
Analytical Simulation for Performance Analysis of Distributed Virtual Reality
Systems

Shaun Bangay
Peter Clayton

Computer Science Department
David Sewry

Information Systems Department
Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa

cssb@cs.ru.ac.za

Abstract

Existing performance analysis techniques have limita-
tions when used on distributed virtual reality systems, in-
cluding a lack of support for the measurement of interac-
tion latency. Results tend to be numerical in nature, lim-
iting their usefulness when comparing models. This paper
describes an approach to using simulation to generate ana-
lytic forms of the performance measures required for virtual
reality systems.

The execution of each process is simulated, keeping track
of the execution time of each process as a symbolic expres-
sion. Cycle times and latencies can be found by measuring
the appropriate time intervals during simulation.

The application of analytical simulation is illustrated
by applying it to common issues in distributed virtual re-
ality systems: network performance, database distribution
and measurement of interactive performance. Comparing
the analysis results with an implementation of the model
demonstrates the accuracy of the predictions.

1. Introduction

The requirements of performance analysis for distributed
virtual reality systems differ from those for other networked
and parallel systems in that the former place a very much
greater emphasis on interaction. It is no longer sufficient
merely to examine speedup, and throughput. A value of
great importance is interaction latency, the time delay be-
tween a user providing input to the system and experiencing
the result of that action. This, together with the rate at which
the system cycles, the frame rate or its reciprocal, the cycle

time, is essential for describing the performance of virtual
reality systems [7] [15] [5].

This paper describes a performance analysis technique
capable of producing the metrics relevant to virtual reality
systems. The approach is based on simulation of a model of
the system, but produces results in analytic form, as expres-
sions relating the variables in the model.

The following sections describe the analytical simulation
approach and illustrate its use by applying it to common is-
sues in distributed virtual reality systems: network perfor-
mance, database distribution and measurement of interac-
tive performance.

2. Related Work

A number of studies have been done describing differ-
ent distributed distributed virtual reality systems and con-
trasting the different parallel decomposition strategies [16]
[21] [10] [20]. An element lacking in these studies was a
discussion of the relative performance characteristics of the
various approaches.

This may be due to the lack of a suitable method for
performing this comparison. Common approaches to per-
formance prediction in parallel systems are Petri Nets and
Data Flow Graphs. Stochastic Petri Nets are not considered
suitable for analysis of large, real-time systems [1] and the
Markovian analysis for large nets, with both stochastic and
deterministic times, becomes impractical [8]. Data Flow
graphs offer the prospect of determining cycle times and la-
tencies but require simulation to calculate the latter value
[18] [13]. Both approaches resort to simulation to solve
large problems, producing numerical values from their anal-
yses which are not particularly conducive to comparison
across architectures.

1

Other approaches to performance prediction are also un-
able to provide an analytical solution or are specific to a
particular form of parallel decomposition [2]. Studies in
which analytical solutions are derived are limited to prede-
fined variables [12].

The desired analysis technique should possess the fol-
lowing properties to be suitable for the comparison of dis-
tributed virtual reality systems:

� Provide measures of latency and cycle time

� Be capable of modelling the decomposition strategies
used for virtual reality systems

� Produce results suitable for comparison purposes

The limitation of simulation is that it is not general
enough to cover results that are not explicitly simulated.
Analytic performance modelling on the other hand is either
ad hoc, extremely complex and computationally intensive,
or does not provide the desired performance measures. The
next section describes an approach which satisfies these re-
quirements

3. Analytical Simulation

���������
	���������������������������� ����!����"#�$���%&"(')����	��

This approach will be introduced by way of a simple ex-
ample. Consider a simple client-server system with two
clients each which send a request to the server, get a re-
ply and processes it for a period represented by variable X.
The server picks up a request, takes period Y to service it
and returns a reply. Communication is synchronous; both
processes must be ready to take part in an exchange before
a message can be passed. This system is simple enough to
be analyzed by hand, and as may be expected, the result
depends on the relative sizes of X and Y.

Simulating the execution of the program will produce the
process activity versus time diagram in Figure 1, related to
the Single Graph Play diagrams used for Data Flow analysis
in [18]. The intervals at which processing occurs in each
process are shown as solid blocks. During the remainder of
the time the process is blocked waiting for communication
with another process.

In this case the clients are identical, so the one which is
first serviced by the server will be labelled C1 and the sec-
ond C2. The second synchronization between C1 and the
server occurs once C1 has finished processing for the pe-
riod X, and after the server has completed processing C2’s
request, its second delay of period Y. This can be calculated
as:

From C1’s point of view: Y + X

X > Y

0 Y 2Y 2Y+X
Y+X

Y > X

Y 2Y 3Y

C1

C2

Server

C1

C2

Server

Time

Time

*,+.-0/�1325476&8913:<;=2)>?>A@B;=CD+.E<+FCHGIE02�13>?/(>KJL+�MN2PO&+RQ
S -�1 S MUT�:�1P;=V.+�2)WXCYQZ>?2[1\E72[1B>DG<>]C?2[M

From the servers point of view: Y + Y

Clearly this time depends on the relative sizes of X and
Y. If X is larger, the client will delay the synchronization,
otherwise the server is the delaying factor.

A trace of the times at which C1 finishes its processing
is given below:

For X ^ Y : X+Y 2X+2Y 3X+3Y ... n(X+Y)

For Y ^ X : X+Y X+3Y X+5Y X+7Y ... 2nY+X-Y

The latency and cycle times for C1 can now be easily
calculated. In this case, it is assumed that input arrives just
before the client issues a request to the server, and output
occurs just after client processing (X) is complete. Since
latency is the period from input to corresponding output,
latency and cycle time are the same in this example, and
given by the time between two successive cycles:

For X ^ Y : Latency = Cycle time = X + Y

For Y ^ X : Latency = Cycle time = 2Y

This technique will be illustrated for a slightly more
complex model in which latency and cycle time differ, be-
fore the general algorithm is presented.

Consider a common parallel processing topology, the
pipeline. The one modelled will have three nodes and will
run the processes as shown in Figure 2, where two markers
are included to show where input (Latency 1) and output
(Latency 2/Output) occur. It is assumed that input data is
always immediately available and the output data can be
delivered without delay. The latency in this system is the
time taken for any specific datum to be transformed from
input to output. The cycle time is the time taken per result
produced. As with the previous example, a process activity
versus time diagram shows that several decisions need to
be made regarding the relative sizes of the variables, in this

process 1
do forever

Marker: Latency 1
consume input
process for A seconds
send data to 2

process 2
do forever

receive data from 1
process for B seconds
send data to 3

process 3
do forever

receive data from 2
process for C seconds
produce result
Marker: Latency 2 / Output

*,+�-7/(132��!6#J��(1\2)2 8913:<;�2)>D>?:�1 8 +���2)V.+�W(2

case A, B and C, in order to draw the process activity ver-
sus time diagram. The possible situations are slightly more
numerous in this example, in fact there are infinitely many
of them. The various cases are listed in Figure 3

The complex inequality arises from a transient which
works its way out of the system after a certain number of
iterations, dependent on the relative values of A, B and C.

By marking certain points in the program and calculat-
ing the time at which they occur, it is possible to find val-
ues for latency and cycle time. The values given in Fig-
ure 3 show the time at which program execution reached
each marker for cycle n and the resulting cycle times and
latencies. An algorithm for deriving the various cases as-
sociated with the analytical simulation technique as well as
the sequence of time values at various points is presented
in Figure 4. This algorithm performs essentially the same
process as illustrated in the previous examples. A process
activity versus time diagram is constructed by simulating
the program. The synchronization points are analyzed to
determine the time of synchronization. This analysis may
result in various constraints on the variables being set up,
to guide further simulation. By working symbolically as il-
lustrated in the examples in this section, analytic solutions
can be obtained with constraint regions which specify the
variable values for which each solution applies.

The approach in its current form has several problems.
The last line in Figure 4 assumes the system is going to set-
tle into a stable state after some point. This line requires a
user specified cutoff, at a point where sufficient analysis has
been performed. Some systems may never reach a point af-
ter which all possible relationships have been enumerated.
Such a system was illustrated in the pipeline example ear-
lier. The problem of choosing the cutoff point is discussed

Latency 1 Latency 2/Output� ^��
	 � ^�� :
(n - 1) A nA + B + C� ^��
	� ^ ������� �����������������! � :
�"���#�$ � �������&%' � �����#�������! (�)	*�,+�-�./.10 :
(n - 1) A, n � k+2 A + B + nC
A + B + (n-3)C, otherwise

� ^ � 	2� ^�� :
0, n = 1 A + nB + C
A + (n-2)B, otherwise

� ^ � 	�$^�� :
0, n = 1 A + B + nC
A, n = 2
A + B + (n-3)C, otherwise
Latency Cycle Time� ^��
	 � ^�� :
A + B + C A� ^��
	� ^ ������� �����������������! � :
�"���#�$ � �������&%' � �����#�������! (�)	*�,+�-�./.10 :
B + nC - (n - 2) A, n � k+2 C
3C, otherwise

� ^ � 	2� ^�� :
A+B+C, n = 1 B
2B + C, otherwise

� ^ � 	�$^�� :
A+B+C, n = 1 C
B+2C, n = 2
3C , otherwise

*,+.-0/�13243�6�5 S C?2[W&; G S W&O ;=G<;=V.2 CD+�MN2 T�:71 S 3
�(13:<;�2[>?>?:�1
�#+6��2[V�+.W&2

REPEAT

Simulate processes keeping
track of the running time of
each process
When two processes need to
synchronize, compare their
running times
IF the relation between
times cannot be determined
THEN

FOR all possible
relationships between
the times

Assume that
relationship
holds and
simulate with
that assumption

ELSE

Synchronization will
occur at the later of
the two times

UNTIL sufficient data has been
accumulated

*,+�-7/(132��(6X@PV.-0:�13+.C �&M T�:�1A@PW S VFG!CD+�; S V���+.M5/&V S QC?+.:0W

further in section 3.3.

��������� �	� ���0� �X�&������% ��	�� ����(�.���[���7��� ������ �����

����"&�$����%("&')�.�[��

The full extent of the Analytical Simulation method has
yet to be described, however it is useful to describe a num-
ber of implementation issues at this point before any addi-
tional complexity is introduced.

An implementation of the Analytical Simulation algo-
rithm was constructed to perform the analysis of the sys-
tems described later in this paper. The emphasis for these
models was to provide facilities for the analysis of paral-
lel processes communicating using message passing. Other
architectures may also use the algorithm, however, all dis-
tributed virtual reality systems known to the authors are
based around a message passing paradigm [3]. The sim-
ulation need only model the duration of sequential process-
ing, and inter-processor communication to provide results
suitable for performance analysis. The simulation language
consists of a few simple commands:

send send a message to another process

receive receive a message from another process

think the process performs sequential processing for
a specified time

A variable name can be associated with each command
to represent the duration of sequential processing, or the
communication time. These variable names will appear in
the output of the analysis.

A separate set of variables, evaluated by the simulator,
may be used as arguments for these commands. The re-
ceive command can be used non-deterministically by using
an uninstantiated variable as the name of the source pro-
cess. In this case the message received will be from the first
process to attempt to send. In the case of more than one pro-
cess fulfilling this requirement, all possible alternatives will
be examined. A number of simple flow-control constructs
are provided as well. The system is assumed to consist of
a number of processes each consisting of an infinite loop
surrounding a sequence of these commands.

Synchronization occurs when two processes attempt to
communicate. The run times of each of the processes is a
linear expression consisting of the sum of a number of think
times and, possibly, communication times. Deciding which
is the greater involves comparing the two in the presence
of assumptions about the interrelationships of various other
expressions.

Making the comparisons turns out to be a reasonably
complex problem and the solution is discussed in the next
section.

3.2.1. Comparing run times

Implementation of the Analytical Simulation algorithm de-
pends on the ability to compare the local times of the vari-
ous processes when represented as a linear expression, con-
strained by a number of inequalities, in turn composed of
linear expressions. This comparison is required not only
where shown explicitly in the algorithm, but also for select-
ing the first process on non-deterministic receives as well as
for identifying extremes in the results.

The method for comparing linear expressions is pre-
sented below:

������� +
�� 	
�� �

	��	

������� +
�� 	
����

	��	

The problem is to determine if A ^ B, A � B or no known
relationship exists, given

�� 	
����
	����	

^
�� 	
����

	����	 �
+ � . . .�� 	

^ - � + � . . . �

This problem can be restated more simply by assigning�
	
+ � 	! �

	
and " 	�� + �

	��#
�
	��

as:
Determine if $ �	
%� � 	 	 ^ -�	 ��- or if no known rela-

tionship exists, given:

�� 	
%� "
	�� 	

^ -
�
+ � . . .&� 	

^ - � + � . . . �

The inequality $ �	
�� � 	 	 ^ - will hold if it can be writ-
ten as a linear combination of the assumptions with only
positive coefficients. The case $ �	
�� � 	 	 � - can be re-
duced to the previous case if rewritten as $ �	
%� � 	��	 ^�- .
Thus it is only necessary to attempt to solve the first case.

A simple transformation reduces the problem to one with
a known solution. Attempting to find the desired linear
combination produces an expression of the form shown in
(1), where ' 	 (^ -*) 	 ^ - , and

� 	��
	,+ 	�- and . are
matrices whose components are the / 	 	,0 	�� 	21 	 	43 	 and 5 	
respectively. The ' 	 are the required coefficients and the) 	
are slack variables to enforce the inequality.

. ��67+4�&�8- +9. � (1)

Solving for the 1 	 , and using the requirement that each) 	 ^�- , produces (2). This is the standard form of the con-
straints in a linear programming problem [19]. The com-
plete solution to the linear programming problem is not re-
quired, however, it will suffice to find a single point in the
feasible region. The existence of such a point implies the
existence of a positive coefficient linear combination of the
assumptions.

�8- � �
(2)' 	 � - (3)

Finding this single point uses the Two-Phase Method de-
scribed in [9]. This method consists of introducing two sets
of slack variables and applying the simplex method to re-
move one set. The success or failure of the simplex method
is dependent on the existence of a solution.

If a relationship between A and B can be found then the
next step in the simulation of the model is well defined. If
no relationship exists, then an additional constraint is intro-
duced, specifying the relationship between A and B. Since
two possibilities exist (A ^ B, or B ^ A), each must be in-
troduced in turn and both branches simulated. Resolving
non-determinacy can cause a number of constraints to be in-
troduced at one point, splitting the simulation path in more
than two ways.

���F���L�#�=�!�=�9: ���<�7� ��;��=�X�<:=��"#�<:N�=" ��	�� �������������

�����A������ ���!����"#� ���7� 	 ���>=� ��

The Analytical Simulation approach as described previ-
ously suffers from two significant limitations:

� Non-determinism causes the possible simulation paths
to increase, often exponentially. This makes thorough
analysis of the results time consuming and increases
the computing resources required to perform the anal-
ysis.

� The simulation is only performed for a limited number
of steps. Any characteristics of the model that are not
present in this portion of the execution trace will be
ignored.

The systems being modelled in this paper, virtual reality
systems as well as real-time systems in general, are usually
cyclic. This periodic nature means that the states of the pro-
gram will repeat. The reachability graph of program states
will be finite, and thus the problem of selecting a cut-off
point for the Analytical Simulation algorithm falls away.

Non-determinism creates states with multiple outgoing
arcs. If the resultant nodes do not occur in cycles then this
behaviour is only transient, and can be identified as such.

When the node occurs in a cycle, then it can be identified
as a recurring state. Since the complete state space can be
explored, all aspects of the model can be examined.

Before examining the methods for analyzing state space
graphs a working definition of the state of a parallel pro-
gram is given.

3.3.1. Defining the state of a parallel program

The state of a conventional sequential program consisting
of a sequence of instructions can be specified by providing
values for the program counter and all variables defined in
the program. These variables include the registers and stack
used for executing the program.

If one considers a number of sequential programs run-
ning simultaneously, a parallel program in which no inter-
action occurs between processes, then the state of the paral-
lel program can be given as a tuple, containing the states of
the individual processes. Once synchronization constructs
are introduced however, then this is no longer sufficient. A
field giving the local time of each process is required.

As explained previously, the periodic nature of the pro-
grams can produce cyclic state space graphs of the program
execution. Adding in a field giving the absolute time for
each process would prevent this, since time is monotoni-
cally increasing. Instead relative values are used. One pro-
cess is used as a reference and set as the origin of the time
axis in each state. The times of the other processes are given
relative to the reference.

Report markers in the program are used to mark states at
which important events occur, such as the beginning or end
of a timing period for measurement of latency or cycle time.

3.3.2. Exploring state space

Cycle times can be found by calculating the time it takes
for a state containing a state marker to recur. Usually a state
marker will indicate a point at which the system will pro-
duce output.

Latency is slightly more complex to calculate. Latency
can be found by calculating the time taken to go from a state
where a first marker occurs, to a corresponding state where
a second marker occurs. Latency measures the time taken
for information to move from one state to another. Thus
the notion of corresponding markers requires that there be
a message sent from the process with the first marker, af-
ter that marker is executed, and before it is executed again.
This message must arrive at the process with the second
marker. Time measurement ceases with the first execution
of the second marker after the message arrives.

��������� : � "��A������������������ ������ ���<����"&�

3.4.1. Area of application

The development of the analytical simulation approach has
produced a number of enhancements to the analysis process,
which have tended to limit the applicability of the approach
to specific categories of programs. Ultimately, the approach
is intended for use on message passing, virtual reality sys-
tems, and is capable of that in all its manifestations. In its
least sophisticated versions, analytical simulation is appli-
cable to many other areas.

The original algorithm is applicable to any architecture
and model. At this stage, the only requirement is the ability
to simulate the program, and to determine the length of the
execution path for each process when synchronization oc-
curs. With this very general approach there is no indication
of when the analysis should terminate.

The next refinement, discussed when considering the im-
plementation details, was to limit the simulation to models
of message passing architectures. This relied on the fact
that all virtual reality system surveyed had used message
passing as their communication method. Having made this
decision, the modelling language could be specified and the
simulation engine could be implemented.

The next refinement allowed for automatic termination
of the analysis and allowed for finite analysis in the presence
of non-deterministic constructs. This state space analysis
requires that the region of state space that could be reached
by the model (reachability graph) is finite. For real-time
systems which do not terminate, this requirement means
that the model must be periodic.

3.4.2. Limitations

The Analytical Simulation approach to performance mod-
elling does have limits in its applicability.

� Analysis requires the presence of repeated values, thus
the state space of the systems being modelled must be
cyclic.

� The size of the search through the state space can be
substantial, especially if there are many points at which
a non-deterministic choice is possible.

� Human intervention is still required to determine ef-
fects of different numbers of processors.

3.4.3. Advantages

Given that the analytical simulation approach has some lim-
itations, it also has several features which are not found in
other performance analysis and prediction tools.

� It generates metrics suitable for performance analysis
of virtual reality systems.

� It produces output as a symbolic expression, allowing
the effects of the variables in the model to be clearly
identified.

� Automatic constraint generation removes the need to
specify limits, or distributions for the variables.

� It supports non-deterministic constructs, which other
approaches [11] have trouble with.

� Transient analysis is straightforward using analytical
simulation.

4. Verifying the Analytical Simulation Tech-
nique

This section will apply the analytical simulation ap-
proach to a common problem in distributed virtual reality
systems, that of collision detection. This problem provides
a thorough test of the support of a virtual reality system for
distributing the database representing the virtual world, and
of its ability to control and synchronize independent pro-
cesses.

A number of approaches to collision detection are dis-
cussed in [6]. These can be implemented in a numbers of
ways on a parallel architecture. A common technique for
distributing data in virtual reality systems is to use a client-
server approach [3] [17]. An outline of an algorithm for per-
forming collision detection, distributed using a client-server
approach is given in [4]. It simulates a collection of point
molecules in a closed container.

The server maintains a database of the position of every
molecule. Each molecule is controlled by its own process,
one of the clients. Each client calculates the time at which
it will collide with each of the other objects, requesting a
copy of the database from the server to do so. The earliest
time is selected and sent to the server which relays the time
of the earliest collision back to all the clients. Each client
can then simulate the motion of its molecule until the time
of this first collision. The server database is then updated,
and the process repeated.

This section will examine performance of the client
server model on Ethernet. It is assumed that only the pro-
cesses in the system being modelled have access to the net-
work cable. The model does not implement other Ether-
net protocols such as packet collision detection and random
backoff. Monitoring of cable transmission shows that these
effects occur extremely infrequently when the communica-
tion medium is used for single, synchronized systems such
as this.

N Cycle time/[ms] Cycle time/[ms] % Theory /
Practice Theory Practice

1 22.7 22.1 97.7
2 26.6 25.8 97.0
3 31.9 29.6 92.6
4 38.1 35.2 92.5
5 44.7 40.8 91.2

J S�� V.2�406(8 2[1\T�:713M S W&;=2 :7T � /���2�132)O�� C$�(2[13W(2[C
� V�+.2)WXCYQ �<2[1\E72[1B>DG<>DCD2)M

The analytical simulation implementation uses syn-
chronous communication. Asynchronous communication,
such as for Ethernet, is modelled using buffer processes.
The client-server algorithm is such that each message re-
quires an answer, so each client needs to be able to buffer
only one message, and the server needs to buffer at most N,
where N is the number of clients.

Measuring communication time (C) gave a value of
2.9ms, with a packet size of 1000 bytes. At the specified
bandwidth of 10Mbits/s, transmission should have taken
only about 1.0ms. The extra 1.9ms measure included ex-
tra time required to get the message through the hardware
and a rather extensive array of network drivers. Two values
S1 and S2 are introduced into the model to represent over-
heads on sending and receiving messages from the network
respectively.

Examination of the packet transmission for a variety of
different communication patterns revealed further interest-
ing behaviour introduced by the underlying network soft-
ware. This software contained some complex buffering
mechanisms which complicated the inter-packet transmis-
sion times. The behaviour of the send operation depends
on the time of the last communication. If the network driver
was still occupied in sending the last message, the new mes-
sage was placed straight into a buffer and the sending pro-
cess could continue immediately. If the driver was idle, the
sending process was required to block for a period S1 be-
fore the message was placed on the wire and the sender was
allowed to continue. The buffered message could not be
sent as soon the wire is idle again, instead it had to wait an
additional S1 seconds.

This asymmetric communication complicates the model.
Fortunately this is limited to the server process, since the
client processes never send two messages in quick succes-
sion. The enhanced model is shown in Appendix A.1. The
time required for simulation of particle motion in the client
is represented by the variable X, the response time of the
server by variable Y.

A comparison between the measured and predicted re-
sults from this model are shown in Table 1.

The theoretical values are less than those measured as

Input
Process

Dynamics
Process

Scene Management
Process

Render
Process

Network Management
Process

User Input

Ready for
next frame

Updated state
vectors

Updated state
vectors

Entity state information

Display Buffers

Ready
for next buffer

*,+.-0/(1\2��<6�� S C S�� :�� +�W S W	� 8 �
� � J W(:�O(2

may be expected, since the model ignores various small
overheads. Some of the differences are due to the preci-
sion in the measurement of the variables; the accuracy of
measurement is estimated at about 5%. There is inhomo-
geneity in the machines involved. Variations in the values
measured on the machines (X and Y) were about 10%.

Results of equivalent or better accuracy are achieved us-
ing other architectures and communication protocols [4].

5. Simulation of a Virtual Reality System

The section describes the analytical simulation of a
model of a single node of a virtual reality system. It illus-
trates the power of the approach for providing simulation
results which are applicable to all values of the variables in
the system.The model is that of the software running on a
single machine of the well known NPSNET virtual reality
system [14]. The relationships between the components of
the system are illustrated in Figure 5. The interactive per-
formance of the single node is of interest, inter-processor
communication is modelled very coarsely.

The model for this is given in Appendix A.2. The vari-
ables D, S and R represent the time spent simulating the
dynamics, managing the scene and rendering each frame of
graphical output respectively. The variable C is the time be-
tween updates from the other nodes in the network. The two
values of interest in a virtual reality system are the latency
and the cycle time. The cycle time for this node is the in-
terval between recurrences of the output report marker, the
latency is the time taken for data created at the point indi-
cated by the input report marker to reach the output.

The results for the analytical simulation of this model are
as follows:

S ^ C, D+S ^ R : Cycle Time = D+S

Latency = R+S+D

S ^ C, R ^ D+S : Cycle Time = R

Latency = 2R

C ^ S, D+C ^ R : Cycle Time = D+C

Latency = R+C+D

C ^ S, R ^ D+C : Cycle Time = R

Latency = 2R

The results clearly show for which variable values the
various performance characteristics will apply. The vari-
ables which affect the performance in any region can also
be easily identified, and their effect clearly seen.

6. Conclusions

This Analytical Simulation approach to performance
analysis has been described in detail. It has been shown
that it possesses characteristics that make it suitable for ap-
plication to distributed virtual reality systems. Extensions
to the initial algorithm were discussed which improve the
performance and allow a complete analysis of the perfor-
mance characteristics of the model.

A comparison between the results predicted by an anal-
ysis of a complex client-server model and those achieved
in practice was presented. The predicted values agree ex-
tremely well with those measured from the implementa-
tions, demonstrating the accuracy of the approach.

The approach was demonstrated by simulating a node in
a distributed virtual reality system. The critical metrics for
virtual reality systems, latency and cycle time, were eas-
ily obtained. The results obtained characterized the perfor-
mance of the system for all variable values in the model.

References

[1] Wil M.P. van der Aalst, Using Interval Timed
Coloured Petri Nets to Calculate Performance
Bounds, Proceedings of the 7th International
Conference of Modelling Techniques and Tools
for Computer Performance Evaluation, G. Har-
ing and G. Kotsis (eds), Lecture Notes in Com-
puter Science, Springer-Verlag, New York, Vol
794, 1994, 425-444.

[2] Vikram S. Adve, Charles Koelbel and John
M. Mellor- Crummey, Performance Analysis of
Data Parallel Programs, Technical Report CRPC-
TR94405, Center for Research on Parallel Com-
putation, 1994.

[3] Shaun Bangay, Parallel Implementation of a Vir-
tual Reality System on a Transputer Architecture,
MSc Thesis, Department of Computer Science,
Rhodes University, November 1993.

[4] Shaun Bangay, Modelling Parallel and Dis-
tributed Virtual Reality Systems for Performance
Analysis and Comparison, PhD Thesis, Depart-
ment of Computer Science, Rhodes University,
November 1996.

[5] Rich Gossweiler, Robert J. Laferriere, Michael L.
Keller, and Randy Pausch, An Introductory Tu-
torial for Developing Multiuser Virtual Environ-
ments, Presence, Teleoperators and Virtual Envi-
ronments, 3(4), 255- 264.

[6] Philip M. Hubbard, Interactive Collision Detec-
tion, Proceedings of the IEEE Symposium on Re-
search Frontiers in Virtual Reality, October 1993.

[7] Roger Hubbold, Alan Murta, Adrian West and
Toby Howard, Design Issues for Virtual Reality
Systems, Proceedings of the First Eurographics
Workshop on Virtual Environments, Barcelona,
September 1993.

[8] K. Kant, Introduction to Computer System Per-
formance Evaluation, Mc-Graw-Hill, New York,
1992.

[9] Bernard Kolman and Robert E. Beck, Elementary
Linear Programming with Applications, Aca-
demic Press, New York, 1980.

[10] Michael R. Macedonia and Michael J. Zyda, A
Taxonomy of Networked Virtual Environments,
Proceedings of the 1995 Workshop on Networked
Realities, Boston, MA, October 1995.

[11] Celso L. Mendes, Performance Prediction by
Trace Transformation, Fifth Brazilian Symposium
on Computer Architecture, Florianopolis, Brazil,
September 1993.

[12] Celso L. Mendes, Jhy-Chun Wang and Daniel
A. Reed, Automatic Performance Prediction and
Scalability Analysis for Data Parallel Programs,
CRPC/Rice Workshop on Automatic Data Lay-
out and Performance Prediction, Houston, April
1995.

[13] Praveen Murthy, On the Optimal Blocking Factor
for Blocked, Non-Overlapped Schedules, Memo.
No. UCB/ERL M94/46, Electronics Research
Laboratory, College of Engineering, University
of California at Berkeley, June 1994.

[14] David R. Pratt, A Software Architecture for the
Construction and Management of Real-Time Vir-
tual Worlds, PhD Thesis, Naval Postgraduate
School, Monterey, California, June 1993.

[15] Matthew Regan and Ronald Pose, A Low La-
tency Virtual Reality Display System, Technical
Report 92/166, Department of Computer Science,
Monash University, Monash, 1992.

[16] Gurminder Singh, Luis Serra, Willie Png, Audrey
Wong and Hern Ng, BrickNet: Sharing Object
Behaviours on the Net, 1995 IEEE Annual Vir-
tual Reality International Symposium, Research
Triangle Park, North Carolina, March 1995.

[17] Michael Snoswell, Documents on Cy-
berterm, available via anoymous ftp from
ftp.adelaide.edu.au as /pub/cybertem/ctdocs.zip.

[18] Sukhamoy Som, Roland R. Mielke and John W.
Stoughton, Prediction of Performance and Pro-
cessor Requirements in Real-Time Data Flow
Architectures, IEEE Transactions on Parallel
and Distributed Systems, Volume 4, Number 11,
November 1993.

[19] Gilbert Strang, Linear algebra and its applica-
tions, Academic Press Inc., New York, 1976.

[20] Martin R. Stytz, Distributed Virtual Environ-
ments, IEEE Computer Graphics and Applica-
tions, Volume 16, Number 3, May 1996.

[21] Qunjie Wang, Mark Green and Chris Shaw, EM
- an Environment Manager for Building Net-
worked Virtual Environments, Proceedings of
IEEE Virtual Reality International Symposium
’95, North Carolina, March 1995.

A. Appendix

 ���&��� "�� �0��"����K��	��0')���7���
�����0�&�
3�#�0'	�&�7' �#� :

�=�X�

replicate N
process serrec#
receive clisen# MESSAGE
think S2
send server MESSAGE
receive client# MESSAGE
send medium wantmedium
send medium givemedium
send serrec# MESSAGE
process cliserrec#
receive comm somedata
think S2
send client# somedata

endreplicate
process buffersend
send bufferlist get
receive bufferlist DEST
send numsending bufinc
receive numsending ok
think S1
send comm DEST

process bufferlist
receive CLIENT MESSAGE
if MESSAGE == get
if LENGTH == 0
assign READY [READY+1]
endif
if LENGTH != 0
send buffersend BUF[HEAD]
assign HEAD [((HEAD+1))%(N-1)]
assign LENGTH [LENGTH-1]
endif
endif
if MESSAGE != get
if READY == 0
assign BUF[TAIL] MESSAGE
assign TAIL [((TAIL+1))%(N-1)]
assign LENGTH [LENGTH+1]
endif
if READY != 0
assign READY [READY-1]
send buffersend MESSAGE
endif
endif
process numsending
receive CLIENT MESSAGE
if MESSAGE == get
send [CLIENT] [COUNT]
endif
if MESSAGE == inc
assign COUNT [COUNT+1]
endif
if MESSAGE == bufinc
if COUNT != 0
assign ISWAIT 1
endif
if COUNT == 0
assign COUNT 1
send buffersend ok
endif
endif
if MESSAGE == dec
if ISWAIT == 0
assign COUNT [COUNT-1]
endif
if [ISWAIT] != 0
send buffersend ok
assign ISWAIT 0
endif
endif
process comm
receive SOMEONE DEST
send medium wantmedium
send medium givemedium
send [DEST] somedata
send numsending dec
process odi
receive server DEST
send numsending get
receive numsending SENDING
if [SENDING] == 0
send numsending inc
think S1
send comm DEST
send server sent
endif
if [SENDING] != 0
send bufferlist DEST
send server sent
endif
replicate [N]
process client#
report start client#
send clisen# reqdata S1
receive cliserrec# somedata
send clisen# reqsummary S1
receive cliserrec# somedata
think x
send clisen# reqsummary S1
receive cliserrec# somedata

endreplicate
process server
receive CLIENT MESSAGE
if MESSAGE == reqdata
think y
send odi cli[CLIENT]
receive odi sent
endif
assign COUNT [COUNT+1]
if COUNT == [N+1]
replicate N
think y
send odi cliserrec#
receive odi sent
endreplicate
assign COUNT 1
endif
endif
process medium
receive SOMEONE wantmedium
think c
receive [SOMEONE] givemedium

 � ��� � "�� �0� " � ��� � � � � ��"�� �

process input
report input
send dynamics data
receive scene next
process network
think C
send dynamics data
receive dynamics update
process dynamics
receive input data
receive network data
think D
send network update
send scene state
process scene
receive dynamics state
think S
receive render ready
send render display
send input next
process render
send scene ready
receive scene display
think R
report output

