support for communication between objects is



minimal. The world servers maintain a central data base for each world, and computational

workload is limited to the object processes. With AVIARY, the various processes communicate

extensively. Each object keeps the data relevant to it, and updates are transmitted when changes

occur. Much of the computation is contained in the applications, and in the Environment

Database which may limit the degree to which parallelism can be used.

The problem of supporting the range of features necessary to implement any reality is present

in AVIARY as well. The solution implemented is to provide a basic world that may be

customised to the purpose required. This results in a conflict between the need to provide

assistance to the application writer while still allowing sufficient generality. The solution for the

VROS is to provide library routines to handle the most common cases with the hope that few

additions will be needed for more esoteric functions. The approach taken for AVIARY is far

more rigid. The set of all possible worlds is structured as a hierarchy. The top of the hierarchy

contains all possible worlds. Further down these laws are more refined. For example, some

worlds may have gravity, while others do not. This information may also be used to restrict the

types of objects that may be moved from one world to another. Consistency may be maintained

by making sure that the object is capable of obeying the laws of the new world. A system of

portals is used to link different worlds.

A strength of the AVIARY design lies in the ability to implement physical laws without

excessive involvement on the part of application writer. The object oriented nature of the system

with the use of inheritance to control attributes for different worlds is well suited to the design

of a support environment for implementing virtual worlds.

3.2. Cyberterm

This system is intended to implement a single virtual world, a cyberspace that allows multiple

users to share a common virtual area [9]. The single world is distributed over a number of

workstations with each machine acting as a server for a portion of the world. The system is

currently being implemented on PCs and SUNs connected by modem. Graphics are produced by

public domain rendering libraries such as VOGLE and REND386.

The position of objects is kept by the server database. When an object enters a sector it makes



a local copy of this data. Velocity information is used to update the position of other objects, and

updates are periodically issued when another object changes direction. This is appropriate where

communication is over long distances and over limited bandwidth connections. With the VROS,

it is acceptable to poll the server each time due to the fast transputer links.

Each processor runs a server and possibly a client. Movement from one ’sector’ of the world to

another requires the local client connecting to a different server. A similar system could be

implemented in the VROS using multiple worlds to represent the various sectors. The difference,

however, lies in the fact that the different processors in Cyberterm are separated by greater

geographical distances.

The servers must issue permission for various actions, such as movement. Private areas of space

can be created where rules decided on by the owner are enforced. This is the opposite policy to

that taken with the VROS where such rules must be voluntarily obeyed by the objects. The

bounding box attribute under the VROS is one way of defining a boundary, but if the object

process does not implement the attribute, no further action will be taken. This relaxed attitude

is reasonable for a prototype system, but may need to be more rigorously enforced in a

commercial system.

3.3. Distributed Interactive Simulation (DIS)

DIS and its predecessor SIMNET are standards for distributed interactive simulations [7]. They

are specifically intended for battlefield simulations. The simulations may involve thousands of

objects and take place over a wide area network.

Communication occurs over a relatively low bandwidth medium, such as ethernet. Each host

machine controls its own vehicle and keeps track of others by dead reckoning. Each host keeps

track of its dead reckoned position and, when this differs significantly from its actual position,

it transmits an update to all other hosts.

This approach is quite different to the VROS where all object data for a world is maintained by

a single server process.



3.4. DIVE

DIVE (Distributed Interactive Virtual Environment) is a loosely coupled heterogeneous

distributed virtual reality system based on UNIX and running over local and wide-area networks

using Internet protocols [1][2]. It provides shared memory over a network and controls the

sending of signals to processes.

A world consists of a set of objects and various parameters. It is a data structure, as in the

VROS. Processes are capable of moving from one world to another by intersecting gateway

objects. The implementation of a shared world differs from the server approach used by the

VROS. Under DIVE the world is maintained as a replicated database. Each process has its own

copy of the structure. Functions are provided to allow updating of entries in each copy for all the

processes in the world. If all processes leave a world, the database is discarded.

An event handling system is present in DIVE allowing processes to register for certain types of

event. The process can be notified when objects are created, removed, changed, or when

interaction between a user and an object occurs. A timer event allows certain tasks, such as

object movement, to be called periodically. Objects may be given primitive behaviour by

specifying a state machine which performs certain actions on various events. A limited number

of actions are possible, including moving, sending signals, and changing appearance.

The DIVE system consists of a set of processes each capable of manipulating the world and its

objects. These processes consist of visualizer processes that allow users to interact with the world

and application processes that operate on objects or introduce applications in the virtual world.

A number of high level tools are available for creating applications in DIVE. These functions

support the selecting and grasping of objects. A vehicles module exists which uses the users

actions to control the virtual environment. A gesture interpretation module in the VROS provides

a similar facility.

3.5. Division

The ProVision system produced by a Bristol based company, Division, is a virtual reality server



that connects to a number of host machines [8]. The system is based on T425 and T805

transputers. Various support software is available, including the Distributed Virtual Environment

System (DVS).

This system provides real time control and distributed event handling. All activities and

environment handling under DVS are performed by processes called actors. Sharing of data

between the actors is controlled by DVS. DVS provides more of a parallel programming platform

than a system devoted exclusively to modelling of virtual worlds.

Parcels of data can be shared between various actors. Each actor makes a local copy of the data.

In order for one actor to update the data, it must send an update request to a special actor, the

director, which will then propagate the update to other actors holding that data. Updating can be

done in exclusive mode which ensures that all actor processes have consistent copies at one time.

The alternative is general mode which is faster, but actors separated by low bandwidth

connections may experience delay in receiving the update. This is the opposite approach to that

used in the VROS, where only one copy of the data is kept by a world server.

The actors control everything from 3-D input devices to geometry databases. This approach is

more general than that used in the VROS, where specialised processes with customised

communication interfaces are used for each particular task. The approach taken by DVS may

make creating applications more complex, with greater understanding of the system required.

In order to cope with real time constraints, each actor can maintain its own local time. When

communicating, the director will compare the different times of each actor and adjust them so

that they are in step. This is useful in synchronizing different hardware devices that are operating

at different speeds.

Rendering is done in hardware, using Toshiba HSP polygon processors. A renderer process called

Paz converts a high level scene description, similar to the world data structure used in the VROS,

to the polygon equivalent. Calls to Paz can be made to alter the position, motion and illumination

of the objects.



3.6. Minimal Reality (MR) Toolkit

The MR toolkit is a library of functions for supporting the development of Virtual Reality

interfaces [6]. It provides support for a number of peripheral devices used for Virtual Reality. It

also provides facilities for distributing the Virtual Reality over multiple workstations. The MR

Toolkit assumes that different hardware will be used for the different requirements of each

process, and so concentrates of parallelism. Data sharing is via simulated shared memory on a

message passing architecture.

The system provides the basic services. Support for creating virtual reality applications, as found

in the VROS, will be provided by high level tools still being developed.

The toolkit consists of three levels of functions. The first level consists of device support

functions. These are implemented as a client-server pair, with the server continuously polling the

device so the client can have access to the most recent value without delay. The server also

performs the low-level processing of the data such as filtering. This approach is the same as is

used in the glove device driver in the VROS.

The second level converts the data from the devices into a convenient form for the application

programmer. This corresponds to the gesture recognition stage in the VROS.

The third level of functions provides services for the application programmer. These include the

maintenance of distributed data structures. This level would correspond to the virtual world kernel

in the VROS.

The processes in an MR application can have three roles. One must be a master to control the

application and start the other processes. There can be a number of slave processes that are used

to produce graphical output. There may also be a number of computational processes that receive

input from the master and return results to it. Data sharing is done by keeping local copies of the

data with each process. The data structures must be periodically synchronised to ensure all

processes have the correct values. The application programmer is responsible for specifying when

this update occurs. This contrasts with the approach taken in the VROS. Here data is not shared,

and the mechanics of updating the single copy of data structure is hidden from the application



programmer.

Communication is possible between separate MR applications. The master processes of each

application can send device and application-specific data to other master processes. Slave

processes must communicate via the master.

3.7. Multiverse

Multiverse is a multi-user X-Windows based Virtual Reality system [5]. The system runs on a

UNIX platform and is based on a client-server model. It consists of servers that model the virtual

world, and clients that are used for user interfaces. Each client and each server is a separate

process, and each may run on a different machine.

Multiverse models objects as a data structure with an associated control process. Multiverse

models a single world containing all the objects.

The clients consist of a single program that performs roughly equivalent functions to the input

and output device drivers under the VROS. The clients are generic, and independent of the world

being modelled by the server. They consist of a loop which renders the world, and sends any

input from the user back to the server.

A server process is the equivalent of a world server and its corresponding objects under the

VROS. The main functions of managing a virtual world are taken care of transparently; the

application writer is required to supply only a few functions. These are mostly trivial, the one

of interest being the animateWorld function that defines the nature of the world. It is called

from the main server loop and is usually used to move the objects in the world. Since all

processes runs on a single machine, there is no need for data sharing.

The objects may have special code to control their movement. Objects interact with each other

and with the world using an event handling mechanism. These events include MOVE_EVENT

that should cause the object to move, COLLISION_NOTIFY_EVENT for when objects have

collided and TERM_NOTIFY_EVENT for when an object ceases to exist. The objects are not

separate processes as with the VROS, but have to be called as part of the server process. The



object control routines are generally invoked when an event occurs which affects them. This sort

of inter-object communication must at present be created by the application programmer when

using the VROS.

The breakdown is similar to that of the VROS. The principal difference is the degree to which

parallel processing is done. Simulation of the world in Multiverse uses a single thread of

execution, as opposed to the multiple processes under VROS. However, the machines that would

support Multiverse typically contain a single processor, and so creating more processes would

be redundant.

3.8. VR-386

VR-386 [11] is virtual reality system for the PC which is descended from Rend386, a polygon

rendering library for 386 and 486 based systems with VGA displays [12]. The current version

is at an intermediate stage of development, and strongly reflects the need for efficiency when

rendering views of worlds.

VR-386 represents a world as a structure containing all the visible objects in that world. It is

intended to be capable of supporting multiple worlds and to allow switching between these

worlds.

The objects in Rend386 could have several representations corresponding to different levels of

detail. Figures constructed of a hierarchy of objects can also be defined. Objects are then stored

relative to the parent object in the hierarchy. For example, in a human figure the arms and legs

may be made children of the torso object. VR-386 goes further by adding a degree of animation

and automatic updating for parts of a figure. Objects move when the parent object moves, with

additional effects from the joints linking them.

VR-386 applications run as a single process, as opposed to the multiple processes under the

VROS. VR-386 provides for extensive control of input and output, and also includes many

functions for manipulating virtual worlds, similar to those provided by the VROS.



3.9. The Virtual Environment Operating Shell (Veos)

Veos is an environment for creating distributed applications for Unix [4]. It is designed for

prototyping distributed Virtual Reality applications.

The processes required to implement a virtual environment are known as entities and can be

distributed across a number of Unix workstations. A data type known as the ’grouple’ is used as

the standard data structure. The grouple is an extension to the ’tuple’ used in the Linda

programming paradigm. Grouples consist of nested tuples. Lisp is used as the programming

interface to Veos.

Each Veos entity consists of a distinct Unix process that controls interpretation of the task written

in Lisp. Each entity has associated grouplespaces for which pattern matching facilities are

provided. Asynchronous message passing of grouples between entities is supported.

The use of interpreted Lisp makes the system flexible and easy to use. It also allows evaluation

of program stubs passed as messages. This however will often limit the performance of the

system.

The Veos system provides support for general distributed applications. Creating a Virtual Reality

application still requires a great deal of work on the part of the programmer. The pattern

matching facilities for the grouplespaces can assist in the modelling of virtual worlds.

Even though the grouplespaces may suggest use of shared memory, process communication still

involves message passing.

3.10. Summary

Table 1 summarises the approaches taken by each system described in this paper. The areas for

comparison are as follows:

Architecture : Hardware used by the system

Level of Support : Support for virtual reality applications in terms of

basic structures included in the system



Complexity : Support for interaction between more than one user

Table 1 Summary of differences in the various systems

Architecture Level of
Support

Complexity Parallel DecompositionObject ImplementationObject Control and Interaction

AVIARY Transputer
Clusters and Sun
networks

Object
User
World
Application

Mutiple worlds
Multiple users

Parallel processes which
control objects and implement
applications

Processes communicating
with messages

Inter-object communication and
inheritance of laws of the world

CybertermPCs and Suns
connected by
modem

Object
User
World
Application

One world
Multiple users

Servers for storing portions of
the world database, and clients

Clients and world servers
have a copy of data, and
respond to updates

Clients query world servers for
permission for certain actions

DIS Large numbers of
workstations
connected by
ethernet

_____ _____ _____ Independent copies of data
is kept and modified by
dead reckoning and
occasional update

_____

DIVE Networked
workstations

Object
User
World
Application

Mutiple worlds
Multiple users

Application processes acting
on objects and Visualiser
processes

Object data stored local by
simulated shared memory.
Must be locked while
updating

Events

Division Loosely coupled
workstations and
transputer clusters

None
defined

_____ Concurrent actors performing
all tasks

Actors keep local copies
and trasmit updates

Events

MR ToolkitWorkstations
connected by
ethernet

Object only_____ Master, slave and
computational processes

Data kept by master and
updated on slave at
specifed points

_____

MultiverseA Unix
workstation
running X
windows

Object
User
World
Application

One world
Multiple users

Server process which
simulates world and objects,
and client processes

Clients share a common
database on the server

Events

VEOS Networked
workstations

None
defined

_____ Entities executing in parallel_____ Communication via grouples

VR-386 PC Object
User
World
Application

Multiple worlds
One user

No parallel processingObjects share a common
database

Animations

VROS Transputer clusterObject
User
World
Application

Multiple worlds
Multiple users

Object processes controlling
objects and world servers
containing database

Object processes query
world servers for data

Signalling though object
attributes

and world

Parallel Decomposition : Manner in which parallelism is used within the

system

Object Implementation : The way in which object share data

Object Control and Interaction : Facilities for co-ordinating object behaviour



4. Conclusion

The comparison with the other recently developed general virtual reality systems showed a

number of features common to all systems. These have been implemented in different ways.

Generally, the systems identify the concept of an object, with objects grouped into worlds. The

objects are generally controlled in some manner to respond in a realistic manner to the other

objects and the nature of the world. Some of the system described have a means of enforcing this

control on objects. A shortfall in the design of the VROS is the lack of facilities for object

communication. At present, this must be manually built into each object process by the

application programmer.

It is especially noticeable that almost all systems make use of some degree of parallel processing.

The extent of this varies with the implementation architecture. Some form of data sharing is then

necessary. The ways in which this is done is very much dependent on the bandwidth available

for communication. Systems with slow links may use predication to estimate the position of other

objects, while faster communication allows data to be shared whenever necessary. The strong

point of the VROS is that it makes greater use of parallelism than the other systems, and may

achieve a more even distribution of the computational load.

5. References

[1] Andersson, M., Carlsson, C., Hagsand, O., and Ståhl, O., "DIVE The Distributed

Interactive Virtual Environment Tutorials and Installation Guide", Technical Report, Swedish

Institute of Computer Science.

[2] Andersson, M., Carlsson, C., Hagsand, O. and Ståhl, O., "DIVE The Distributed

Interactive Virtual Environment Technical Reference Manual", Technical Report, Swedish

Institute of Computer Science.



[3] Bangay, S.D., "Creating Virtual Reality Applications on a Parallel Architecture",

Unpublished paper.

[4] Coco, G.P., "The VEOS project : VEOS 2.0 Tool Builders Manual", available for

anonymous ftp from milton.u.washington.edu as public/veos/veos.tar.Z.

[5] Grant, R., Multiverse description and sources, available by anonymous ftp from

ftp.u.washington.edu as public/virtual worlds/multiverse 1.0.2.tar.Z.

[6] Green, M., "Minimal Reality Toolkit Version 1.2 : Programmer’s Manual", Technical

Report, University of Alberta, Edmonton, Alberta.

[7] Locke, J., "An Introduction to the Internet Networking Environment and SIMNET/DIS",

available by anonymous ftp to sunee.uwaterloo.ca as pub/vr/documents/DISIntro.ps.

[8] Pountain, D., "ProVision: The Packaging of Virtual Reality", Byte, 16(10), October 1991.

[9] Snoswell, M., "Overview of Cyberterm, a Cyberspace Protocol Implementation", available

b y a n o n y m o u s f t p t o s u n s i t e . u n c . e d u a s

pub/academic/computer science/virtual reality/papers/Snoswell.Cyberterm.

[10] Snowdon, D.N., West, A.J., Howard, T.L.J., "Towards the next generation of

Human Computer Interface", Informatique ’93: Interface to Real and Virtual Worlds, March 24

26 1993, 399 408.

[11] Stampe, D., "vr_api.h", available for anonymous ftp from psych.toronto.edu as

pub/vr 386/vr_api.h

[12] Stampe, D. and Roehl, B., "REND386 A 3 D Polygon Rendering Package for the

386 and 486 : LIBRARY Documentation Version 4.01 September 1992", available for

anonymous ftp from sunee.uwaterloo.ca as pub/rend386/devel4.zip.

[13] West, A.J., Howard, T.L.J., Hubbold, R.J., Murta, A.D., Snowdon, D.N., Butler,



D.A., "AVIARY A Generic Virtual Reality Interface for Real Applications", An invited paper

for "Virtual Reality Systems" May 1992 sponsored by the British Computer Society.


