
Experiences in porting a Virtual Reality system to Java

Shaun Bangay
Computer Science Department

Rhodes University

Abstract

Practical experience in porting a large virtual reality system from
C/C++ to Java indicates that porting this type of real-time applica-
tion is both feasible, and has several merits. The ability to transfer
objects in space and time allows useful facilities such as distributed
agent support and persistence to be added. Reflection and type com-
parisons allow flexible manipulations of objects of different types
at run-time. Native calls and native code compilation reduce or re-
move the overhead of interpreting code.

Problems encountered include difficulty in achieving cross-
platform code portability, limitations of the networking libraries in
Java, and clumsy coding practices forced by the language.

CR Categories: D.3.3 [Programming Languages]: Language
Constructs and Features—Frameworks;I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: java,networking,serialization,native calls

1 Introduction

The promises of Java include automatic cross platform portability,
automatic memory management and networking services that are
simpler and better integrated[10]. These factors are offset when
constructing real time applications by overheads of code interpreta-
tion, and garbage collection. Practical experience from rewriting an
existing virtual reality system in Java yields some fresh insights into
these issues; some in stark contrast to that which may be expected,
either intuitively or from marketing hype.

The goal of this paper is to report on results obtained when trans-
lating a large virtual reality system from C++ to Java. The real-time
performance requirements of this system differ from the web-based
applications for which Java is frequently advocated. The use of a
Java system as a computational and data-flow platform, which must
interface with a range of devices and peripherals differs from most
current applications of the language. The system described also
makes extensive use of open source products, both as support li-
braries and as potential Java platforms; and the implications of this
aspect of the system are discussed.

Some benchmarks of different Java platforms are provided,
which measure the ability of different systems to provide the facili-
ties required by the virtual reality system, and reflect on the ability
of Java code to perform consistently.

2 Related Work

Benchmarks for different Java systems are readily available[5].
The overheads of various constructs such as threads[8] and
synchronization[7, 6], native code calls[1] and garbage collection
are well documented.

Multimedia applications specializing in 3D computer graph-
ics have been written in Java. Many of these are written purely
in Java, to be platform independent and capable of running
in Web browsers (Anfy3D http://www.anfyteam.com/
panfy3d.html, X-Insight http://www.bssi-tt.com/,
Easy3D http://www.easy3d.com/, VisAD http://www.
ssec.wisc.edu/~billh/visad.html), which can limit
performance, and the ability to fully utilize any advanced hard-
ware. The Bang game engine (http://www.in-orbit.net/
open.html) originally written in Java has moved to C++ pur-
portedly for performance reasons. Java3D is employed in some
situations to provide rapid rendering via calls to libraries such as
OpenGL or DirectX.

3 The Virtual Reality System

The RhoVeR virtual reality system has been an ongoing develop-
ment since 1995. The system models a virtual environment and
provides support for manipulating the model, rendering the en-
vironment and controlling interaction through a range of periph-
eral devices. Originally developed in C as a system of distributed
processes[2], it was soon clear that the complexity of the inter-
process communication affected the performance and stability of
the system adversely.

The system has been redesigned and implemented in C++
(RhoVeR release CoRgi) as an object-oriented system struc-
tured around the concept of data flow between components for
much of the inter-object interaction. The system is used pri-
marily on MIPS/IRIX and Intel/Linux platforms, although ports
to Sparc/Solaris and Intel/Windows2000 have been accomplished
without significant difficulty.

The base class of all objects is the Component. This class takes
care of all scheduling issues, and streaming of data between the dif-
ferent components. Previous versions of RhoVeR provide a sepa-
rate thread of execution for each component. This has been found
to be unreliable, race conditions are difficult to identify and track
down; and inefficient, permitting busy waiting to be employed. The
Component class instead provides a round-robin non-preemptive
scheduler which allows a degree of pseudo-concurrency, and is ca-
pable of being implemented without ensuring that all classes are
completely thread safe. Each component requiring some processor
time must provide a method containing the tasks to be performed
during one iteration of the system. Care must be taken to ensure
that this method returns as soon as possible, and never blocks.

Each component includes a number of Port objects. These can
be connected to Port objects on other components to create a route
for the flow of data between components. Components can thus be
classified as sources, filters or sinks depending on their position in
the data flow. Sources and sinks are associated with device objects



which provide the system specific code for reading from, or writing
to hardware devices. Data can be made to flow transparently over a
network, by the inclusion of network components in the data flow.

4 Translation to Java

Rewriting the system in Java (RhoVeR release Dane) involves a
direct translation of the C++ code into Java. The languages are
very similar syntactically, and this can be accomplished rapidly.

The Java implementations to which the system is ported are
Kaffe-1.0.6 (a clean room Java implementation) under Linux and
IRIX, and GCJ-2.96 (a gnu compiler front-end, capable of com-
piling to native code) under Linux. These platforms are chosen
because of their open source licensing which provides greater flex-
ibility when dealing with experimental software. The JDKs pro-
vided by IBM (version 1.3.0) and Sun Microsystems (Blackdown
version 1.3.0), both for Linux, as well as the JDK (version 1.3.0)
from Silicon Graphics for IRIX, are also tested. The MIPS/IRIX
and Intel/Linux platforms are targeted for the port because of porta-
bility restrictions in some of the device driver software. Some of
the Java platforms have limited GUI functionality, containing only
a restricted implementation of AWT. Since the Qt widget library
is already used in CoRgi, the GUI elements built in this way are
retained and accessed in the new version using native calls.

The platforms used for the tests described in this, and later sec-
tions are:

� SGI Octane, with dual MIPS R10000, 195MHz processors
and MXI graphics running IRIX 6.4.

� Intel dual Pentium III, 600MHz processors with Voodoo3
graphics card, running Redhat Linux 7.0, kernel 2.2.16.

Some limitations of the Java syntax are immediately apparent. The
lack of reference parameters results in some inelegant code. The
example of networking code which retrieves an array of bytes sent
on one of the channels between Ports is shown below. The re-
turn values are both the byte array and the number of the channel
involved. Since both are used independently, it makes no sense to
combine them into one class, nor is it efficient to retrieve the values
with two function calls.

int c [] = new int [1];
bytes = ReceiveBytes (c);
channel = c[0];

Reference parameters are also missed when making calls to native
code libraries. Returning multiple values from these methods is
common, but the overhead of creating a new instance of a Java
class, accessing and initializing the member variables and manag-
ing the memory is sufficiently complex that the original function
of the code is then almost completely obscured. Filling in the ele-
ments of an array that is created in Java, and passed as a parameter
is a less elegant, but preferable alternative.

The lack of in-line operators ([4], Chapter 15) restricts the use
of most operators to primitive numeric types. Thus operations us-
ing some of the basic geometric types need to be rewritten from
something resembling the original mathematical expression:

Vector3D normal =
(pnts[p2] - pnts[p1]) ^
(pnts[p3] - pnts[p1]);

to the convoluted prefix form:

Vector3D normal = Vector3D.CrossProd(
Vector3D.Subtract (pnts[p2], pnts[p1]),
Vector3D.Subtract (pnts[p3], pnts[p1]));

The version of Kaffe used under IRIX has proved to be unreliable,
and unable to pass its own compliance tests. Problems such as the
inability to distinguish between positive and negative integer con-
stants are a hindrance to the correct operation of some components
(although surprisingly many still manage to operate).

4.1 Rewrite of the Components

The Component concept translates easily into Java, with a few
key differences.

To provide the scheduling service, the Component class must
maintain a static list of all active components. In the CoRgi ver-
sion, the destructor for the component can be relied on to destroy
the object, and more importantly, sever its link with the scheduler.
In Dane, when the application forgets about a component, a link
will always exist within this list and the component will never be
garbage collected. Even worse is that the component will continue
to be scheduled. An explicit termination routine is required in this
case, unlike the situation for most other objects in which finaliza-
tion by the garbage collector is adequate.

The data to be transmitted to any one port of a CoRgi compo-
nent must be all of one particular type, specified at the design time
of that particular component. In order to provide a generic port
mechanism, all types are recast to byte arrays, and the CoRgi com-
ponents must rely on prior knowledge to restore type information.
In Dane, all messages are derived from a common base class which
in turn extends Serializable. This allows data to be easily se-
rialized into a byte array for transmission between network compo-
nents. Type information is retained with the object in Java, allowing
the object to identify itself once it has reached the destination. Ports
are now able to distinguish different types arriving on the same link,
and objects of different types can be multiplexed over a single link.

4.2 Rewrite of the Networking Code

To satisfy the scheduling requirements of the components, each de-
vice driver must be able to poll the corresponding device and return
immediately if there is no data waiting. The network devices are no
exception. In CoRgi, this is accomplished through the mechanism
of the select() system call, which identifies any active sockets
or returns immediately if there are none. An equivalent to this call
does not exist under Java[7]. Mechanisms that have been suggested
to work around this problem include the use of a separate thread
for each socket which blocks until data arrives, but allows the prin-
cipal thread to continue running; or the re-implementation of the
networking services[9].

Since the number of threads that can reasonably be supported on
most platforms is limited, it makes no sense to limit system scala-
bility by multi-threading the network libraries. The systems tested
exhibit a limit of about 1000 idle threads per process, which would
severely limit the number of network connections in any large or
medium scale system requiring a thread per connection. Even sys-
tems that support larger numbers of threads exhibit poor perfor-
mance as this limit is approached.

CoRgi provides a more complex networking interface than the
traditional socket level calls in any case (it allows for replication
of data, as in a multicast environment). Thus in Dane, an interface
between Java and C++ occurs for the networking functions at this
network interface. Non-blocking and polled socket I/O is imple-
mented using the C++ libraries. The Java level code is presented
with a Channel class which provides the functionality required.

Transmission of objects across the network is a source of con-
siderable complexity in CoRgi. Various byte orders, alignments
and sizes are employed for the primitive types on different archi-
tectures. In C++ this is addressed by defining one standard into



JNI
JNIEXPORT void JNICALL Java_TextureImage_loadData
(JNIEnv* env, jobject obj)

jclass cls = env � >GetObjectClass (obj);
jfieldID fid; fid = env � >GetFieldID(cls, "x",

"I");
if (fid == 0) { Serious error }
env � >SetIntField (obj, fid, (jint) x);
jbyteArray arr = env � >NewByteArray (x * y *

4);
jsize len = env � >GetArrayLength (arr);
jbyte * body = env � >GetByteArrayElements

(arr, 0);
copy values into array

env � >ReleaseByteArrayElements (arr, body, 0);

CNI
void TextureImage:: loadData ()

x = (jint) xfield;
arr = JvNewByteArray (x * y * 4);
jbyte * body = elements (arr);

Table 1: Comparison of equivalent code using JNI and CNI

which all objects are converted before transmission over the net-
work, introducing significant overhead.

Java serialization allows the programmer to ignore these prob-
lems. All marshalling and conversion issues are taken care of au-
tomatically by the compiler. This functionality is thoroughly ex-
ploited by the InputServer application, a server which collates
the latest readings from each virtual reality peripheral device, and
repeats them over the network to all interested applications. The
rate of transmission can be set so as to trade off the quantity of net-
work traffic generated against the rate and latency associated with
each sample. The CoRgi version of this server has never had any
difficulty in reaching the maximum transmission levels, even on
the slower workstations that are generally delegated to this task.
In Dane, using the same hardware, the server can barely maintain
the 30 samples per second set as the lower limit. The overhead of
serialization has been identified as the culprit in this case.

4.3 Rewrite of the Device Drivers

The device drivers in the system are responsible for sending data to,
and receiving data from the various virtual reality peripherals used.
In some cases these may call on operating system level drivers, but
often they invoke other libraries (for example: speech recognition
and synthesis), or access hardware directly for customized devices,
or devices that are unsupported at an operating system level. Java
is not intended to be used at this level, but specifies a mechanism,
JNI, for accessing system libraries.

JNI proves to be suitable for the task of implementing the virtual
reality system’s device drivers. The original code used in CoRgi
is retained, and a Java interface is provided to allow transfer from
language to the other.

The GNU Java compiler offers a different approach to interfacing
C++ and Java code via a mechanism labeled CNI.

A segment of code illustrating the differences is shown in Table
1. With CNI the Java class structure is almost transparently visible
to the C++ code. Access to member variables can be done directly,
and encouraging sharing of values between the C++ and Java as-
pects of the class. Creating and manipulating elements in arrays
no longer requires protection mechanisms. The implications of this
cross-language transparency extends beyond just access to external
libraries. Tasks better suited to a particular language can be now be

Unoptimized
Optimized
With Memory Management

0

Linux/C++ Linux/Kaffe Linux/GCJ Linux/IBM JDK Linux/Sun JDK IRIX/C++ IRIX/SGI JDK

500

600

400

300

200

100

R
un

 T
im

e/
[s

]

Figure 1: Relative performance for executing code.

written in that language, but still well integrated into the entire sys-
tem. In our case, the complete functionality of the Qt widget set is
now available for providing graphical user interfaces to the virtual
reality applications.

5 Conversion Costs

5.1 Platform dependencies

All auxiliary data used by the system is retrieved from a web server,
to reduce the number of redundant copies required. The URL class
turns out to have different semantics in the different systems used.
As used in Kaffe and the various JDKs, the header generated by
the HTTP protocol is stripped, and the remaining data presented as
the contents of the URL. The implementation in GCJ provides both
header and data.

As this is a compile time issue, it should be possible to resolve
the problem using some form of conditional compilation. This
could involve the use of the C pre-processor to conditionally select
an appropriate portion of the code to work around the problem.

5.2 Performance issues

While we are not attempting to investigate benchmarks for Java, it
is useful to get some comparative measures of the performance of
certain operations; particularly those common to the virtual reality
system.

5.2.1 Computation Performance

Figure 1 shows the relative performance of the systems used. The
test program used calculates points in the Mandelbrot fractal, and
gives a measure of some floating point arithmetic and method call
overhead. A variation on this dynamically allocates an array to
hold some intermediate values, to stress the garbage collector. The
equivalent C++ program, with explicit memory management, is
also tested.

The difference in performance between unoptimized and opti-
mized code when contrasting the compiled versus interpreted ver-
sion is interesting, as is the decrease in performance in the case of
one system when optimization is turned on. The open source sys-
tems perform worst overall, while the original C++ version runs
the fastest when optimized. The overhead introduced by garbage
collection is significant, suggesting that avoiding dynamic memory
allocation, or implementing an explicit memory management sys-
tem may be a useful approach for real-time systems.



Class 1: 7 doubles
Class 2: 7 ints
Class 3: double[100]
Class 4: int[100]
Class 5: double[1000]
Class 6: int[100]
Class 7: classes 1,2,3

Linux/Kaffe Linux/GCJ Linux/IBM JDK Linux/Sun JDK IRIX/SGI JDK

0

5000

10000

15000

20000
O

bj
ec

ts
 s

er
ia

liz
ed

 p
er

 s
ec

on
d

Figure 2: Serialization rates.

5.2.2 Serialization Performance

Directly relevant as a performance measure is the speed with which
objects can be serialized. This has already been observed to be a
limiting factor in the rate at which device readings can be propa-
gated to client applications. Serialization rates for a range of com-
monly used structures are shown in Figure 2.

Once again, the open source systems perform badly. It is easy
to see how the rate can drop to below 10s of samples per second
on slow machines supporting a number of devices. An interesting
effect is the greater than tenfold increase in time when increasing
the double array by a factor of ten when using Kaffe. Typical device
information matches classes 1, 2 and 7, while the larger classes
are more typical of agents in the virtual reality system which have
softer time constraints.

5.2.3 Native call Performance

Rendering, one of the significant aspects of a virtual reality sys-
tem, is accomplished by making native calls to an OpenGL library.
This approach is chosen to simplify porting of the previous version
of the system, and because viable alternatives were not available at
the time at which translation was started. The performance of native
calls are summarized in Figure 3. Calls from C++ to the same func-
tions are shown for reference purposes. CNI is used when profiling
the GCJ compiler. The different tests involve: calls to an empty
function, calls to increment three double member variables of the
Java class and calls to a routine to set the elements of an array of
100 doubles, passed as a parameter.

As may be anticipated, the open source native compiler outper-
forms the other systems by orders of magnitude, achieving a speed
about half that of the pure C++ version. Also interesting is that
the other open source solution outperforms the Sun implementa-
tion when it comes to array manipulation. The array manipulation
test is particularly relevant when passing serialized objects, video
images and texture information between the two aspects of the sys-
tem. Direct manipulation of Java members variables by the C++
native methods allows more complete integration of class methods
implemented in the two languages.

5.2.4 Application Performance

The combined effects of the relative performance of the Java plat-
forms used can only be properly assessed in the context of a virtual
reality when applied to a virtual reality application. ”Swimming
with Dolphins”[3] is a reference application which originated in
CoRgi and has been ported with only insignificant changes to the
Java version, Dane. The results of measuring the performance of
this application are shown in Table 2.

Linux/C++ Linux/Kaffe Linux/GCJ Linux/IBM JDK Linux/Sun JDK IRIX/C++ IRIX/SGI JDK

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

3.0e+08

C
al

ls
 p

er
 s

ec
on

d

(a) Function calls

Linux/C++ Linux/Kaffe Linux/GCJ Linux/IBM JDK Linux/Sun JDK IRIX/C++ IRIX/SGI JDK

0e+00

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

C
al

ls
 p

er
 s

ec
on

d

(b) Member variables

Linux/C++ Linux/Kaffe Linux/GCJ Linux/IBM JDK Linux/Sun JDK IRIX/C++ IRIX/SGI JDK

0

500000

1000000

1500000

2000000

2500000

C
al

ls
 p

er
 s

ec
on

d

(c) Array access

Figure 3: Performance of calls to native libraries.

System Frame rate/ Rendering Non-rendering
[frames/s] /[ms/frame] /[ms/frame]

Linux/C++ 36.27 22.8 4.8
Linux/Kaffe 12.62 70.7 8.6
Linux/GCJ 34.51 25.9 3.1

Linux/IBM JDK 29.29 31.7 2.5
Linux/Sun JDK 15.93 58.7 4.0

IRIX/C++ 17.92 42.2 13.7
IRIX/SGI JDK 9.66 96.8 6.7

Table 2: Performance of the “Swimming with Dolphins” virtual
reality application.

The highest frame rate for a Java implementation is produced
using the GCJ compiler, and comes close to the performance of
the original purely C++ system. Rendering time is relatively high
compared to the rest of the environment modelling and internal data
flow because of the high resolution (

������������	����
) used.

Rendering consists of a combination of geometric operations
(used in animating the various polygon meshes), and native calls to
the OpenGL library to specify transformations and vertex attributes.
The relative performance of the different systems during the render-
ing phase bears a strong resemblance to the results obtained from
measurements of the native call overheads, as may be expected.

The rankings for non-rendering overhead is more consistent with
those obtained for the computational performance of the various
systems. One interesting outlier is the JDK by Sun Microsystems,
which performs well in the benchmarks, but fails to live up to ex-
pectations when confronted with a substantial application.

5.3 Java enhancements

Use of Java as an underlying platform allows additional functional-
ity to be quickly and easily added to the system.

Virtual reality agents are able to transport themselves between
the various virtual reality applications distributed over the different
stations running on our network. The agents are themselves ob-
jects which support serialization, and can be transmitted by network
components between worlds. The current state of the agent is pre-
served during this process, allowing it to materialize and continue



executing from where it left off. Issues of explicitly identifying this
state, and preserving links to other structures used by the object,
which would be prohibitively complex in C++ are now automati-
cally taken care of.

Persistent objects can be created by saving the serialized objects
to disk. Modifications to the serialization and deserialization pro-
cess can allow agents which clone (fork) themselves to address a
problem in a distributed manner, and then later merge (join) back
into a single object with the combined results. Such an approach
has already been successful in a distributed messaging system.

Reflection allows the de-multiplexing of the data flow to be per-
formed automatically. Under CoRgi, each C++ component is re-
quired to provide a service routine for each port, which could han-
dle the data type received on the port. The Java implementation
collates all port handling operations in a parent class, which uses
reflection to extract the names of the data types received, and calls
a separate event handler appropriate to each type. Implementation
of new components no longer requires understanding the mecha-
nisms of the Port class, and the precautions required to prevent
the service routines from blocking. Instead, if processing of a spe-
cific message is required, a handler may be implemented, which
deals with a single instance of the message type.

6 Conclusions

In conclusion, the following myths about Java can be debunked:

1. Portability: Java applications are not automatically portable.
Practice differs widely from theory when it comes to provid-
ing compliant compilers on all platforms, with consistent per-
formance characteristics.

2. Memory management: Automatic memory management, and
the pointer/reference model adopted by Java simplifies code
creation, while garbage collection has not been found to affect
virtual reality applications adversely.

3. Networking: The provision of networking services that are
only capable of blocking calls is not appropriate in complex
real time applications.

4. Code interpretation: Any overhead with interpretation can be
resolved using a native language compiler.

Certain facilities provided by Java are of significant value in ex-
panding the facilities offered by the virtual reality toolkit:

1. Serialization: The ability to load and save objects to byte ar-
rays, and to files allows support for agents, persistence and
distribution of the system in ways which are extremely com-
plex using C or C++.

2. Reflection: This mechanism finds use in implementing a sim-
ple front-end to the data-flow model used in the system. It
also has application in allowing classes (such as agents) to be
dynamically added to a running system.

3. Native calls: These are essential for control of devices and
integration of legacy software libraries. The CNI approach is
far easier to use than JNI, and allows better integration of C++
classes with the Java system.

The integration between C++ and Java provided by the GNU com-
piler offers the potential of exploiting the best features of both lan-
guages simultaneously. A virtual reality toolkit can operate almost
as efficiently in Java as in C++, while benefit from the additional
facilities offered by the Java architecture.

References

[1] Jack Andrews, Interfacing Java with Native Code, avail-
able via the WWW at http://www.str.com.au/
jnibench/, 2001.

[2] Shaun Bangay, James Gain, Greg Watkins and Kevan
Watkins, RhoVeR: Building the Second Generation of Par-
allel/Distributed Virtual Reality Systems, First Eurographics
Workshop on Parallel Graphics & Visualization, Bristol(UK),
26-27 September 1996.

[3] Shaun Bangay and Louise Preston, An Investigation into Fac-
tors influencing Immersion in Interactive Virtual Reality Envi-
ronments, In G. Riva, B. Wiederhold and E. Moltinari (Eds.),
Virtual environments in clinical psychology and neuroscience:
Methods and techniques in advanced patient-therapist inter-
action, Vol. 58, pp. 43-51, Amsterdam, Netherlands: IOS
Press, 1998.

[4] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The
Java Language Specification, Second Edition, available via
the WWW at http://java.sun.com/docs/books/
jls/second_edition/html/j.title.doc.html,
2000.

[5] Jonathan Hardwick, Java Microbenchmarks, available via
the WWW at http://www.cs.cmu.edu/~jch/java/
benchmarks.html, March 1998.

[6] Jonathan Hardwick, Optimizing Java for Speed, available via
the WWW at http://www.cs.cmu.edu/~jch/java/
speed.html, March 1998.

[7] Dan Kegel, The C10K problem : Java Issues, avail-
able via the WWW at http://www.kegel.com/c10k.
html#java, February 2001.

[8] Scott Plamondon, The need for speed, stability, avail-
able via the WWW at http://www.javaworld.com/
jw-10-1999/jw-10-volano_p.html, April 2001.

[9] Mark Reinhold, JSR #000051 New I/O APIs for the JavaTM
Platform, available via the WWW at http://java.sun.
com/aboutJava/communityprocess/jsr/jsr_
051_ioapis.html, February 2000.

[10] Sun Microsystems, The Source for Java Technology, http:
//java.sun.com/, 2001.


