
Virtual Reality Interaction Techniques

Michael Rorke
Computer Science Department

Rhodes University
Grahamstown, 6139

South Africa
mrorke@cs.ru.ac.za

http://cs.ru.ac.za/homes/g97rc001/

Prof. Shaun Bangay
Computer Science Department

Rhodes University
Grahamstown, 6139

South Africa
cssb@cs.ru.ac.za

Prof. Peter Wentworth (HOD)
Computer Science Department

Rhodes University
Grahamstown, 6139

South Africa
cspw@cs.ru.ac.za

Abstract

This paper addresses the problems associated with interaction in immersive virtual reality and
makes recommendations as to how best to deal with these problems, thereby producing a usable
virtual reality interactive environment. Immersive virtual reality means that the users are immersed
or contained inside the environment in which they are working. For example, they are able to turn
their heads and look around, as well as use their bodies to control the system.

The work in progress involves a study of various virtual reality input devices, some designed and
implemented as part of the project. Additionally, the paper describes a simple framework for
separation of the interaction and application parts of a virtual reality system in order to facilitate an
object oriented approach to the implementation of the recommendations, and to the building of
future virtual reality applications which incorporate these ideas.

Keywords
Virtual Reality; interfaces; 3D widgets;
interaction.

Introduction

With the current growth in the power of the
desktop computer and the growing
availability of dedicated graphics rendering
hardware, virtual reality is becoming more
and more mainstream in its application. PC
Magazine [Ozer, 1998] predicts that
standard desktop machines will soon be
equipped with 3D accelerator cards, with
performance levels on these machines
reaching four times the level of performance
on current, high-end workstations. The next
generation Inteltm chipset (nicknamed
Katmai) will support an extended set of
native instructions, specifically supporting 3D
graphics rendering.

While the hardware now exists to support
virtual reality applications, the software tools

available in this field are still lacking in
usability.

Interaction Problems in Virtual Reality

Virtual reality aims to allow the users to
interact with the system they are using on a
more intuitive level e.g. via gestures and
movement as opposed to typing commands
on a keyboard. These added interaction
possibilities are what makes virtual reality so
exciting in its application. Unfortunately, they
also make it difficult to learn and use
efficiently. The most notably successful
applications of virtual reality all fall into the
realm of spatial visualisation [Mine, 1997
(2)], with little or no attempt made to allow
direct object manipulation. The main reasons
for this lack of interactive usability can be
summarised as follows:

1) The precise manipulation of objects in the
virtual environment is difficult. While one
is able to accurately track the positions of
objects and represent this visually, the lack
of haptic feedback makes it difficult for

the user to precisely manipulate objects.
Haptic feedback is the term given to 'feel'
of an object. This 'feel' is a result of the
weight of the object pulli ng the hand
downwards, and the pressure exerted by
the fingers on the object, all of which the
brain registers and uses to help accurately
position or manipulate the object. At
present, virtual reali ty is able to reproduce
only the visual information about the
object. Thus, the users may see their
'hands' holding an object, but, at no point
do they actually believe that they are
holding something real.

2) The equipment used to capture data about
the user for the virtual environment (e.g.
magnetic trackers, which provide a 3D
value for their position and orientation) is
often prohibitively expensive. Thus one is
forced to use a limited number (usually 2
or 3) of them. This, in turn, restricts the
amount of input one is able to receive from
the user, and thus, restricts the usabili ty of
the system.

3) Another problem associated with many, if
not all , virtual reali ty input devices is that
of limited precision. There is a limit to the
accuracy of the readings that these devices
produce, and they are also prone to an
effect known as ‘drifting’ whereby the
value from the device changes when it
should remain steady (e.g. if the tracker
has not moved).

4) The lack of physical work surfaces in the
virtual environment is also a major
interaction problem. People depend on

naturally occurring physical constraints to
give them some idea of the behaviour of
objects (e.g. a book pushed over the edge
of a desk will fall to the ground [Mine,
1997 (1), (2)]). These physical workspaces
also often provide some form of support
for the user, alleviating fatigue and
allowing more precise manipulation of
limbs.

5) Virtual environments also lack a common
interface. The standard Windows, Icons,
Mouse and Pointer (WIMP) interface is
now common on all computer platforms,
and the user is easily able to identify
common interface elements and begin
productive work with littl e or no learning
curve. Unfortunately, no such common
interface exists in virtual reali ty. There is
no set of standard input devices for
example. So the user is forced to start
from a very basic level whenever a new
piece of software is encountered.

These problems with virtual reali ty
interaction were all i dentified at an early
stage in its development, and many different
solutions have been proposed for specific
problems.

Investigating the Problems

In order to better understand these problems,
a simple interaction system has been
implemented. The system has been
implemented using the Rhodes University,
CoRgi virtual reali ty programming libraries,
and initially ran on a Sili con Graphicstm

Octane. The system has since been ported to

Figure 1 : Polhemustm Magnetic Tracker

Figure 2 : Virtual 'Stick' Input Device

an Inteltm P2 system running Linux. The input
device currently consists of a Polhemustm

magnetic tracker (Figure 1) and an simple
device comprised of a small handle with four
switches built into it (Figure 2), called a
Virtual Stick.

The stick is held in the user' s hand with a
button assigned to each finger. The tracker is
placed inside the stick, allowing the system to
accurately trace the position of the users
hand. The four buttons on the stick are used
to represent the state of the user' s fingers to
the system. Using this device one is able to
get a simple, yet usable representation of the
user' s hand, within the system. The virtual
stick is similar in design to one-handed
keyboards, known as Chord Keyboards, but
the addition of the magnetic tracker makes it
sufficiently different. Additionally, unlike the
Chord keyboard, the intention of the stick is
to input specific human gesture information
into the system, not arbitrary combinations of
on or off for a set of switches. The stick is
designed to cheaply replace more
complicated input devices, like Datagloves,
while still providing the same usability.

Different combinations of on/off states of the
four buttons, representing different
combinations of open and closed fingers on
the user, are used to implement simple
gesture recognition in the system. Currently
the system understands two gestures. The first
gesture (Figure 3) consists of all the buttons
being closed i.e. all the fingers of the user' s
hand closed around the stick. Using this

gesture, the user is able to pick up and
manipulate objects in the world. The current
manipulation technique consists of simply
attaching the object being manipulated to the
object representing the user' s hand, thus

mimicking the movements of the user' s hand.
The second gesture (Figure 4) is a pointing
gesture. This is represented by closing all the
fingers, except the index finger. This gesture
is used to operate the menu objects that are
present in the system.

Initial Usability Study

This system was used as the basis for a set of
qualitative usability tests, carried out on a
group of people from the Rhodes University
campus. The subjects were presented with a
virtual world, containing three chess pieces,
and asked to ' pick-up' and rotate the chess
pieces using the stick input device. All of the
participants were taken from outside of the
Computer Science department, and had
limited knowledge of computers, and no
specific knowledge of virtual reality. All were
able immediately to identify the hand and
once the participants had become
accustomed to the system, a process taking
about 3-5 minutes, they were able to complete
this task fairly easily. This simple example
demonstrates the power of a virtual reality
system. In order to have accomplished the
same task using conventional Windowstm

based 3D software, like 3D Studio, the
participants would have had to familiarise
themselves with the interface, choose the
correct view, choose the correct widget and
then use it in the correct manner - tasks that
would have certainly taken in excess of 30
minutes. All these tasks were accomplished
intuitively using the virtual reality system.

The second task that the participants were
asked to complete was to place one of the
chess pieces exactly on top of the other. None
of the participants was able to complete this
task successfully. All were able to move the

Figure 3 - The ' hand' in grabbing mode Figure 4 - The ' hand' in pointing mode

first chess piece to a position almost on top of
the second, but none was able to position it
exactly. Many of the participants also became
fatigued after about 15 minutes. This was
consistent with the various interaction
problems discussed in the previous section.

Solving Interaction Problems

The first and most difficult problem to solve,
is the lack of haptic feedback. There is no
easy way to simulate the weight of an object
to the user. It is possible to simulate, to a
certain degree, the ' pressure' felt by the hand
as a result of holding the object. The methods
for simulating the feel of an object range
from electrical stimulation of the nerves of
the fingers, to the usage of air sacks to put
pressure on the fingers. None of these
methods satisfactorily reproduces the sense of
touch that a user has when holding a real
object. An alternative solution to this problem
is to provide real world equivalents of the
objects in the virtual world, which the user is
able to physically pick up, thus utilising the
full range of haptic feedback. The Virtual
Tricorder [Wloka, 1995] is an example of this
idea, whereby a 3D mouse is used as the
principal input device, and given a
representation in the virtual world,
corresponding to its physical size, shape, etc.
Allowing the constrained movement of
objects [Bowman, 1995] is another method
that helps solve the problem of accurately
placing objects inside a virtual environment.
Constrained movement means allowing the
object only to move in a certain direction at
any given time. For example, the user may
choose to constrain the object to move only
along the x-axis, in which case, the y- and z-
axis changes that come from the input device
are simply disregarded. This idea can be
further extended to the case where numerical
input of data (from the keyboard or some
virtual representation thereof [Mine, 1997
(2)] is allowed for the precise placing of
objects.

The next problem mentioned is the
prohibitive cost of the input devices used,
especially the cost of the magnetic trackers on

which most immersive virtual reality systems
rely so heavily. The problems associated with
having only a limited number of trackers
present can often be alleviated using
mathematical methods like inverse kinematics
whereby the positions of limbs, joints, etc. of
the user that are not directly tracked can be
estimated, based on the known positions of
their other limbs, joints, etc. Another possible
solution to this problem comes from the fact
that, as the technology behind these devices
becomes more established, their price will
drop. The problems associated with the
limited precision of the input devices is often
a matter of the technology behind the device.
As with the problem of cost, as the devices
are used, more and more research goes into
their manufacture, so they will become more
accurate. Other problems, like drifting, can
also only be solved with better hardware.

The lack of physical workspaces in the virtual
world is currently a topic of much research.
The addition of ' workbenches' and touch
sensitive tablets [Mine, 1997 (2)], in both the
virtual and real worlds of the user, look to go
a long way towards alleviating this interaction
problem. But such devices/objects often
restrict the movements of the user in one way
or another, and thus their introduction into a
general interaction system may have
detrimental effects. They have proved very
useful in solving specific interaction
problems, but, as yet, no single device exists
which solves general interaction problems.

Probably the biggest drawback to the field of
virtual reality at the moment is the lack of any
unifying framework for interaction [Mine,
1997 (1), (2)]. The reason for this lack of
unity in the field of virtual reality interaction
stems from the fact that there is no standard
set of input devices, and, even with
assumptions made as to what input devices
are to be used, the range of interaction
possibilities makes it difficult to settle on a
' common group' of actions which will be able
to service the whole of the virtual reality
field. A further problem arises from the fact
that the desktop interaction metaphor
(Windows, Icons, Mouse & Pointer) is no

longer sufficient, yet the ' real-world'
metaphor where an object' s ' use' may be
determined by looking at its physical
constraints (for example), is also not
applicable, due to the lack of information one
is able to convey to the user about the objects
in the virtual environment i.e. no haptic
feedback, for example. There are also other
very fundamental differences between the
desktop and virtual reality interaction
metaphors. For example, in virtual reality,
the user can be considered to be inside the
interface [Mine, 1997 (2)]. As users move
around the world, the interface elements that
they use to interact with it must move around
as well, in order to be easy to locate and
reach. These elements also take up valuable
space on the display, so they must also be
kept out of the ' field of vision' of the user
when not needed. Proprioception [Mine, 1997
(1), (2)] is the term used to describe a
person' s sense of the position and orientation
of their body. This idea has been used, with
some success, to solve the problem of where
to place interface elements so that they are
always at hand when the user needs them, yet
not constantly obscuring the display. The
interface elements are attached to different
parts of the user' s bodies e.g. behind their
heads, out of the field of view, yet they can
always be easily reached when needed.

3D Widgets

The success of the WIMP interface can be
attributed mainly to the fact that it provides
users with a familiar set of tools, no matter
what particular application they may be
using. Virtual reality can offer this same
familiarity, but not just widgets that look and
act like widgets that the user is familiar with
from other computer programs. Rather,
virtual reality can take the idea a step further,
presenting the user with widgets which look
and act like objects or tools with which the
user is familiar from the real world.

The interface elements in the virtual world
should all the modelled, as closely as
possible, after real world equivalents. Thus,
the user should be able to immediately

identify the operation of the various elements,
from their knowledge of the real world. For
instance, the system described in the previous
section uses a model of a human hand as the
basic interaction element, with gestures being
the basic operations. This method has proved
very intuitive, and even novice users are
immediately able to identify the interface
element, and use it to manipulate objects in
the world, based on their intuitive knowledge
of the working of the human hand.

In order to produce an intuitive interface, the
interface elements should adhere to the
following guidelines [Norman, 1990].
Interface elements should have affordances.
These affordances are elements of the objects
that explain its operation to the user. For
example, the virtual hand has fingers,
implying that the user is able to grasp or point
at objects. Mappings must exist between user
actions and their effects on the system i.e. any
input action by the user should produce a
proportional output action in the system.
Feedback is also a major factor contributing
to a usable interface. The user should never
be in doubt as to whether or not some action
has been accomplished or not. Good feedback
should naturally follow from good mappings
[Bowman, 1995]. For example, in the virtual
hand system, when an object has been
successfully ' grabbed' , its representation is
changed by adding a semi-transparent
bounding sphere around the object being
manipulated, and placing a set of x-, y- and z-
axes onto the object. Feedback in the virtual
hand system also follows from the fact that
when a button on the virtual stick is closed,
the finger on the virtual hand, corresponding
to that button, closes, giving the user
immediate information as to the purpose of
the buttons and the working of the virtual
stick. The fourth and final guideline is that of
constraints, which has been covered in the
previous section.

Interaction Abstraction
Framework

In order to best judge the relative merits of all
the numerous solutions that have been
proposed to solve these interaction problems,
these solutions need to be implemented and
their effectiveness tested. The system
described earlier currently implements only
the simplest interaction system, with none of
the proposed solutions to the major

interaction problems yet implemented. The
system has been designed to make it easy to
implement different types of interaction
system quickly, thus enable the user to pick
and choose the one that best suited their
current application.

Figure 5 gives a simple overview of the data
that needs to pass between the interaction
component, the system that it is controlling
and the objects in that system. The interaction
component needs to tell the system what
object has been selected by the user, or what
action is chosen (e.g. via a menu system), to
be performed. The system, in turn, needs to
return feedback information to the interaction
component (e.g. changing the colour of active
interface elements) and also needs to
communicate control information. The
interaction component also communicates
directly with the objects in the system,

performing Actions on them and receiving
Replies back in response to these actions.
Object dependencies are often best handled
by the objects themselves, as opposed to
trying to build them into the interaction
component or system. Thus, if the interaction
component wants to move an object, for
example, it sends a request to the object to
move. The object in turn decides whether or
not to allow this movement. The issue of
where to handle dependencies is not a simple

problem, and often depends on the given
system. In the generic case it is best to split
this between the system, the interaction
component and the objects themselves, as the
particular problem dictates. As a simple
example, consider the way in which the
system handles the selection of an item from
a menu. The menu object in the world
contains a group of button objects, each of
which can be activated by 'p ressing' the
button, with the hand in pointing mode. When
such an event occurs, the interface component
sends a press action to the object being acted
on (a button in this case). The object itself
then checks that the requested operation is
allowed (dependency). As this is a valid
operation, the interface component receives a
number from the object (identifying the
action to be performed) which it passes back
to the system. This number uniquely
identifies the button that has been pressed and

System

Interaction
Component

Object Dependencies

Interface control/feedback data

Action/Object ID

Figure 5 - Information Transfer between System and Interface

Object

Action

Reply

allows the system to take the appropriate
action. On the other hand, if the user attempts
to move the button with the hand in grabbing
mode, the interface component sends a grab
action to the button. In this case, the button
has a dependency that doesn' t allow it to be
moved independently of the menu it is on.
Thus, the operation of grabbing a button will
not succeed.

This abstraction of interface and system
allows the developer to develop virtual reality
applications independent of the input devices
available on the user machine. As long as
both the system and the interaction
component share the same common
interface, they are able to work with each
other. The developer is also able to provide
multiple interaction components to the user,
each with its own merits, and allow the user
to choose the one best suited to the operation
required.

Conclusion

Virtual reality is no longer hampered by the
absence of appropriate hardware, but rather
the absence of understanding about the
medium and how to deal with its
shortcomings. The sensory input missing
from current virtual reality systems (e.g. the
lack of haptic feedback) must be compensated
for, in order to make these systems more
accessible and usable to the general public.
The methods presented in this paper provide
the tools for overcoming these problems,
providing a framework for creating better and
more usable applications of the technology.

Future Work

The next step will be to implement some of
the proposed solutions to the major
interaction problems, and to investigate the
differences each makes to the overall
usability of the system. Once this has been
done, the system will be expanded to include
those techniques that are deemed most useful.
As an extension to the interaction framework
idea, a GUI builder could be developed,
similar in operation to Visual Basic, whereby

the developer could rapidly generate virtual
reality applications, using a standard set of
interface elements and interaction techniques.

References

[Bowman, 1995]

Doug A. Bowman and Larry F. Hodges, User
Interface Constraints for Immersive Virtual
Environment Applications, Graphics,
Visualisation and Usability Centre, Georgia
Institute of Technology, Technical Report
TR95-26

[Mine, 1997 (1)]
Mine, Mark, Frederick P. Brooks Jr., and
Carlo Sequin (1997). Moving objects in
Space: Exploiting Proprioception in Virtual-
Environment Interaction. Proceedings of
SIGGRAPH 97, Los Angeles, CA

[Mine, 1997 (2)]

Mine, Mark. Exploiting Proprioception in
Virtual-Environment Interaction. Doctoral
dissertation, Department of Computer
Science, University of North Carolina,
Chapel Hill, 1997.

[Norman, 1990]

D. Norman, The Design of Everyday Things,
Doubleday, New York, 1990

[Ozer, 1998]

Jan Ozer, 3D Computing, PC Magazine, Vol.
17, No. 11 (June 1998), pp 118

[Wloka, 1995]

Wloka, M. and Greenfield, E., The Virtual
Tricorder: A Uniform Interface for Virtual
Reality. In Proceedings of UIST' 95, ACM
Press, November, 1995, pp. 39-40.

