
Implementation and Applications of the Distortion Operator

Shaun Bangay
Computer Science Department

Rhodes University

Abstract

The distortion operator transforms 2D images in a man-
ner similar to image warping or morphing, allowing
source pixels to be mapped to any destination pixel.
This operator can be implemented on current hardware,
allowing at least one distortion per frame at interactive
frame rates. Potential applications are numerous, but
those described include re-mapping images for correct
projection onto curved screens, correcting camera dis-
tortion from multiple sources simultaneously, and al-
lowing constant time dynamic texturing and lighting of
a static scene which is independent of geometric com-
plexity.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Bitmap and framebuffer oper-
ations

Keywords: image warping, MMX, projection, textur-
ing, lighting

1 Introduction

Image warping is a well known aspect of image manip-
ulation. Warping usually implies that the components
of the image retain some level of the relative relation-
ships between the pixels, often using only affine trans-
formations. This paper deals with the distortion opera-
tion which is intended to retain none of these inhibitions.
Pixels in the image can be rearranged without constraint,
duplicated or eliminated, or even replaced with pixels
from other images with impunity.

This paper investigates efficiency issues with respect
to the implementation of the distortion operator and con-
siders whether it is appropriate for inclusion in the reper-
toire of operations associated with modern graphics lan-
guages. We investigate issues relating to the perfor-
mance of hardware and software implementations of the
distortion operator. Some applications of the distortion
operator are described; in particular its use for projective
virtual reality, its applicability for correcting distortion

in video images, and its ability to re-render texture and
lighting in static scenes.

2 Related Work

Texture mapping is often used for image distortion,
warping and morphing, or to produce the effects of non-
standard projections for applications such as environ-
ment mapping[7]. Image warping is also applied to cor-
rection of lens distortion[3] and aligning images taken
from different viewpoints[4]. Further applications of
image warping are described by Heckbert[8].

Catmull and Smith[2] deform textures using 3D
affine transformations. The transformations are decom-
posed into separate horizontal and vertical stages to
simplify scan-line implementation in hardware. They
suggest caching intermediate values in a special frame-
buffer to avoid recalculating values. Fant[5] per-
forms anti-aliasing while warping images by accumu-
lating values across a scan-line. Pixel blending is also
performed using two passes, vertically then horizon-
tally, using a reverse mapping function. Wolberg and
Boult[17] take the idea further for transformations that
can be represented as separate maps, and introduce the
idea of forward lookup tables for caching the functions
in each of the two directions. A comparison of forward
and backward mapping functions during warping with
separable algorithms is given in [18].

The WarpEngine[12] is an architecture that uses im-
ages as the graphical primitives, and image warping as
the operator for manipulating and combining them. The
Talisman architecture[15] also uses image layers which
are composited together to produce the final frame. Im-
ages may be deformed using affine transformations dur-
ing this process. These transformations can reduce the
need to re-render every image for every frame; often mi-
nor changes in pose can be catered for by warping the
image. Seitz and Dyer[14] similarly use image morph-
ing to produce shape transformations that look 3D using
only 2D images. McMillan and Bishop[11] show the
derivation of a suitable transformation to use warping to
achieve image based rendering.

Heckbert[8] provides a thorough study of the im-
age warping that can be achieved for texture mapping.
Methods of filtering to reduce aliasing are also covered.
Resampling of images during correction of camera dis-
tortion is described by Chiang and Boult[4].

3 Implementation

3.1 Reference Implementation

A rather inefficient and clumsy implementation of a
simplified distortion operation is shown below. This
form does, however, allow some aspects of the process
to be clearly distinguished.

Image distort (Image org)
Image chng;
for (y = 0 .. chng.height)
for (x = 0 .. chng.width)

(ox, oy) = calcDistort (x, y)
chng.setRed (x, y, org.Red ((ox,oy))
chng.setGreen (x, y, org.Green (ox,oy))
chng.setBlue (x, y, org.Blue (ox,oy))

return chng

The distortion operation is applied for every pixel in
the target image, to prevent pixels being missed due to
rounding artifacts. The mapping occurs through a re-
verse mapping function which returns the coordinates of
the point in the original image that supplies the colour
to the current point in the target. In this example, the
same distortion is applied to the three colour channels
in the image. Separate distortions for each channel, or
additional channels are possible but are not considered
any further in this paper.

It is assumed for convenience that the original and
target images are matched in size and colour depth.

The distortion operation results in a new image; the
original image may be retained, or discarded in favour
of the distorted version.

This reference implementation contains a number of
performance overheads:

� It treats the image as a 2D object, with nested
loops and 2D coordinates, when working with 1D
coordinates would be quite sufficient.

� Calculation of distorted coordinates is repeated ev-
ery time the distortion is reapplied, although there
is no time dependence in the operator.

� The different colour channels are updated inde-
pendently, although the same transformation is ap-
plied to each.

3.2 Lookup Table Implementation

Lookup tables are well known in computer graphics, be
it for manipulating colour spaces with colour lookup ta-
bles, or for improving the performance of trigonometric
functions through caching results. The lookup table in
this case is large, containing the relationship between
the two images for every pixel in the target.

An implementation of the distortion operation using
a lookup table overcomes the limitations mentioned in
the previous section.The distorted coordinates for each
point in the target image are calculated during initial-
ization of the table, and stored as the offset of the pixel
within the source image. In addition to using the lookup
table, the code also contains several other optimizations:

1. Transferring an entire pixel in one operation,
rather than each channel independently.

Version Random Sphere Camera
Projection Correction

Reference 14967 568 1676
Lookup Table 125.7 56.9 54.9

1 76.5 42.2 40.9
2 66.5 36.6 35.5
3 62.2 31.9 30.8
4 61.2 30.3 29.8

Assembler 61.8 30.3 29.5
MMX 60.8 28.1 27.5

Optimized 63.7 26.7 25.0
16 bit MMX 48.5 18.9 18.2

Table 1: Processor clock cycles per pixel for implemen-
tations of distortion.

2. Incremental calculation of offsets.

3. Flatten nested loops.

4. Incremental addressing of the destination image
and lookup table.

The accumulative benefits of each of these are shown
in Table 1. This table shows the average number of
clock cycles taken per pixel when applying distortion
to a

���������	�
�
image. The processor used is a 600MHz

Pentium III. Some operations (such as memory access)
depend more on the speed of the memory than the pro-
cessor speed, and so the number of clock cycles may
increase for faster processors. Compiler optimization is
enabled for these measurements. The three distortions
used are:

� Random: Randomly replaces pixels, which always
performs badly in terms of memory cache access.
Variance of up to 5% has been seen in these results
depending on the random numbers used.

� Spherical projection: Projection onto a hemispher-
ical screen (see section 5.1).

� Camera correction: Correction to a camera im-
age to remove radial distortion and other artifacts
(see section 5.2). The image experiences some
shrinkage during this process, and unused pixels
are mapped to the boundary pixels.

In practice, each pixel is represented as a 32 bit value,
and transferred as such, even though currently only 24
bits are being used. This does detract partially from the
benefit of moving the entire pixel in one operation, al-
though the benefits of 4 byte alignment simplifies later
enhancements.

A further enhancement to this routine would be to re-
strict the source image to a fixed position in memory,
and store the actual address of the source byte in the
lookup table. This saves referencing the value from the
lookup table relative to the source image. The perfor-
mance improvement in this case is quite small (under
5% for the example tested). This restriction is consid-
ered too limiting for that amount of benefit, and so is
discarded.

3.3 MMX Implementation

Implementation of the distortion operation at assembler
level is crucial to gaining an understanding of whether
it would be feasible to implement it in hardware. The
use of MMX instructions allow SIMD manipulation of
64 bit quantities (in this case, simultaneous operations
on two of the 32 bit values in the lookup table, or the
image arrays).

The use of the MMX registers to lookup two pixels
at a time produces a small speed improvement. Writ-
ing eight bytes in one operation makes little difference,
again indicating that memory bandwidth is a restriction.
Unrolling the loop by a factor of four, and writing 32
bytes in sequence does eventually also produce a small
speed improvement. Since the size of a cache entry is
also 32 bytes, aligned on 32 byte boundaries, the perfor-
mance of this code becomes sensitive to the alignment
of the original images.

A further enhancement uses concurrent lookups for
two widely separated portions of the target image. This
allows the cache to be filled from more addresses in
memory at once, and increase the chance of a cache hit.
The duplication of instructions allows pairing in the U
and V execution pipelines on the Pentium processor, and
reduces AGI stalls when addresses used are calculated
in the previous instruction[6]. The performance impli-
cations of the various assembler implementations can be
seen in Table 1.

3.4 16-Bit MMX Implementation

Further performance improvements can be made by de-
creasing the colour resolution of the image. Instead of
representing each pixel using 32 bits (of which only 24
bits are currently used), a 16-bit colour value is used.
This is consistent with many modern graphics cards,
which favour this colour depth for performing hardware
accelerated graphics operations. Since memory access
has been the bottleneck in the earlier implementations,
some performance benefits can be expected by decreas-
ing the range of memory locations which need to be ma-
nipulated.

A 16 bit representation also allows an MMX imple-
mentation to manipulate 4 pixels simultaneously. Ele-
ments in the lookup table are still 32-bit offsets into the
source image, and so two MMX accesses into the table
are required to retrieve the offsets for the four pixels.
These are retrieved, and accumulated into one MMX
register to be written in a single instruction. As before,
two concurrent threads run through each half of the im-
age to improve cache utilization.

The performance of the 16-bit implementation is
shown in Table 1. With a 600MHz Pentium III pro-
cessor, and a reasonably well behaved (in terms of
cache access) distortion it is possible to distort over 120
������� �	�
�

frames per second. Even for badly behaved
distortions, over 45 frames per second are possible, al-
lowing the possibility of at least one distortion per frame
of rendered graphics to be achieved at interactive rates
on non-specialized hardware.

4 Enhancements

The basic distortion operation presented in section 3 al-
lows for direct re-mapping of pixels in the source image
to pixels in the target image. In this form it makes none
of the assumptions about the relative positioning of pix-
els that are used by image warping to apply blending
and filtering operations to smooth the destination image
and reduce aliasing artifacts.

4.1 Anti-aliasing distortion

The distortion operation can be extended to include
super-sampling for each pixel, and blending of the re-
sults. This permits a degree of anti-aliasing to occur,
depending on the type and degree of the distortion.

The algorithm for an anti-aliased distortion is as fol-
lows:

Image distort (Image org,
NumSamples,
Offsets [])

Image chng;
for (y = 0 .. chng.height)

for (x = 0 .. chng.width)
AccumulatedColour = (0,0,0)
for (i = 0 .. NumSamples)

(ox, oy) = calcDistort
((x, y) + Offsets[i])

AccColour +=
org.Colour (ox, oy)

AccColour /= NumSamples;
chng.setColour (x, y,

AccColour)
return chng

The additions to the original algorithm include a set
of offsets to the current target point at which values
in the source image must be sampled, and blended to-
gether. At present each sample is weighted equally,
although weights could be included to allow positions
closer to the center of the pixel to count more heavily
for example. The blending enhancement does compli-
cate the process of compositing multiple distortions into
one equivalent distortion operation.

This algorithm has great potential for use in concur-
rently distorting and blending images, and would have
been so named, except for the tremendous legacy of
anti-aliasing already associated with this type of trans-
formation. Image manipulation transformations such as
scaling, rotation and translation can make use of the
anti-aliasing facilities to improve the appearance of the
transformed image.

4.2 Multi-dimensional distortion

Transformations in graphics languages, such as
OpenGL, typically operate on 3D points. Even the tex-
ture transformation matrix, which typically operates on
2D images, contains provision for 3D textures. The dis-
tortion operator is an image space operator whose 2D
coordinates represent discrete pixel coordinates within
the image. A discrete third dimension can easily be in-
cluded with this operator, to represent a particular image
in a layered stack of images.

The change in the algorithm to include this extension
is shown below:

Image distort (Image org)
{
Image chng;
for (y = 0 .. chng.height)

for (x = 0 .. chng.width)
(ox, oy, oz) =

calcDistort (x, y)
chng.setColour (x, y,

org[oz].Colour ((ox,oy))
return chng

}

The multi-dimensional distortion operator can address
multiple source images, allowing operations such as
stenciling to be carried out. An application of multi-
dimensional distortion is given in section 5.2.

The combination of the blending abilities of the
anti-aliasing distortion, and the addressing abilities of
the multi-dimensional distortion allow additional opera-
tions, such as combining textures for multi-texturing, or
adding the effects of different light sources to extend the
number and types of lights allowed in a scene. Section
5.3 describes some of these ideas in more detail.

5 Applications

5.1 Projection Systems

The original motivation for the distortion operation was
to warp images so that they may be projected onto
curved screens for use in projective virtual reality. This
section gives an example of such a system, and derives
the distortion operators used.

The distortion operator allows considerable flexibil-
ity when preparing projected images. The distortion can
be set up to correct for the shape of the screen, with the
cost of the transformation being (theoretically) indepen-
dent of the curvature or distortion involved. It takes the
same amount of time for orthographic or oblique projec-
tions onto one or more planar screens, as for projections
onto a curved surface.

5.1.1 Projection onto a Hemispherical Screen

Screen Layout A hemispherical screen (in this case,
half of a sphere) has the advantage that it is symmetrical
under a range of rotations. With the viewer placed in the
center of the original sphere, the hemisphere provides a
field of view of

�������
. By projecting onto the back of

the screen from directly in front of the viewer, the entire
surface of the hemisphere can be covered using a single
projector.

A hemispherical screen can be approximated using
a number of suitably shaped panels stitched together.
Derivation of the shape of the panels is as follows:

Assume that the hemisphere is to be constructed from� panels, arranged as shown in Figure 1. The center line
on each panel can be constrained to lie on the surface
of the sphere. Thus the length of the line segment is a
quarter of the circumference of the sphere: �	��
�� . The
width of each panel at distance ����� ���
 �� from the tip
can be determined as a fraction of the circle inscribed in
the sphere at the corresponding height � � with a radius
of ������� ��! �

"
. Thus the width #$�
��% ���&� ��! �

"
.

The panels can be grouped to cover the available con-
struction material in a number of ways, some of which

r

w

a
y

(a) Sphere dimensions

h

w

(b) Panel
dimen-
sions

Figure 1: Shape of panels for a hemisphere.

(a) Parallel
panel layout

(b) Central-
ized panel
layout

(c) Panels
with extra
tuck

Figure 2: Panel layout strategies.

are illustrated in Figure 2. The first has all the seams
running in the same direction, which makes the resulting
surface prone to collapse in one direction. The second
provides more symmetry in the support of the structure,
but provides only one point in common to all the panels.
In practice this is not a problem, as the panels are suffi-
ciently close together in the center that the cut and seam
need not go all the way to this center point.

This approximation to the surface of the sphere is ap-
propriate for rigid materials (such as paper) which flex
in one direction only. A more accurate sphere can be
constructed from fabric by making tucks in the bound-
ary arcs of each panel to reduce the length of these arcs
to match that of the central line segment. This intro-
duces substantial construction overhead, which could be
more easily used to increase the number of panels, � ,
and improve the accuracy in that way. A layout of this
kind constructed using the techniques described in [1],
is shown in Figure 2c.

Screen Projection The image produced using a
traditional perspective projection can be distorted into
one suitable for projecting onto a hemispherical screen.
Consider the scenario illustrated in Figure 3 shown
looking down the y axis. The eye is placed in the center
of the spherical screen, at distance ' down the positive
z axis. The device projecting the image onto the screen
is located on the negative z axis at distance (from the
origin. To satisfy the requirements of the reverse map-
ping used for distortion, we must find the position on
the rendered image �*),+�- �.+ " given that we have a point

X

Z

E

r

(x,y,z)S

(x ,y)
(x ,y)p p

k k

P

k

d
(x ,y ,z)cc c

Figure 3: Producing the hemispherical distortion.

�*)�� � ��� " in the image being supplied to the projector.
The ray originating from the projector and passing

through the point �*)�� � ��� " is:� �
�)�����(��
� � ��� (��

for
�� �
. The first point of intersection of the ray

�
with the screen:�

��) � � � ��� � ' " �$�

will give the coordinates of the point �*)�� � ��� � ��� " . This
can then be projected to the point �*) + � � + " using the re-
lationship:

) + � ') �
' � ���

� + � ' ���
' � ���

5.2 Camera distortion

Distortion correction for images captured by camera is
a popular subject for image warping. We have a more
specific application that benefits from some of the extra
facilities provided by an extended distortion operator. A
high speed document scanner can be constructed using
a housing similar to a standard flatbed scanner, but us-
ing a video camera and frame grabber for capturing the
image. Such a scanner can then capture a single image
in the time taken to record a single frame (less the ��� s).
The disadvantage is the low resolution of the camera
image (� � � � � ��� pixels), and the distortion introduced
into the image by the optics of the camera. The purpose
of the scanner is to produce a mechanism for capturing
popular printed literature for later manipulation online.

After some experimentation, we decided that the res-
olution of a single camera is too low for comfortable
reading. Two cameras can be used to double the effec-
tive area, without significant increase in the time to cap-
ture a page. Combating image distortion then becomes

(a) Original calibra-
tion chart images

(b) Combined chart
images after distor-
tion

(c) Sample scanned text (shown along seam)

Figure 4: Correction of camera distortion.

essential for ensuring proper registration of the two im-
ages corresponding to the two halves of a single page.
This correction is also necessary if further processing
(such as OCR) is to be performed.

The relationship between a point in the captured im-
age !#"%$�&�'($) and a point !#"*)+&,'�)+&.-�/ on the page being
captured is given by (1)[3].021�346587589 !#"�$;:=< 4 />!,?+@BAC.D�E�/1�F !#'($G:H< F />!,?6@IAC.D E / J K L 0 4 MF M J (1)

NPO�Q>R.Q�SUTVWYX K Z S ")'�)- X @=[(2)

Calibration of the camera is required to determine val-
ues for the various variables given in this equation.
These are found by fitting equation (1) to known val-
ues of "\$, '($, "%) and '�) , measured from a calibra-
tion image. The camera calibration package by Reg
Willson[16] is used to choose optimal values for the pa-
rameters. A distortion map is created that corrects dis-
tortion, and combines the two camera images, both in
a single step. The upper half of the corrected image is
mapped to the distorted image from the first camera, the
bottom half to that of the second camera. This can be
achieved with a 3D distortion, with the third dimension
used to select the source image.

The results of using the distortion operation to correct
camera distortion are shown in Figure 4. The calibration

charts are shown before and after the distortion opera-
tion has corrected for camera distortion. A sample of
text from a book[10] scanned in this way is shown (the
seam can be clearly seen because the two cameras have
different brightness and contrast settings). Inexpensive
hardware can be used because physical alignment of the
two cameras is unimportant since the distortion opera-
tion includes the rotation (

�
) and translation (�) oper-

ations to reposition the two images. The cameras need
only be positioned to capture as much of the image as
possible.

5.3 Static rendering

One of the original goals of image warping is to trans-
form a single texture so that it matches the screen coor-
dinates of the polygon onto which it is mapped[2]. This
is possible with distortion as well, but the cost of set-
ting up a distortion for a single polygon is excessive
in light of the rendering abilities of modern hardware.
However, it is possible to set up a distortion that can
perform texture mapping for the entire scene in a single
step. This section describes this facility, and how it is
possible to include lighting, bump mapping and simple
environment mapping at the same time.

The transformation from a point in screen coordi-
nates on the surface of a polygon to the colour value in
the associated texture map contains a number of implicit
and explicit steps; mapping via the transformations ap-
plied to the vertices of the polygon, back to object co-
ordinates, then through texture warping to the coordi-
nates of the texture image. Having performed this op-
eration once during rendering of a scene, the results can
be cached in the lookup table of a distortion map, and
the texture mapping repeated by applying the distortion
operation.

Re-rendering the image may seem pointless, but in
practice it can find a multitude of applications. The dis-
tortion operation can be reapplied with a different tex-
ture as the source, multi-dimensional distortions can al-
low changes in selected textures, or an additional dis-
tortion can be preapplied to the texture to produce an
animated texture. Since the distortion operation works
in image space, it is independent of the complexity of
the scene. Highly detailed static backdrops can be cre-
ated, and changes made interactively to the surface tex-
tures without re-rendering. This has applications in
computer games, producing realistic backdrops with ef-
fects such as animated water surfaces, pre-rendering
panoramas[13], or for enhancing the primitives when
working with image based rendering[15], to name but
a few.

The texture distortion is implemented by identifying
the ��� �
 " texture coordinates of each screen point within
the texture map, and associating this value with the coor-
dinates of that point within the frame buffer. In practice
the actual position of the texel within the texture map is
mapped from the screen coordinate.

Texture is not the only application to which distor-
tion can be applied in static scenes. Lighting operations
involve a mapping between the position of a pixel on
the screen, and the colour for that pixel, via the mecha-
nism of the surface normal, lighting vectors and illumi-
nation equation. A distortion operation can be used to

cache the surface dependent portion of this, while still
allowing certain lighting parameters to be changed, and
reapplied in constant time. Thus detailed backgrounds
can be created, that can be matched to the same dynamic
lighting situation applied to objects rendered in the fore-
ground.

Illumination expressions are usually of the form
given in (3), where � is the surface normal vector, �
the vector toward the viewer, and � and

�
depend on

the position of the light source. The various ambient,
diffuse and specular factors will depend on properties
of the surface and light source.

� ��� " � �
! � ���	�
� " ��� � � � �
� " % �� (3)

By assuming that the light sources and viewer are in-
finitely far away, the vectors � , � and

�
are indepen-

dent of the position on the surface, and illumination is
a function only of the normal to each point on the sur-
face. By requiring that the normal vector be normalized,
it contains only two degrees of freedom, and so a map-
ping can be created between the screen coordinates of a
point, and its corresponding normal vector (through the
mechanism of a distortion operation). In fact, the orig-
inal normal vector is not required, only the coordinates
of a point within the light map created by projecting (3)
onto a 2D image.

The effects of other lighting equations can be sim-
ulated by changing the light map. Figure 5 shows
some variations on non-photo-realistic cartoon render-
ing. Diffuse and specular effects are also shown in the
same figure. The light maps used are inset into each im-
age. The mapping from the normal vectors on the sur-
face of a unit sphere to the light map coordinates is via
a mapping which places the point � ��� ����� " at the center,
with the point � ��� ��� � � " mapped to the boundary, and
with intervening points on the radial lines with the same� �

gradient. The mapping is distorted to make full use of
the rectangular area of the light map.

The scene shown in Figure 5 uses over 250 000 poly-
gons, which for a partially covered

���
� � �	�
�
image

means that there are more polygons than pixels. In com-
plex scenes with even higher polygon counts, the ability
to limit graphical operations such as texturing and light-
ing to a per pixel basis, rather than per polygon, would
be a substantial performance advantage.

For situations with local viewers or lights, it is possi-
ble to use the distortion operator to map screen coordi-
nates to the pair �&������� " � � � ��� " � in a manner analogous
to the so called ’cheap Phong’ shading.

Since the distortion map is providing access to the
normal vectors, it becomes possible to exploit these vec-
tors for other applications. Bump mapping can be ap-
plied by providing a perturbation to the normal vec-
tors, either by modifying the distortion mapping, sup-
plying an additional distortion, or re-mapping the im-
age accessed by the distortion operation. A variation on
environment mapping can be achieved by supplying a
texture containing an image of the surrounding environ-
ment instead of a light map.

Figure 6 shows images rendered using bump maps,
and a pseudo-environment mapping process (the envi-
ronment map does not cover the full � � ��� , and is not
distorted correctly) to demonstrate this effect.

Access to multiple texture maps during the distortion
can be achieved using a multi-dimensional distortion.
Lighting and texturing can also be combined using the
blending facilities of an anti-aliased distortion as shown
in Figure 6.

6 Conclusion

Distortion is an extremely useful facility, and worth in-
cluding in the toolbox of a graphical language. We
demonstrate that it can be applied at interactive frame
rates, even on non-specialized hardware. Extensions to
the distortion operation exist that duplicate and extend
the abilities of other well understood operators. The dis-
tortion operator can be easily implemented in hardware
allowing acceleration of operations that use it.

A number of applications which use distortion are de-
scribed in this paper. These are immediately applica-
ble to modern virtual reality systems and graphics ar-
chitectures, and can offer significant advantages over
other rendering strategies. They are merely the most
relevant applications amongst those that have been ex-
plored. Many more lie undiscovered.

References

[1] Shaun Bangay, From Virtual to Physical Real-
ity with Paper Folding, Computational Geome-
try: Theory and Applications, 15 (1-3), 161-174,
February 2000.

[2] Edwin Catmull and Alvy Ray Smith, 3-D Trans-
formations of Images in Scan-line Order, SIG-
GRAPH 80, 14 (3), 279-285, July 1980.

[3] M. Chiang and T. Boult, A Public Domain System
for Camera Calibration and Distortion Correction,
Tech. Rep. CUCS-038-95, Columbia Univ., Dept.
of CS, and Lehigh Univ., Dept. of EECS, available
via the WWW at ftp://ftp.cs.columbia.
edu/pub/chiang/calib.ps.gz, Dec
1995.

[4] M. Chiang and T. Boult, The Integrating Resam-
pler and Efficient Image Warping, Proceedings
of the ARPA Image Understanding Workshop, pp.
843-849, February 1996.

[5] Karl M. Fant, A Nonaliasing, Real-time Spatial
Transform Technique, IEEE Computer Graphics
and Applications, 6 (1), 71-80, January 1986.

[6] Agner Fog, How to Optimize for the Pen-
tium Family of Microprocessors, available via
the WWW at http://www.agner.org/
assem/#optimize, July 2000.

[7] Paul Haeberli and Mark Segal, Texture Map-
ping as a Fundamental Drawing Primitive, avail-
able via the WWW at http://www.sgi.com/
grafica/texmap/index.html, June 1993.

[8] Paul Heckbert, Fundamentals of Texture Mapping
and Image Warping, Master’s Thesis, Department

of Electrical Engineering and Computer Science,
University of California, Berkeley, CA, June 1989.

[10] Arthur H. Landis, Home - To Avalon, Daw Books
Inc., New York, November 1982.

[11] Leonard McMillan and Gary Bishop, Shape As A
Perturbation To Projective Mapping, UNC Com-
puter Science Technical Report TR95-046, Uni-
versity of North Carolina, available via the WWW
at http://www.cs.unc.edu/%257Eibr/
pubs/mcmillan-shape/shape.ps.gz,
April 1995.

[12] Voicu Popescu, John Eyles, Anselmo Lastra,
Joshua Steinhurst, Nick England and Lars Nyland,
The WarpEngine: an Architecture for the Post-
Polygonal Age, SIGGRAPH 00, New Orleans, LA
USA, Pages 433 - 442, July 2000.

[13] Matthew Regan and Ronald Pose, A Low La-
tency Virtual Reality Display System, Technical
Report 92/166, Department of Computer Science,
Monash University, Monash, 1992.

[14] Steven M. Seitz and Charles R. Dyer, View Mor-
phing, SIGGRAPH 96, New Orleans, LA USA,
21-30, August 1996.

[15] Jay Torborg and James T. Kajiya, Talisman: Com-
modity Realtime 3D Graphics for the PC, SIG-
GRAPH 96, New Orleans, LA USA, Pages 353-
363, August 1996.

[16] Reg Willson, Tsai Camera Calibration
Software, available via the WWW at
http://www.cs.cmu.edu/afs/cs.cmu.
edu/user/rgw/www/TsaiCode.html,
October 1995.

[17] George Wolberg and Terrance E. Boult, Image
Warping with Spatial Lookup Tables, SIGGRAPH
89, 23(3), 369-378, July 1989.

[18] George Wolberg, H.M. Sueyllam, M.A. Ismail,
K.M. Ahmed, One-Dimensional Resampling with
Inverse and Forward Mapping Functions, Journal
of Graphics Tools, 5 (3), 11-33, 2000.

(a) Cartoon effect with simple light map (b) Four colour cartoon shading

(c) Light map with three diffuse sources (d) Light map with green specular term

Figure 5: Static scenery lit using distortion [Dragons from 3dcafe.com].

(a) Bump mapping (b) Pseudo-environment mapping

(c) Multiple textures with a multi-dimensional
distortion

(d) Lighting and texturing using an Anti-
aliased, multi-dimensional distortion

Figure 6: Texturing and special effects using distortion [Dragons from 3dcafe.com].

